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Abstract
We introduce a new class of nonstationary covariance functions for spatial modelling.
Nonstationary covariance functions allow the model to adapt to spatial surfaces whose variability
changes with location. The class includes a nonstationary version of the Matérn stationary
covariance, in which the differentiability of the spatial surface is controlled by a parameter, freeing
one from fixing the differentiability in advance. The class allows one to knit together local
covariance parameters into a valid global nonstationary covariance, regardless of how the local
covariance structure is estimated. We employ this new nonstationary covariance in a fully
Bayesian model in which the unknown spatial process has a Gaussian process (GP) prior
distribution with a nonstationary covariance function from the class. We model the nonstationary
structure in a computationally efficient way that creates nearly stationary local behavior and for
which stationarity is a special case. We also suggest non-Bayesian approaches to nonstationary
kriging.

To assess the method, we use real climate data to compare the Bayesian nonstationary GP model
with a Bayesian stationary GP model, various standard spatial smoothing approaches, and
nonstationary models that can adapt to function heterogeneity. The GP models outperform the
competitors, but while the nonstationary GP gives qualitatively more sensible results, it shows
little advantage over the stationary GP on held-out data, illustrating the difficulty in fitting
complicated spatial data.
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1 Introduction
One focus of spatial statistics research has been spatial smoothing - estimating a smooth
spatial process from noisy observations or smoothing over small-scale variability.
Statisticians have been interested in constructing smoothed maps and predicting at locations
for which no data are available. Two of the most prominent approaches have been kriging
and thin plate splines (see Cressie (1993, chap. 3) for a review). A simple Bayesian version
of kriging for Gaussian data can be specified as

(1)
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where η2 is the noise variance (the nugget), μ is a scalar mean, xi is a spatial location, and
f(·) is the unknown spatial process with a Gaussian process (GP) prior distribution. The
covariance function, C(·, ·; θ), of the GP is parameterized by θ and determines the
covariance between any two locations. This model underlies the standard kriging approach,
in which C(·; θ) is a stationary covariance, a function only of Euclidean distance (or possibly
a more general Mahalanobis distance) between any two locations. The low-dimensional θ is
generally estimated using variogram techniques (Cressie 1993, chap. 2) or by maximum
likelihood (Smith 2001, p. 66) after integrating the unknown process values at the
observation locations out of the model. The spatial process estimate is the posterior mean
conditional on estimates of μ, η, and θ. While various approaches to kriging and thin plate
spline models have been used successfully for spatial process estimation, they have the
weakness of being global models, in which the variability of the estimated process is the
same throughout the domain because θ applies to the entire domain.

This failure to adapt to variability, or heterogeneity, in the unknown process is of particular
importance in environmental, geophysical, and other spatial datasets, in which domain
knowledge suggests that the function may be nonstationary. For example, in mountainous
regions, environmental variables are likely to vary much more quickly than in flat regions.
Spatial statistics researchers have made some progress in defining nonstationary covariance
structures; in particular, this work builds on Higdon, Swall, and Kern (1999), who convolve
spatially-varying kernels to give a nonstationary version of the squared exponential
stationary covariance. Fuentes and Smith (2001) and Fuentes (2001) have an alternative
kernel approach in which the unknown process is taken to be the convolution of a fixed
kernel over independent stationary processes with different covariance parameters; Barber
and Fuentes (2004) give a discretized mixture version of the model. Wood, Jiang, and
Tanner (2002) estimate the spatial process as a mixture of thin plate splines to achieve
nonstationarity, while Kim, Mallick, and Holmes (2005) use mixtures of Gaussian processes
defined locally on a tesselation. The spatial deformation approach attempts to retain the
simplicity of the stationary covariance structure by mapping the original input space to a
new space in which stationarity can be assumed (Sampson and Guttorp 1992; Damian,
Sampson, and Guttorp 2001; Schmidt and O’Hagan 2003). Research on the deformation
approach has focused on multiple noisy replicates of the spatial function rather than the
setting of one set of observations on which we focus here.

