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ABSTRACT Protonation of the Ca21 ligands of the SR Ca21-ATPase (SERCA1a) was studied by a combination of rapid scan
FTIR spectroscopy and electrostatic calculations. With FTIR spectroscopy, we investigated the pH dependence of C¼O bands of
the Ca21-free phosphoenzyme (E2P) and obtained direct experimental evidence for the protonation of carboxyl groups upon Ca21

release. At least three of the infrared signals from protonated carboxyl groups of E2P are pH dependent with pKa values near 8.3: a
band at 1758 cm�1 characteristic of nonhydrogen-bonded carbonyl groups, a shoulder at 1720 cm�1, and part of a band at 1710
cm�1, both characteristic of hydrogen-bonded carbonyl groups. The bands are thus assigned to H1 binding residues, some of
which are involved in H1 countertransport. At pH 9, bands at 1743 and 1710 cm�1 remain which we do not attribute to Ca21/H1

exchange. We also obtained evidence for a pH-dependent conformational change in b-sheet or turn structures of the ATPase. With
MCCE on the E2P analog E2(TG1MgF4

2�), we assigned infrared bands to specific residues and analyzed whether or not the
carbonyl groups of the acidic Ca21 ligands are hydrogen bonded. The carbonyl groups of Glu771, Asp800, and Glu908 were found to
be hydrogen bonded and will thus contribute to the lower wave number bands. The carbonyl group of some side-chain
conformations of Asp800 is left without a hydrogen-bonding partner; they will therefore contribute to the higher wave number band.

INTRODUCTION

The Ca21-ATPase (1) of SR performs active transport of

Ca21 from the cytoplasm of muscle cells into the lumen of SR

(2–7). The enzyme belongs to the P-type ATPase family and

couples the transport of two Ca21 ions across the SR mem-

brane to the hydrolysis of one molecule of ATP.

The Ca21-ATPase reaction mechanism is commonly de-

scribed in terms of an E1/E2 scheme adapted from de Meis

and Vianna (8). The scheme is represented in Fig. 1. Accord-

ing to this model two Ca21 ions bind to the high affinity

Ca21 binding sites of the ATPase in state E1, which releases

H1 into the cytoplasm. This is followed by ATP binding and

phosphorylation, Ca2E1/Ca2E1ATP/Ca2E1P. The next

step is phosphoenzyme conversion, Ca2E1P/E2P. The con-

version to E2P is accompanied by release of Ca21 into the

SR and proton uptake from the SR. Hydrolysis of E2P and

regeneration of the high affinity Ca21 binding sites complete

the reaction cycle.

Proton uptake and release reactions lead to proton coun-

tertransport. The stoichiometry of proton countertransport

is 1–1.5 H1 per transported Ca21 (9–11). Ca21 and H1 ions

have been indicated to compete for the same sites of the

Ca21-ATPase (12–16) where protons are supposed to be re-

quired for stabilization of the ATPase structure by partly neu-

tralizing the negative charge of the empty Ca21 binding sites

(5). The Ca21 binding sites contain four carboxyl groups

(Glu309, Glu771, Asp800, and Glu908), which are candidates for

binding the countertransported protons. Proton countertrans-

port stops when the lumenal pH is higher than 8.0, indicating

that the pKa of the lumenal H1 binding sites is between ;7.2

and 7.7 (11,14,15).

Several electrostatic calculations have been performed to

identify the acidic Ca21 ligands that are protonated in the Ca21-

free states. The calculations were done on Ca2E1 (17–19)

and different E2 states: E2(TG1BHQ) (20), E2(TG) (18,19),

and E2(TG1MgF2�
4 ) (18). The latter is an E2P analog which

most closely resembles the product state of the dephospho-

rylation reaction, i.e., E2 with nonconvalently bound phos-

phate. The calculations have indicated that Glu309, Glu771,

and Asp800 are ionized around physiological pH in Ca2E1.

The different calculations disagree regarding the protonation

state of Glu908 in Ca2E1. It is protonated up to at least pH 7.5

in continuum electrostatic calculations with fixed side chains
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(17,20). Our MCCE calculations have yielded a pKa of 3.6

(18). This discrepancy likely arises because our approach

allows for side-chain flexibility which seems to make the

effective dielectric constant e larger than 20, the maximum

value used in the calculations with fixed side chains (17).

For the E2 states all calculations agree in that Glu771, Asp800,

and Glu908 are protonated at pH 6. The calculations agree

further that only one of the three residues Glu771, Asp800, and

Glu908 titrates between pH 6 and 8. In our calculations, Asp800

titrates with a pKa between 7 and 8 depending on the treat-

ment of water (18), whereas Obara et al. (20) have found that

Glu908 titrates with a pKa around 6.5 if e is set to 20. Again

we attribute the deviation between the calculations to the

different approaches rather than to the different E2 states used.

This is because our calculations with the E2(TG) structure—

presumed to represent the same state as E2(TG1BHQ)—gave

very similar values for Glu771, Asp800, and Glu908 as our

calculations with E2(TG1MgF2�
4 ). Therefore we consider

the E2 and E2P analog states equivalent with respect to the

protonation state of the acidic Ca21 ligands. This is sup-

ported by infrared spectroscopy: the spectra of carboxyl groups

that become protonated upon Ca21 dissociation are similar

for phosphorylated and unphosphorylated ATPase (21).

An important exception to the calculation of similar pKa

values in E2(TG) and E2(TG1MgF2�
4 ) is Glu309, where we

have calculated a pKa of 4.7 in E2(TG) but a pKa near 8.5 in

E2(TG1MgF2�
4 ). The latter value is in accordance with the

calculations by Obara et al. (20), which indicate that a small

fraction of residues is deprotonated at pH 8 when e is set to

20. The large variation of the pKa of Glu309 arises because

Glu309 can adopt a high and a low pKa depending on the lo-

cal backbone structure, which determines the exposure of the

Glu309 side chain to water. The low pKa structure seems to be

predominantly adopted, according to our calculations, with

the side chain oriented away from the Ca21 binding sites

toward a water-filled channel, as in the E2(TG) structure by

Toyoshima and Nomura (22).

At high pH, all calculations indicate a larger number of

protons involved in Ca21 release than experimentally ob-

served, as discussed previously (18). To clarify the situation

we undertake here an infrared spectroscopic investigation on

the pH-dependent protonation of acidic residues in E2P.