Many nonparametric regression methods are also applicable to spatial data, but spatial
modelling requires flexible two-dimensional surfaces, while many nonparametric regression
techniques focus on additive models, summing one-dimensional curves. In particular, while
Bayesian free-knot spline models, in which the number and location of the knots are part of
the estimation problem, have been very successful in one dimension (DiMatteo, Genovese,
and Kass 2001), effectively extending splines to higher dimensions is more difficult. Using
different bases, Denison, Mallick, and Smith (1998) and Holmes and Mallick (2001) fit free-
knot spline models for two and higher dimensions using reversible-jump MCMC. Lang and
Brezger (2004) and Crainiceanu, Ruppert, and Carroll (2004) use penalized splines with
spatially-varying penalties in two dimensions. While not commonly used for spatial data,
neural network models can adapt to function heterogeneity (Neal 1996). Tresp (2001) and
Rasmussen and Ghahramani (2002) use mixtures of stationary GPs; they show success in
one dimension, but do not provide results in higher dimensions nor compare their model to
other methods.

In this work, we extend the Higdon et al. (1999) nonstationary covariance function to create
a class of closed-form nonstationary covariance functions, including a nonstationary Matérn
covariance, parameterized by spatially-varying covariance parameters (Section 2). We
demonstrate how this covariance can be used in an ad hoc nonstationary kriging approach
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(Section 3.1) and in a fully Bayesian GP spatial model (Section 3.2). We compare the
performance of the nonstationary GP model to alternative models on real climatological data
(Section 4). We conclude by suggesting strategies for improving computational efficiency
and discussing the use of the nonstationary covariance in more complicated models (Section
5).

2 A new class of nonstationary covariance functions
In this section we extend the nonstationary covariance function of Higdon et al. (1999),
providing a general class of closed-form nonstationary covariance functions built upon
familiar stationary covariance functions. The approach constructs a global covariance
function by knitting together local covariance structures and is valid regardless of how the
local covariance parameters are estimated.

2.1 Review of stationary covariance functions
The covariance function is crucial in GP modelling; it controls how the observations are
weighted for spatial prediction. Recent work in spatial statistics has focused on the Matérn
covariance, whose stationary, isotropic form is

where τ is distance, ρ is the spatial range parameter, and  is the modified Bessel
function of the second kind, whose order is the differentiability parameter, ν. The behavior
of the covariance function of a stochastic process near the origin determines the smoothness
properties of process realizations (Abrahamsen 1997; Stein 1999; Paciorek 2003, chap. 2).
The Matérn form has the desirable property that Gaussian processes with this covariance
have realizations (sample paths) that are ⌈ν − 1⌉ times differentiable. As ν → ∞, the Matérn
covariance function approaches the squared exponential (also called the Gaussian) form,
popular in machine learning, whose realizations are infinitely differentiable. For ν = 0.5, the
Matérn takes the exponential form, popular in spatial statistics, which produces continuous
but non-differentiable realizations; this seems insufficiently smooth for many applications.
While it is not clear that process differentiability can be estimated from data, having the
additional parameter, ν, allows one to choose from a wider range of realization behavior
than the extremes of the exponential and squared exponential covariances provide, or, if
estimated, allows for additional flexibility in spatial modelling. For example, the smoothing
matrices produced by the exponential and Matérn (ν = 4) correlation functions are rather
different, as are realizations.

Stationary, isotropic covariance functions can be easily generalized to anisotropic
covariance functions that account for directionality by using the Mahalanobis distance
between locations,

(2)

where Σ is an arbitrary positive definite matrix, rather than Σ = I, which gives Euclidean
distance and isotropy. The nonstationary covariance function we introduce next builds on
this more general anisotropic form.
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2.2 From stationarity to nonstationarity via kernel convolution
Higdon et al. (1999) introduced a nonstationary covariance function, CNS(xi, xj) = ∫ℜ2Kxi
(u)Kxj (u)du, obtained by convolving spatially-varying kernel functions, Kx(u). Here, xi, xj,
and u are locations in ℜ2, and the kernel functions are functions such as those used in kernel
density estimation. Higdon et al. (1999) motivate this construction as the covariance
function of a process, f(·),

(3)

produced by convolving a white noise process, ψ( ·), with the spatially-varying kernel
function. One can avoid the technical details involved in carefully defining such a white
noise process by using the definition of positive definiteness to show directly that the
covariance function is positive definite in every Euclidean space, ℜp, p = 1, 2, …:

(4)

Note that the kernel is an arbitrary function; positive definiteness is achieved because the
kernel at a location provides all the information about how the location affects the pairwise
correlations involving that location. However, standard kernel functions are density
functions or non-negative functions that decay monotonically from their mode. For Gaussian
kernels (taking Kx(·) to be a (multivariate) Gaussian density centered at x), one can show
using convolution (see Appendix 1) that the nonstationary covariance function takes the
simple form,

(5)

with quadratic form

(6)

where Σi = Σ(xi), which we call the kernel matrix, is the covariance matrix of the Gaussian
kernel centered at xi. (5) has the form of an anisotropic squared exponential covariance
function, but in place of a spatially constant matrix, Σ, in the quadratic form (2), which gives
stationarity and anisotropy, we average the kernel matrices for the two locations (6). Gibbs
(1997) derived a special case of (5) in which the kernel matrices are diagonal. The evolution
of the kernel matrices in the domain produces nonstationary covariance, with kernels with
small variances, and therefore little overlap with kernels at other locations, producing locally
short correlation scales. Unfortunately, so long as the kernel matrices vary smoothly in the
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input space, realizations from GPs with the covariance (5) are infinitely differentiable
(Paciorek 2003, chap. 2), just as for the stationary squared exponential. Stein (1999)
discusses in detail why such highly smooth realizations are undesirable and presents an
asymptotic argument for using covariance functions in which the smoothness is allowed to
vary.

2.3 Generalizing the kernel convolution form
To create a more general form than the squared exponential, we construct a class of
nonstationary covariance functions, substituting  in place of τ/ρ in stationary correlation
functions. Unfortunately, since  is not a distance metric, it violates the triangle
inequality, so this cannot be done arbitrarily, but it can be done for a class of stationary
correlation functions; the proof of the theorem (which is stated but not proven in Paciorek
and Schervish (2004)) is given in Appendix 2.

Theorem 1—If an isotropic correlation function, RS(τ), is positive definite on ℜp for every
p = 1, 2, …, then the function, RNS(·, ·), defined by

(7)

with  used in place of τ, is a nonstationary correlation function, positive definite on ℜp,
p = 1, 2, ….

The result applies to correlation functions that are positive definite in Euclidean space of
every dimension, in particular the power exponential, rational quadratic, and Matérn
correlation functions. Nonstationary covariance functions can be constructed merely by
multiplying by a variance parameter, σ2.

Under conditions that ensure that the elements of the kernel matrices vary smoothly over the
domain, the mean square and sample path differentiability of Gaussian processes
parameterized by correlation functions of the form (7) follow from the differentiability
properties of Gaussian processes parameterized by the underlying stationary correlation
function (Paciorek 2003, chap. 2). The precise statement of the theorems and proofs behind
this result are involved and not the focus of this paper. However, the result is intuitive and
best made clear as follows. If the elements of the kernel matrices vary smoothly (see Section
3.2.1 for such a construction), then in a small neighborhood of x0, the kernel matrices are
essentially constant, Σ(x) ≈ Σ(x0), so the resulting local correlation structure is essentially
stationary. Hence the differentiability properties, which depend on the behavior of the
correlation near the origin, are the same as those for the underlying stationary correlation.

The new class of nonstationary covariance functions includes a nonstationary version of the
Matérn covariance function,

(8)
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which includes a nonstationary version of the exponential covariance function as the special
case when ν = 0.5. As with the stationary form, the sample path differentiability of Gaussian
processes with nonstationary Matérn covariance increases with ν. Another form is the
rational quadratic covariance function,

a covariance function with a long tail. In the remainder of the paper, we focus on the
nonstationary Matérn form.

3 Implementation of the new nonstationary covariance
3.1 Ad hoc nonstationary kriging

The kernel convolution nonstationary covariance provides a way to construct closed-form
covariance functions based on stationary correlation functions and local covariance
parameters. One advantage of the approach is that construction using arbitrary local
parameters is positive definite. The nonstationary covariance structure is highly
parameterized relative to a stationary covariance structure, so optimization is difficult and
runs the danger of overfitting. In this section, we propose to use the nonstationary
correlation (7) in a kriging framework, estimating the covariance structure and then fitting
the surface conditional on that structure.