Time-resolved FTIR spectroscopy allows the detection of

ATPase intermediate states in the reaction cycle (23,24). The

reaction is started by ATP release from a photolabile caged

ATP, which was earlier shown to initiate the Ca21-ATPase

reaction cycle (25). The release of ATP is accompanied by

infrared absorbance changes caused by the molecular pro-

cesses in the ATPase during Ca21 transport. ATP-induced

absorbance changes are not observed in the presence of the

Ca21 chelator EGTA, when the nucleotide binding site is

blocked by FITC (26) and when the ATPase is inhibited by

TG (27).

In this work we studied protonation of the Ca21 ligands by

a combination of rapid scan FTIR spectroscopy and elec-

trostatic calculations. The aim of the infrared studies was to

identify carbonyl bands of protonated carboxyl groups in the

infrared spectrum that titrate with the same pKa as the lu-

menal proton ligands. Thus we investigated the pH depen-

dence of C¼O bands of the Ca21-free phosphoenzyme (E2P),

which were studied before only at pH 7.0 (21,23,28,29). At

least three of the infrared signals from protonated carboxyl

groups of E2P are pH dependent, which makes the previous

tentative assignment to H1 binding residues unequivocal. Our

results also indicate a pH-dependent conformational change

in a b-sheet or turn structure of the ATPase. The MCCE

calculations analyzed the hydrogen-bonding pattern of acidic

Ca21 ligands and served to assign the observed infrared

bands to specific residues.

MATERIALS AND METHODS

Sample preparation

Ca21-ATPase from rabbit hind leg and back muscle was prepared in the

laboratory of W. Hasselbach by the method of Hasselbach and Makinose

(30) and stored at �20�C. ATPase vesicles were dialyzed after thawing and

addition of calcium ionophore A23187 in 1H2O or in 2H2O buffer, con-

taining 10 mM Tris-maleate or Tris-diethylamine and 20 mM CaCl2 at the

desired pH for 1.5 h. Tris-diethylamine buffer was used for experiments at

pH values above 8.0. Measurements in both buffers at pH 7.5 and pH 8.0

have indicated no buffer effect on the spectra. The pH meter reading for
2H2O buffers was corrected by 10.4, according to Glaose and Long (31), to

obtain p2H.

Samples for time-resolved infrared spectroscopy were prepared by drying

dialyzed SR suspension with added caged ATP, MgCl2, and DTT onto a

CaF2 window under N2 flow with subsequent rehydration with 15% DMSO

in 1H2O or 2H2O. Approximate concentrations in the samples were 100–150

mg/ml of protein, 100 mM Tris-maleate or Tris-diethylamine, 0.2 mM

CaCl2, 5 mM MgCl2, 10 mM caged ATP, 10 mM DTT, 0.5 mg/ml A23187,

and 15% DMSO.

FTIR measurements

Time-resolved FTIR measurements of the Ca2E1/E2P reaction were per-

formed at 1�C with a Bruker (Ettlingen, Germany) IFS 66/S spectrometer as

described previously (23,29). The resting state of the ATPase in our samples

was Ca2E1. The reaction cycle was initiated by photolytic release of ATP

from caged ATP. Difference spectra were obtained from spectra before and

after the photolysis flash that reflected the difference in absorbance between

resting state Ca2E1 and the states that accumulate after ATP release. The

FIGURE 1 Simplified reaction scheme of the Ca21-ATPase. Only the

forward direction under physiological conditions is indicated.
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reaction was induced up to two times per sample. A total of 6–8 experiments

were averaged from experiments on four different samples, two of which

were dialyzed on the same day. The averaged time-resolved series of dif-

ference spectra was normalized to a standard protein absorbance (amide II

absorbance of 0.26) (21). To obtain the resulting Ca2E1/E2P spectrum,

those spectra of the time-resolved series of spectra that showed the largest

amplitude of the E2P marker band at 1194 cm�1 (23,28,32) were averaged.

For this, the time interval 5–30 s was used for all experiments in 1H2O, that

of 9–83 s for experiments at p2H 6.0, and that of 5–17 s for the experiments

at p2H 7.5 and 9. The amplitude of the 1194 cm�1 band was found to vary

slightly for spectra obtained at the different pH values. Thus, they were nor-

malized to that of the spectrum at pH 6.0 using normalization factors be-

tween 1 and 1.1. Spectra normalized to 1194 cm�1 are shown in the figures

and were used to determine the pKa value of the titrating carboxyl groups.

Previously we have shown spectra of the reactions Ca2E1 / E2P (23,28)

and Ca2E1P / E2P (21,29). Here we show Ca2E1 / E2P spectra since the

Ca2E1P intermediate could not be clearly resolved at high pH because E2P

formation was faster at high pH. Positive bands above 1700 cm�1 are very

similar in both types of spectra. These bands are the main focus of this work

and are due to C¼O vibrations in the E2P state.

Fitting procedure

To determine pKa values from the pH dependence of infrared band am-

plitudes, we fitted integrated band amplitudes to the equation

y ¼ ðb1 1 b2310
ðpH�pKÞÞ=ð10

ðpH�pKÞ
1 1Þ

using GRAFIT 309b. The 1758 cm�1 band was integrated with respect to a

baseline drawn between two averaged data points at both sides of the bands

with method E of OPUS 4.0. For the 1710 cm�1 band, method D was used,

which integrates with respect to a horizontal line through one baseline point

that we placed in the minimum between the 1758 and 1710 cm�1 bands. The

error of the pKa value was estimated by varying the method for band inte-

gration.

MCCE calculations

MCCE is a hybrid method combining continuum electrostatics and molec-

ular mechanics. References for the methodology and some recent applica-

tions can be found in, e.g., (18,19,33–39).

MCCE samples residue ionization and side-chain conformation as a

function of pH, which provides pKa values for individual residues. Confor-

mational flexibility is modeled by multiple side-chain conformations which

are constructed systematically by rotating rotatable side-chain bonds. For

example, multiple conformations of aspartic and glutamic acids are con-

structed by rotation around the Ca-Cb, Cb-Cg, and the Ca-Cb, Cb-Cg, and

Cg-Cd bonds, respectively. The ionization states of a side chain in a specific

conformation comprise an ionized carboxyl group and two protonated groups,

protonated either at the Od1 or Od2 oxygen for aspartic acids or at the Oe1 or

Oe2 oxygen for glutamic acids. Thus, each residue is represented by a set of

structures (commonly called conformers) that differ in side-chain orientation,

ionization state, site of protonation, and direction of the OH bond. Confor-

mational and ionization states of all residues are sampled in a Monte Carlo

sampling, assuming a Boltzmann distribution of states that yields the occu-

pancy of each residue state as a function of pH.