3.1.1 Estimating the nonstationary covariance structure—When distinct regions
are present, one can piece together stationary regional covariances. The parameters of
regional anisotropic covariances could be estimated using either a variogram fitting
approach or marginal likelihood maximization in which only the data in a region are used to
estimate the region-specific parameters. Then, to knit together a full covariance for the entire
domain, set Σi = ΣA(i), where A(i) denotes the region in which location i falls and ΣA(i) is
constructed for each region from the parameters, θA(i), of the anisotropic correlation
structure estimated for the region. One can use different values for σ, μ, and η for the
different regions. One could also use different values of ν, following Stein (2005), who has
extended our approach to allow for spatially-varying ν. In the next section, we illustrate this
approach in Colorado, splitting the state into two regions of differing topography.

Another possibility is to estimate the kernel matrices at the locations of interest in a
weighted or moving window fashion. Recall that if the elements of the kernel matrices vary
slowly, the nonstationary covariance is locally a nearly stationary anisotropic covariance. In
a small neighborhood, for xj near xi, Σj ≈ Σi; our task is to estimate the parameters, θi, of an
anisotropic covariance, from which the kernel matrix, Σi, will be constructed. To estimate θi
based on the variogram, we could use a moving window to include in the empirical
variogram only pairs of locations for which either one or both of the locations are near xi.
One could also assign weights to each pair of locations and estimate θi based on weighted
variograms. Such a fitting approach is similar to that of Barber and Fuentes (2004), who fit
local variograms to time-replicated data. To estimate θi using the marginal likelihood
approach, one could use the marginal likelihood only for observations from locations near
xi. Doing this for each location allows us to create spatially-varying kernel matrices, Σi, i =
1, ….

Finally, one might parameterize the nonstationary covariance as a function of key covariates
to reduce the dimension of the estimation problem. For example, in the Colorado
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precipitation example in the next section, one might specify the kernels as Σi = ρiI, with the
spatial ranges specified as a simple parameterized function of local elevation heterogeneity.

The spatial process at the observation locations, f, and at the prediction locations, f*, can
then be estimated using the mean and variance conditional on the nonstationary covariance
structure constructed from the estimated kernel matrices, using standard multivariate
Gaussian conditional calculations,

(9)

where Cf is the covariance matrix of the process at the observation locations, Cf*f is the
covariance matrix of the process values at the prediction locations and those at the
observation locations, Cf*f* is the covariance matrix of the process at the prediction
locations, and CY = η2I. Note that for prediction, we need to estimate kernel matrices for the
prediction locations using covariance information based on nearby observation locations.

3.1.2 Illustration—Climatological data for the state of Colorado in the United States
provide a nice illustration of a simple application of nonstationary kriging. To first
approximation, Colorado is divided into a mountainous western portion, west of Denver and
the I-25 highway corridor, and a flat plains portion in the east (Fig. 1a). The Geophysical
Statistics Project at the National Center for Atmospheric Research
(http://www.cgd.ucar.edu/stats/Data/US.monthly.met) has posted a useful subset of the
United States climate record over the past century from a large network of weather stations.
Areas of complex topography are a particular challenge for making predictions off the
observation network, and even for the continental U.S. the observation record is quite sparse
relative to the resolution needed for understanding impacts of changing climate. For this
illustration, we take the log-transformed annual precipitation in Colorado for 1981 (Fig. 1b),
the year for which the most stations without any missing monthly values (217) are available
and compare kriging with model (1) using both stationary and nonstationary covariance
functions.

For stationary kriging, we use an anisotropic Matérn covariance function based on
Mahalanobis distance (2), a function of Σ = ΓΛΓT, with Γ an eigenvector matrix
parameterized by an angle of rotation,ψ, (a Givens rotation matrix, see Anderson, Olkin, and
Underhill (1987)) and Λ a diagonal eigenvalue matrix with eigenvalues (squared spatial
range parameters),  and . After integrating the spatial function values at the observation
locations out of the model, we estimate the parameters, {μ, η, σ, ρ1, ρ2, ψ}, by maximizing
the resulting marginal likelihood using the nlm() function in R. We fix ν = 4.

For nonstationary kriging, we fit separate anisotropic Matérn covariance structures in the
eastern and western regions, split at longitude 104.873° W, by maximizing the marginal
likelihoods for each region with respect to the parameters. We again fix ν = 4. We construct
the Matérn nonstationary covariance structure (8) for the entire dataset by setting Σi =
Σ(θA(i)), where θA(i) = {ρ1,A(i), ρ2,A(i), ψA(i)}.