Calculations were performed with program version ‘‘mcce_alpha’’ and

one of the four ATPase molecules in the asymmetric unit (chain A) of the 2.3

Å crystal structure of E2(TG1MgF2�
4 ) (1WPG.pdb) (40) as described (18).

Five of the crystal water molecules that are located within 10 Å around

Asp800, ligand of both calcium ions, were included in the calculations and

treated explicitly. We will discuss only structures occupied to 5% or more.

To reduce the high number of structures for each residue in the hydrogen-

bond analysis, similar structures with similar hydrogen bonding were com-

bined, and a representative structure is discussed and shown in Fig. 5. These

representative structures are given a label which consists of a number and a

letter, for example, ‘‘structure 1a’’. The number denotes a representative struc-

ture of the heavy atoms of the side chain, whereas the letter discriminates

between different positions of the hydrogen atom.

Placement of water molecules

To analyze hydrogen bonding of the carboxyl groups of the acidic Ca21

ligands in E2(TG1MgF2�
4 ) (1WPG.pdb) to water, water molecules were filled

into protein cavities using the program Dowser (41) (http://hekto.med.unc.

edu:8080/HERMANS/software/DOWSER/index.html) for all four ATPase

molecules (chains A–D) of the asymmetric unit. The program analyzes the

interaction energies and keeps only those water molecules which have a

favorable interaction energy that is larger than 42 kJ/mol.

RESULTS

Overview over infrared spectra

E2P formation from Ca2E1 was investigated by time-resolved

FTIR spectroscopy at different pH values from pH 6.0 to 9.0

with intervals of 0.5 pH units. In Fig. 2 we show the spectra

at pH 6.0, 8.0, and 9.0. The other spectra (at pH 6.5, 7.0, 7.5,

and 8.5) are omitted in the figure to obtain a clearer repre-

sentation. For the analysis of the pH dependence of selected

bands, all spectra were used (see below).

The spectra are shown in the spectral range from 1800

cm�1 to 900 cm�1, which covers the following absorption

regions: i), the region of the stretching vibration of C¼O

groups (n C¼O) of, for example, protonated carboxyl groups

and lipids (1800–1700 cm�1); ii), the antisymmetric stretch-

ing vibration of unprotonated carboxyl groups (nas COO�)

(1610–1536 cm�1); iii), the region of the symmetric stretch-

ing vibration of unprotonated carboxyl groups (ns COO�)

(1462–1328 cm�1); iv), the amide I mode of the polypeptide

backbone, sensitive to secondary structure (1700–1610 cm�1);

v), the amide II mode of polypeptide backbone (1580–1520

cm�1) (42,43); and vi), the region of phosphate absorption

(,1300 cm�1). Differences between the spectra in the

phosphate region are due to hydrolysis of ATP (25,44).

FIGURE 2 Infrared difference spectra of the Ca2E1 / E2P reaction.

Bands discussed in the text are labeled. (Solid line) Spectra obtained at pH

6.0; (dashed line) pH 8.0; and (dotted line) pH 9.0.
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Different bands associated with E2P formation have

been tentatively assigned for spectra obtained at pH 7.0

(21,23,28,29). In particular, E2P bands at 1758 and 1710

cm�1 have been assigned to the protonation of at least two

carboxyl groups of Asp or Glu residues that might participate

in H1 countertransport (28,29). Signals in the amide I region

have been tentatively assigned to a conformational change

of b-sheet or turn structures (1670–1688 cm�1), b-sheet (1638–

1618 cm�1), and a-helical structures (1653 cm�1) (28,29).

E2P accumulation

The band at 1194 cm�1 is a marker band for the E2P state. It

appears upon phosphoenzyme conversion (29), has been

assigned to the phosphate group of E2P using isotopically

labeled ATP (29,32), and indicates the environmental change

that is responsible for the change of phosphate chemical

specificity upon phosphoenzyme conversion. After normal-

ization of the spectra to a standard protein absorption, the

intensity of the 1194 cm�1 band was similar for all spectra,

indicating that E2P accumulates at all pH values to a similar

extent. Small variations in the amplitude of the 1194 cm�1

band were corrected by normalizing all spectra to the 1194

cm�1 amplitude obtained at pH 6.0. The normalization factors

were between 1 and 1.1. These spectra are shown in Figs. 2

and 3 and were used for the titration curve in Fig. 4. The

conditions used are known to accumulate E2P to nearly 100%

at pH 7.0 as discussed previously (28). From the evaluation of

the marker band we conclude that, also at high pH, the

accumulation of E2P is close to 100% under our conditions.

We attribute this to the presence of DMSO.

C¼O bands in 1H2O

The spectra of the Ca2E1/E2P reaction (Fig. 2) reveal

distinct differences in the n C¼O region (1800–1700 cm�1)

when the pH of the reaction medium increases. This spectral

region is shown in Fig. 3 A on an expanded scale for the

spectra shown in Fig. 2. At pH 6, three bands at 1758, 1743,

and 1710 cm�1 can be identified. At pH 9, the bands at 1758

and 1710 cm�1 are significantly reduced in amplitude. In

contrast, the C¼O band at 1743 cm�1 does not change with

pH and some intensity at 1710 cm�1 remains at high pH.

Thus the pH 6 band at 1710 cm�1 seems to be composed of a

pH-dependent component and a component that does not

titrate between pH 6 and 9. In addition, the 1710 cm�1 band

at pH 6 has a shoulder at 1720 cm�1, which is also reduced at

high pH. The presence of the shoulder at 1720 cm�1 is ob-

vious in a difference spectrum between the low and high pH

spectra, which is shown as an inset in Fig. 3 A. The maxi-

mum of this spectrum is at 1705 cm�1.

The pH dependence of the bands at 1758 and 1710 cm �1 is

best seen in Fig. 4, where we plotted their band areas against

the pH value. The obtained titrations were fitted to determine

the pKa value of the H1 binding residues. The best fits were

obtained with pKa values of 8.3 6 0.4 for both bands.

C¼O bands in 2H2O

To get additional information for band assignment we re-

corded the spectra also in 2H2O at p2H 6.0, 7.5, and 9.0. They

are shown in Fig. 3 B. The bands at 1758 and 1710 cm�1 in
1H2O (Fig. 3 A) exhibit a 2–6 cm�1 downshift in 2H2O as

expected for carboxyl groups (45,46). In contrast, the C¼O

band at 1743 cm�1 in 1H2O is found at 1746 cm�1 in 2H2O.

Band assignment of the 1758, 1720, and
1710 cm�1 bands

The bands at 1758, 1720, and 1710 cm�1 decrease in am-

plitude with alkalization of the medium which considerably

strengthens the previous tentative assignment (28,29) to pro-

tonated carboxyl groups. The pH dependence is similar to

that of the apparent pKa of the residues binding lumenal H1

for proton countertransport (7.2–7.7) (11,14,15). Thus we

assign the C¼O bands at 1758 and 1720 cm�1 and the pH-

dependent part of the 1710 cm�1 band to carboxyl groups

FIGURE 3 Spectral region of protonated carboxyl groups of the Ca2E1 /
E2P spectra. (A) Spectra in 1H2O; (B) spectra in 2H2O. (Solid lines) p1H(p2H)

6.0; (dashed lines) p1H 8.0 or p2H 7.5; and (dotted lines) p1H(p2H) 9.0. The

inset in A shows a subtraction of a high pH spectrum from a low pH spectrum.

The high pH spectrum was the average of the spectra obtained at pH 8.5

and 9.0 and the low pH spectrum the average of the spectra at 6.0, 6.5, 7.0, 7.5,

and 8.0. Similar spectra were obtained for all combinations of low and high

pH spectra in the subtraction.
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that bind protons upon Ca21 release, some or all of which

participate in H1 countertransport. The band position at

1758 cm�1 indicates a nonhydrogen-bonded carbonyl group,

whereas band positions at 1720 and 1710 cm�1 are char-

acteristic of hydrogen-bonded groups (46). The band at

1710 cm�1, which remains at high pH, is affected by the

divalent cation that binds to the phosphorylation site, which

suggests that this band originates from the carbonyl group of

phosphorylated Asp351 (47).

Band assignment of the 1743 cm�1 band

The band at 1743 cm�1 is neither affected by alkalization (Fig.

3 A) nor does it shift down upon deuteration (Fig. 3 B). The

latter does not support an assignment to a carboxyl group but

also does not exclude it for the following reasons: i), The

group causing this band might not be in contact with the

medium and might not exchange its protons with bulk water

protons. This would then exclude a role in the proton coun-

tertransport of this residue. ii), Downshifts upon deuteration

are not observed in all cases; upshifts have even been ob-

served for hydrated carboxyl groups in CCl4 (48) and for the

acetic acid dimer in the gas phase (49). Alternative to an

assignment to a protonated carboxyl group, the 1743 cm�1

band could also represent a noncarboxyl carbonyl group, for

example, from a lipid C¼O group that increases its absorption

index due to an environmental change. The main lipid band at

1732 cm�1 is hardly shifted in 2H2O in our absorbance spectra

(not shown). If the 1743 cm�1 band were related to pro-

tonation of Ca21 ligands, it should appear as a negative band

in spectra of Ca21 binding to the unphosphorylated enzyme

because the respective carboxyl groups should become pro-

tonated. However, this is not observed (21,50,51) (note that

the Ca21 binding spectrum in Barth et al. (21) is inverted and

shown as a Ca21 release spectrum); nor is a negative band at

1743 cm�1 observed in a series of Ca21 binding experiments

at different pH values (J. Andersson, J. Sun, and A. Barth,

unpublished). This also indicates that the band at 1743 cm�1

does not originate from the groups participating in H1/Ca21

exchange.

Conformational changes

pH-dependent changes are also evident in the amide I region.

The 1671/1661 cm�1 difference feature of the pH 6 spectrum is

reduced at pH 8 and 9 (see Fig. 3 A). Consequently, low pH

minus high pH double difference spectra (not shown) consis-

tently exhibit a broad positive band at 1671 cm�1 and a sharp

negative band at 1660 cm�1. The difference between the high

and low pH spectra can be explained by a shift of the two pH 6

bands at 1671 and 1661 cm�1 toward each other at high pH,

lowering the 1671 cm�1 band position by 0.7 cm�1 and raising

that of the 1661 cm�1 band by 2 cm�1 (see Fig. 3 A). The same

differences between low and high pH spectra can be observed

in 2H2O where p2H 6 bands at 1670 and 1663 cm�1 are reduced

at high pH because they have moved closer (see Fig. 3 B). In the

low minus high p2H spectrum, this leads to a broad positive

band at 1679 cm�1 and a sharp negative band at 1660 cm�1.

The similar band positions of the two bands in 1H2O and
2H2O make an assignment to side chains unlikely since most

polar side chains exchange much faster than amide protons

(52), in line with experiments showing exchange within sev-

eral minutes (53,54). Thus we attribute the difference between

the low and high pH spectra to a difference in amide I ab-

sorption. The band position of both affected bands is char-

acteristic of turns, and that of the 1661 cm�1 band is at the

edge of the range for a-helices. We conclude that the turn and

probably a-helical segments are affected differently at low

and high pH by the transition from Ca2E1 to E2P. The in-

sensitivity to deuteration indicates that the backbone seg-

ments involved have stable hydrogen bonds and are rather

rigid. The increased overlap of the 1671 and 1661 cm�1 bands

at high pH make the spectra of the reaction Ca2E1 / E2P less

featureless at high pH. This indicates that the conformations

of the two states are more similar at high pH than at low pH.

The low pH minus high pH spectra in 1H2O and 2H2O also

exhibit a negative band at 1692 cm�1. This difference is also

FIGURE 4 C¼O band area as a function of pH. (A) Band at 1758 cm�1;

(B) band at 1710 cm�1. The solid line is a fit to the data points (see Materials

and Methods). pKa values were determined to be 8.3 6 0.4 for both bands.
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evident in the spectra shown in Fig. 3 A, where the negative

band at 1687 cm�1 in the pH 6.0–7.5 spectra is slightly shifted

to 1686 cm�1 in the spectra recorded at pH 8–9 (Fig. 3 A). The

negative band appears upon phosphoenzyme conversion and

has previously been shown to be composed of at least two

components at pH 7 with spectral positions at 1685 cm�1 and

at 1693 cm�1 (29), as revealed by the band-narrowing tech-

nique fine structure enhancement (55). Fine structure en-

hancement of the pH series of spectra of this work revealed

that the 1685 cm�1 component is present at all pH values,

whereas the 1693 cm�1 component is only observed at pH 7.5

and below. This was also observed in 2H2O where a shoulder

near 1690 cm�1 in the p2H 6 and 7.5 spectra was missing in

the p2H 9 spectra (Fig. 3 B).

The component at 1685 cm�1 has been tentatively attrib-

uted to a b-sheet or turn structural changes because it shifts

to 1677 cm�1 in 2H2O (29), as also shown in Fig. 3 B (band

at 1679 cm�1). The corresponding backbone segment is quite

flexible, as indicated by the fast 1H/2H exchange on a time-

scale of 1 h at pH 6 and 5�C.

For the 1693 cm�1 component, an assignment to b-sheet or

turn structural changes of the backbone or to environmental

changes around Asn, Gln, or Arg side chains was proposed

(29). The apparent insensitivity of the 1693 cm�1 component

band position to deuteration (29) (see also Fig. 3 B) makes an

assignment to side chains unlikely, as discussed above. Thus,

we tentatively assign it to b-sheet or turn structural changes of

the backbone. Because this band does not shift upon deu-

teration on the timescale of our experiments, the backbone

segment involved has more stable hydrogen bonds and is

more rigid than that giving rise to the 1685 cm�1 component

band. Since the negative 1693 cm�1 band in our Ca2E1 /
E2P spectra is also observed upon Ca2E1P / E2P conver-

sion (29), the corresponding backbone segment absorbs sim-

ilarly in Ca2E1 and Ca2E1P but is affected by the formation of

E2P.

The observation of the 1693 cm�1 band only at pH 7.5 and

below gives rise to two possible interpretations: i), The cor-

responding backbone segment could absorb at a different

wave number in Ca2E1 at high pH, indicating a pH de-

pendency of the Ca2E1 structure. ii), The corresponding

backbone segment of Ca2E1 could absorb at 1693 cm�1 at all

pH values but not be affected by E2P formation above pH

7.5. This would indicate that Ca2E1 and E2P are more alike

at higher pH because the structure of E2P is pH dependent.

We conclude that the pH dependency of the 1693 cm�1 band

gives evidence of a pH dependency of ATPase structure in

the Ca2E1 and/or E2P state, which involves a b-sheet or turn

structure with stable hydrogen bonds.

Hydrogen bonding

In the following, we will discuss hydrogen bonding to the

side-chain carbonyl oxygens of the four acidic Ca21 ligands

in E2P using the E2(TG1MgF2�
4 ) structure. The aim is to

assign the infrared bands in the carbonyl spectral region. The

spectral position of the carbonyl bands is sensitive to the

strength of hydrogen bonding to the carbonyl oxygen. That is

why we were interested in whether or not the acidic Ca21

ligands interact with other residues or with water. Even if

two atoms do not form a hydrogen bond in the crystal struc-

ture, they might come close enough to form a hydrogen bond

when side chains move in response to pH. MCCE calcula-

tions reveal the movement of side chains in dependence of

pH by an alteration of the occupancy of the generated side-

chain structures. By analysis of the MCCE results, possible

hydrogen donors can be identified. Fig. 5 shows those side-

chain structures of the Ca21 ligands in E2(TG1MgF2�
4 ) that

were predominantly occupied in the MCCE calculations.

Conformational analysis of Glu309 has been presented else-

where (18) but without focusing on hydrogen bonding to the

carbonyl group.

To analyze hydrogen bonding of the acidic Ca21 ligands

with water, we filled protein cavities with water using the

program Dowser (41), which takes into account the interac-

tion energy between the internal water molecules and their

environment. We used all four E2(TG1MgF2�
4 ) chains pro-

vided in the data file 1WPG.pdb. The results were slightly

different for the four chains, indicating small structural dif-

ferences between them which are decisive for providing space

and favorable interactions for water or not. Dowser seems

here to make a conservative suggestion, since not all of the

crystal water molecules were reproduced. For example, of

the three crystal waters near Asp800, two were reproduced for

molecule A but only one for molecules B–D. The text below

summarizes our findings on hydrogen bonding to the car-

bonyl oxygen of the protonated Ca21 ligands. Table 1 ana-

lyzes hydrogen bonding of all significant side-chain structures.

Glu309

In the high pKa mode of Glu309 (see Introduction), adopted

by a small portion of ATPase molecules, 60% of the side

chains adopt structures similar to that of the 1WPG.pdb

structure data (structure 1a, Fig. 5 A, solid). The remaining

40% adopt a different conformation in which the Glu309 side

chain orients away from the other Ca21 ligands (structure 2a,

Fig. 5 A, transparent). The carbonyl oxygen faces a cavity at

the bottom of the channel and is likely in contact with water.

In all structures, the carbonyl group is expected to be hydro-

gen bonded (see Table 1 for details).

Glu771

Glu771 is protonated up to pH 14 (18). Most side chains have a

conformation similar to that of the crystal structure except for

the carboxyl group, which adopts positions rotated around

the Cg-Cd bond. None of the adopted structures corresponds

exactly to that in the crystal structure. Three main structures

(1a, 1b, and 2a) are shown in Fig. 5 B and discussed in Table 1.

Protonation of Ca21 Ligands 605

Biophysical Journal 94(2) 600–611



When viewed toward the backbone they have their carboxyl

group rotated by 50� counterclockwise (structures 1a and 1b)

and 60� clockwise (structure 2a) with respect to the crystal

structure. This does not seem to be in contradiction to the

x-ray data because chains B and C of 1WPG.pdb have the

Glu771 carboxyl group rotated by ;30� clockwise and the 60�
clockwise rotation is adopted in the E2 structures by Jensen

et al. (56).

Our hydrogen-bonding pattern of structure 1a agrees

with that calculated previously with fixed side-chain con-

formation for the E2(TG1BHQ) structure (20). Our analysis

shows that other options are also possible. Carbonyl groups

of all structures are expected to be hydrogen bonded (Table

1). The hydroxyl group can either hydrogen bond to Asn796

(structures 1a and 2a) or to the backbone carbonyl oxygen

of Ser767 (structure 1b), depending on the orientation of the

OH bond. A Gln residue at position 771 is likely to undergo

interactions with both Asn796 and Ser767. These two hy-

drogen bonds could lock the enzyme in a specific confor-

mation from which it cannot undergo dephosphorylation of

E2P, in line with the inhibiting effects of mutation to Gln

(57–60).

Asp800

At pH 6, ;60% of the Asp800 side chains are protonated and

adopt a conformation very similar to that in the crystal struc-

ture of E2(TG1MgF2�
4 ) (structures 1a and 1b). The domi-

nant structure 1a is shown solid in Fig. 5 C. Ten percent of

the Asp800 side chains are unprotonated at pH 6 and also adopt

the crystal structure. The remaining ;30% of the Asp800 side

chains are protonated and have their carboxyl group rotated

around the Cb-Cg axis when compared to the crystal struc-

ture (structure 2a, Fig. 5 C, transparent). The carboxyl group

of Asp800 shows some rotational freedom in the structures

of the different chains in 1WPG.pdb, and a structure close to

our structure 2a is adopted in the E2(TG) structures with

AMPPCP (56).

In structure 1a, the oxygen that points toward the cavity

with crystal waters is preferentially protonated (see Fig. 5 C
and Table 1). The same oxygen atom as in our structure 1a is

protonated according to the calculations on the E2(TG1BHQ)

structure (20) (see Figs. 6 and 8 of that reference). This pre-

ference of protonation can be rationalized in the following

way: water is a good hydrogen-bond acceptor but only a

FIGURE 5 Acidic Ca21 ligands with hydrogen-

bonding partners in the E2(TG1MgF2�
4 ) state

at pH 6. Shown are representative side-

chain structures discussed in the text. The

respective ligand and interacting residues are

colored, other ligands are in black (and without

hydrogens except for the hydrogens of the

carboxyl groups). For a clearer representation,

backbone atoms are not shown, except for

Ser767 in Fig. 5 B, since its backbone carbonyl

oxygen can be involved in hydrogen bonding

to Glu771. Predominantly occupied side-chain

structures are solid; less occupied ones are

transparent. Black dashes indicate possible

hydrogen bonds. M indicates transmembrane

helices. In A–C, the cytoplasmic side is on the

top of the figure; the lumenal side on the

bottom; D shows a top view from the cyto-

plasmic side. (A) Glu309. Two representative

structures are shown: structure 1a (solid) and

structure 2a (transparent). The carbonyl oxy-

gen of structure 1a can form a hydrogen bond to

Asn796; (B) Glu771. Three representative struc-

tures are shown: structure 1a (solid), structure

1b (transparent), and structure 2a (transpar-

ent); structures 1a and 1b differ only in

hydrogen position. The carbonyl oxygen of

all side-chain conformations can form a hydro-

gen bond to Asn796, only some (structures 1a

and 1b) can also form a hydrogen bond to

Leu792. The carboxyl hydrogen of some of the

side-chain conformations can also form hydro-

gen bonds to the oxygen of Asn796 (structures

1a and 2a) or Ser767 (structure 1b); (C) Asp800.

Two representative side-chain conformations

are shown: structure 1a (solid) and structure 2a (transparent). Ser767 can be a hydrogen donor for some Asp800 side-chain conformations (structure 2a). (D)

Glu908: Two representative structures are shown: structure 1a (solid) and structure 2a (transparent). More detailed explanations are in the text.

606 Andersson et al.

Biophysical Journal 94(2) 600–611



moderate hydrogen-bond donor, if the mean distance be-

tween a hydrogen-bond donor and an acceptor is taken as a

measure for donor and acceptor strength. The OH group of

carboxylic acid is a very strong donor, which results in rel-

atively short hydrogen bonds with water acceptors of 1.63 Å

between oxygen and hydrogen. In contrast hydrogen bonds

between R2C¼O and water are considerably longer, 1.90 Å

between hydrogen and oxygen, implying that they are weaker

(61). This seems to indicate that a COOH group with the choice

either to provide the OH group as a hydrogen donor to water

or to provide the C¼O group as a hydrogen-bond acceptor for

water will chose the former.

The carbonyl group of structure 1a (adopted by 48% of all

side chains) can hydrogen bond to a water molecule between

Asp800 and Glu908. However, the presence of this molecule

seems to depend on minute structural changes since Dowser

places this water only in two of the four ATPase chains of

the E2(TG1MgF2�
4 ) structural file. The carbonyl oxygen of

structures 1b and 2a (adopted by 37% of all side chains) can

interact with water in a nearby cavity and can form a weak

hydrogen bond to Ser767. Thus it seems that at least ;40% of

the protonated Asp800 carbonyl groups experience consider-

able hydrogen bonding. Whether or not structure 1a has a

hydrogen-bonded carbonyl group seems to depend on struc-

tural fluctuations in E2(TG1MgF2�
4 ).

Glu908

Glu908 mainly adopts a structure as in the crystal structure of

E2(TG1MgF2�
4 ) (structures 1a and 1b adopted by 90% of all

side chains; structure 1a is shown solid in Fig. 5 D). The

proton can reside on both carboxyl oxygens at pH 6 with

TABLE 1 Side-chain structures of the protonated acidic Ca21 ligands at pH 6

Structure

Approximate

occupancy Side-chain structure Hydroxyl oxygen Carbonyl oxygen

Hydrogen bond donors

to carbonyl oxygen

Glu309-1a 60% Similar to crystal structure Oe2 Oe1 Nd2 of Asn796 (N-O distance ;3.0 Å), Dowser

water in chain D

Glu309-2a 40% Outwards oriented toward a channel to

the cytosol

Oxygen closest to

backbone oxygen

Water molecules at the bottom of the channel

to Glu309

Glu771-1a 30% Carboxyl group rotated ;50�
counterclockwise around the Cg-Cd

bond when viewed toward the

backbone. Structures 1a and 1b

differ in the direction of the OH bond

Closest to Oe2 Closest to Oe1 Asn796-Nd2 (N-O distance ;2.8–3.1 Å),

Leu792-Cd2 (C-O distance ;3.3 Å)

Glu771-1b 30% Closest to Oe2 Closest to Oe1 Asn796-Nd2 (N-O distance ;2.8-3.1 Å),

Leu792-Cd2 (C-O distance ;3.3 Å)

Glu771-2a 40% Carboxyl group rotated ;60� clockwise

around the Cg-Cd bond when viewed

toward the backbone

Closest to Oe2 Closest to Oe1 Asn796-Nd2 (N-O distance ;2.8–3.1 Å)

Asp800-1a 48% Similar to crystal structure Od2 Od1 Dowser water (O-O distance 2.7 Å) in chains

B and C of 1WPG.pdb. This water molecule

bridges Asp800 with Glu908.

Asp800-1b 12% Od1 Od2 Crystal water (O-O distance 2.5 Å), OgH

group of ;30% of Ser767 conformers

(O-O distance ;3.1 Å)

Asp800-2a 25% Carboxyl group rotated ;50o

anticlockwise around the Cb-Cg bond

when viewed toward the backbone

Closest to Od1 Closest to Od2 Crystal water (O-O distance 2.5 Å), OgH

group of ;30% of Ser767 conformers

(O-O distance ;3.6 Å)

Asp800-2b 5% Closest to Od2 Closest to Od1 Non-linear hydrogen bond to OH of

Glu908-2a.

Glu908-1a 50% Similar to crystal structure Oe1 Oe2 Crystal water and Dowser water in chains

B and C or two Dowser waters in chains

A and D

Glu908-1b 40% Oe2 Oe1 Crystal water (O-O distance 2.8 Å) in

molecules A and D or two Dowser waters in

molecules B and C. One of the latter bridges

Glu908 with Asp800.

Glu908-2a 2%* Rotated around Ca-Cb and Cb-Cg bond Moved into the

cavity near Oe2

Close to Oe2 Water in cavity

Different side-chain conformations are denoted by i. g. Glu771-1a, which indicates structure 1a of Glu771. The description of side-chain structure is with

respect to crystal structure of E2(TG1MgF2�
4 ); the oxygen atoms are labeled as in the crystal structure. Dowser water indicates a water molecule that is

placed by the program Dowser. Occupancy is given from MCCE calculations of the E2(TG1MgF2�
4 ) structure including the five crystal water molecules

close to the calcium ligands.

*This structure is occupied 15% in the calculations without explicitly treated water molecules.
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nearly equal probabilities. A second structure (structure 2a,

Fig. 5 D, transparent) is adopted by 2% of the side chains in

the calculations with explicit water but by 15% in those

without explicit water. In structure 2a, the Cg-Cd bond and

the Cb-Cg bond are rotated around the preceding C-C bonds

(Fig. 5 D, transparent). The difference between the crystal

structure (structures 1a and 1b) and structure 2a can be ap-

proximately described by a 45� rotation of the Cg-CdOO unit

around an axis perpendicular to the plane of this unit and

running through the middle of the Cg-Cd bond. The effect is

that one of the oxygens of structure 2a is close to the position

of Oe2 of structures 1a and 1b and the other has moved into

the cavity which is close to Oe2 of the crystal structure (¼
structures 1a and 1b). The carbonyl group of all Glu908 side

chains is hydrogen bonded to one or more water molecules.

DISCUSSION

pH-dependent protein conformation

FTIR difference spectra of the Ca2E1 / E2P reaction were

obtained at different pH values. Upon alkalization of the

reaction medium, we observed spectral changes in the amide I

region (Figs. 2 and 3). They indicate a pH dependence of the

protein backbone in b-sheets, turns, and probably an a-helix.

These structural changes make the spectra of the Ca2E1 /
E2P reaction less featureless at higher pH, indicating that the

structure of Ca2E1 is more like that of E2P at higher pH.

pH dependence of carbonyl bands in the
infrared spectrum

pH-dependent spectral changes were also observed in the

spectral region of protonated carboxyl groups (Fig. 3). The

pH dependency makes the suggested assignment (21) to pro-

tonated carboxyl groups unequivocal.

Bands at 1758 cm�1 and 1710 cm�1 and the shoulder at

1720 cm�1 titrate with a pKa value near 8.3, which is similar

to the apparent pKa value of residues binding lumenal H1 for

proton countertransport (11,14,15). This similarity of the

pKa values supports our interpretation that at least part of

the signals at 1758, 1720, and 1710 cm �1 originates from

the protonation of carboxyl groups involved in H1 transport

(21). These bands have also been observed for Ca21 binding

to the unphosphorylated enzyme (21,50,51,62), indicating

that the same residues are protonated in E2 and E2P and that

hydrogen bonding to the carbonyl oxygens is similar (21).

The band at 1758 cm� 1 is assigned to nonhydrogen-bonded

Asp or Glu side chains, whereas the band at 1710 cm�1 and

the shoulder at 1720 cm�1 have vibrational frequencies char-

acteristic of hydrogen-bonded carbonyl groups (46).

Number of carboxyl groups detected by
infrared spectroscopy

We observed pH dependence of the two bands at 1758 cm�1

and 1710 cm�1 and the shoulder at 1720 cm�1 (Figs. 3 and 4).

This indicates that in the Ca21 release step three types of

carboxyl groups, which can be distinguished by their envi-

ronment, become protonated at pH 6 but not above pH 8. The

simplest interpretation is that three residues are involved.

However, this number could be ,3, if environmental hetero-

geneity occurs: a given Asp or Glu residue might experience

hydrogen bonds of varying strengths, depending on its side-

chain conformation or that of its hydrogen-bonding partner

and thus produce several bands in the infrared spectrum. The

number of residues causing the pH-dependent infrared bands

could be more than three if several groups absorb at the same

wave number.

Conformational heterogeneity of the acidic
Ca21 ligands

Our MCCE calculations with E2(TG1MgF2�
4 ) indicated that

there is conformational heterogeneity of the acidic Ca21

ligands. This is particularly pronounced for Glu309, as dis-

cussed previously (18), but holds also for Glu771, Asp800, and

Glu908. The carboxyl groups of Glu771 and Asp800 can rotate

around the preceding C-C bond. A minority of Glu908 side

chains exhibits more conformational flexibility. There is also

considerable heterogeneity as to which oxygen atoms are pro-

tonated and regarding the orientation of the O-H bond. Taken

together this makes possible different interaction patterns for

different side-chain structures. The most occupied structures

of the acidic Ca21 ligands are shown in Fig. 5.

Carbonyl bands expected from
electrostatic calculations

In the following, we discuss which of the carboxyl groups in

the Ca21 binding sites (Glu309, Glu771, Asp800, and Glu908)

contribute to the infrared bands of the reaction Ca2E1 / E2P.

Other carboxyl groups are not expected to contribute to the

spectra since their pKa is calculated to be 6.1 or lower in

E2(TG1MgF2�
4 ). Our calculations with E2(TG) and E2(TG1

MgF2�
4 ) (18) have indicated that the pKa of Glu309 can be

high (8.4) or low (4.7), depending probably on the local

backbone conformation. The infrared results presented in this

work are in line with this model since they indicate that the

pKa of Glu309 is either below 6 (the lower pH limit of our ex-

periments) or near 8.3 (pKa of the carbonyl bands). Since the

pKa of the majority of Glu309 residues is low (4.7) (18), Glu309

is not expected to contribute much to the carbonyl bands

above 1700 cm�1. Glu771, Asp800, and Glu908 are expected to

contribute to the C¼O signals in the infrared spectra because

of their lower pKa values in Ca2E1 as compared to those in

E2(TG1MgF2�
4 ) in our calculations (18). Thus upon the

reaction Ca2E1 / E2P, observed in the infrared experiments,

they are expected to protonate. According to other calcula-

tions without side-chain flexibility, Glu908 should be excluded

from this list because its pKa in E2(TG1BHQ) was calculated

to be slightly lower than in Ca2E1 (17,20). These calculations

608 Andersson et al.

Biophysical Journal 94(2) 600–611



indicate that the number of protons that are exchanged for the

two Ca21 is approximately the same at pH 6 and 8. In contrast,

our infrared measurements (measuring the difference in

proton binding between Ca2E1 and E2P) and our calculations

indicated less exchange at higher pH. According to our cal-

culations, Asp800 is expected to produce pH-dependent pro-

tonation signals in our infrared spectra and will contribute to

one or several of the pH-dependent protonation bands at 1758,

1720, and 1710 cm�1.

Glu908 deprotonates partially above pH 6 in our calcula-

tions with E2(TG) and E2(TG1MgF2�
4 ) (18). The tendency

to deprotonate is more pronounced in calculations by Obara

et al. (20). Glu908 will therefore generate a protonation signal

in our infrared spectra that is slightly smaller at the upper end

of the investigated pH range. However, the variation in am-

plitude of the protonation signal is expected to be smaller

than what can reliably be detected.

Inconsistency between calculations
and experiments

As discussed previously (18), all calculations seem to return

protonation probabilities that are too high at high pH.

This inconsistency is further supported by our infrared

results: due to the expected protonation signal at high pH,

Glu771 and Glu908 might be expected to contribute to the

1743 or the 1710 cm�1 bands at high pH. However, an

assignment of the 1743 cm�1 band to a carboxyl group

involved in Ca21/H1 exchange is questionable (see above),

and the high pH 1710 cm�1 band has been assigned to

Asp351 (47). Thus there is no obvious assignment of a

carbonyl band to protonated Glu771 or Glu908 at high pH, and

the infrared spectra indicate that none of the acidic Ca21

ligands is protonated at high pH. Of the several explanations

given previously (18), it seems now that the calculations

provide pKa values that are too high because of the following

reasons:

i. A pH-dependent conformational change possibly caused

by deprotonation of one of the Ca21 ligands could make

the E2P structure, which was obtained at pH 6.1,

inappropriate for calculations at high pH. Side-chain

flexibility implemented in MCCE reduces but does not

eliminate the dependence on the initial structure. In line

with this option we obtained evidence of conformational

differences between high and low pH structures. Whether

or not these affect the pKa values in the Ca21 binding sites

is impossible to deduce from the spectra.

ii. The binding of positive ions other than H1 to the Ca21

binding site, only partial Ca21 release due to the higher

affinity for Ca21 at high pH (11,63,64), or nearby

hydronium ions could compensate for the negative

charge of the unprotonated Ca21 ligands. This would

facilitate the deprotonation of Glu771 and Glu908. The

same effect is expected for a more open Ca21 release

pathway in genuine E2P as compared to E2(TG1MgF2�
4 ),

which would allow more water molecules to penetrate the

transmembrane region.

From our spectra, it is difficult to decide whether none,

one, or two Ca21 are retained at high pH because the relevant

spectral region of carboxylate absorption is highly convo-

luted. If Ca21 were retained and the Ca21 coordination by

carboxylate groups were the same in high pH E2P as in

Ca2E1P, negative bands in the spectral region of carboxylate

absorption (;1570 and ;1400 cm�1) would be missing in

our high pH spectra. This is not observed. All negative bands

are present, although with smaller amplitude for some of

them. If, on the other hand, Ca21 were retained with different

Ca21 coordination, new positive bands would be observed at

high pH which are characteristic of the absorption of coor-

dinating carboxylate groups in E2P. This also is not observed.

The conformational change between Ca2E1 and E2P is largely

the same at high and low pH, with only subtle differences

observed as discussed above. From the E2P marker band of

the phosphate group, it is clear that the phosphate group is in

an E2P environment at high and low pH, as discussed above.

Symbiosis of infrared experiments and
electrostatic calculations

Because the infrared spectra do not provide evidence for

protonated acidic Ca21 ligands at high pH, we assigned the

pH-dependent carboxyl bands to all acidic Ca21 ligands that

are protonated at pH 6: Glu771, Asp800, Glu908, and a small

portion of the Glu309 side chains. With the help of the MCCE

calculations at pH 6, we further assigned individual bands to

specific residues using information regarding hydrogen bond-

ing to their carbonyl oxygens (see Table 1). The carbonyl

oxygens of Glu309, Glu771, Asp800, and Glu908 are expected

to be hydrogen bonded for all side-chain conformations of

Glu309, Glu771, and Glu908 and for at least 40% of the Asp800

side-chain conformations. Thus they will all contribute to the

infrared signals at 1720 and 1710 cm�1, which are charac-

teristic of hydrogen-bonded carbonyl groups with a hydro-

gen-bonding strength similar to that found in water. Some

side-chain conformations of Asp800 have no obvious hydro-

gen bond to the carbonyl oxygen. The high wave number

band at 1758 cm�1 is tentatively assigned to those.

CONCLUSIONS

Our infrared experiments and electrostatic calculations demon-

strate directly that carboxyl groups become protonated when

Ca21 is released from the phosphoenzyme. Evidence was

also obtained for a pH-dependent conformational change of

the protein that affects the Ca2E1 / E2P transition. The

MCCE calculations helped assign infrared bands to individ-

ual acidic Ca21 ligands. They indicated considerable con-

formational heterogeneity of the acidic Ca21 ligands in the

Ca21-free state E2(TG1MgF2�
4 ), which allows for various
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hydrogen-bonding patterns. Our infrared experiments do not

give evidence for protonated Ca21 ligands at high pH, as

indicated by the calculations and explanations for this dis-

crepancy are given above.
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