Table 1 shows the parameter estimates for the two models. As expected for the
nonstationary model, because of the topographical variability in western Colorado, the
correlation ranges are much smaller than in eastern Colorado, and the estimate of the
function variability, σ, is larger. The similarity of the western estimates with the statewide

Paciorek and Schervish Page 7

Environmetrics. Author manuscript; available in PMC 2007 December 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.cgd.ucar.edu/stats/Data/US.monthly.met


stationary estimates suggests that the stationary estimates are driven by the more variable
(and more dense) western data. The surface estimate from the nonstationary model shows
more heterogeneity in the west than the east (Fig. 2). The standard deviations of the
estimated surface for the nonstationary model suggest much more certainty about the surface
values in the east, as expected (Fig. 2c,d). In the west, the complexity of the surface results
in high levels of uncertainty away from the observation locations, as is the case throughout
the state in the stationary approach. Both approaches estimate 137 degrees of freedom for
the surface (11), but the nonstationary kriging model has a much higher log likelihood (181
compared to 143), as expected. The nonstationary model is preferred based on the AICC
model selection criteria (Hurvich, Simonoff, and Tsai 1998), designed for smoothing
parameter selection in nonparametric regression models in which the smoother is linear (as
is the case here).

One drawback to having sharply delineated regions is seen in the sharp changes at the border
between the regions (Fig. 2b,d). This occurs because the kernels change sharply at the
border; see Gibbs (1997) and Paciorek (2003, sec. 2.2) for discussion of this effect). One
simple way to remove this discontinuity would be to smooth the covariance parameters, and
therefore the resulting kernel matrices, in the vicinity of the boundary. A more principled
approach is a fully Bayesian model, in which the kernel matrices are constrained to vary
smoothly, minimizing the effect, as seen in Section 4.4.1.

3.2 A hierarchical Bayesian model for spatial smoothing
The nonstationary kriging approach suffers from several drawbacks. First, the ad hoc
estimation of the covariance structure depends on how one estimates the local covariance
parameters; in the illustration this involved how to split Colorado into regions. Second, as
for kriging in general, uncertainty in the covariance structure is not accounted for; in the
case of nonstationary covariance with its more flexible form and larger number of
parameters, this uncertainty is of much more concern than in the stationary case. To address
these concerns, we construct a fully Bayesian model, with prior distributions on the kernel
matrices that determine the nonstationary covariance structure.

3.2.1 Basic Bayesian model—The Bayesian model starts with the basic kriging setup

(1) and sets , where  is the nonstationary Matérn covariance
function (8) constructed from Σ(·), the kernel matrix process, described below. For the
differentiability parameter, we use the prior, νf ~ U(0.5, 30), which produces realizations that
vary between non-differentiable (νf = 0.5) and highly differentiable. We use proper, but

diffuse, priors for μf, , and η2, and bound  based on the range of the observation values.
The main challenge is to parameterize the kernels, since their evolution over the domain
determines how quickly the covariance structure changes over the domain and therefore the
degree to which the model adapts to heterogeneity in the unknown function. In many
problems, it seems natural that the covariance structure would evolve smoothly, as
parameterized below.

The kernel matrix process, Σ(·), is parameterized as follows. Each location, xi, has a
Gaussian kernel with mean, xi, and covariance (kernel) matrix, Σi = Σ(xi). Since there are
(implicitly) kernel matrices at each location in the domain, we have a multivariate process,
the matrix-valued function, Σ(·). First, construct an individual kernel matrix using the
spectral decomposition,  where Λi is a diagonal matrix of eigenvalues, λ1(xi) and
λ2(xi), and Γi is an eigenvector matrix constructed as described below from γ1(xi) and γ2(xi).
We construct Σ(·) over the entire space, ensuring that each Σ(xi) is positive definite, by
creating spatial hyperprocesses, λ1(·), λ2(·), γ1(·), and γ2(·). We will refer to these as the
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eigenvalue and eigenvector processes, and to them collectively as the eigenprocesses. Let
φ(·) ∈ {log(λ2(·)), γ1(·), γ2(·)} denote any one of these eigenprocesses; λ1(·) is derived from
γ1(·) and γ2(·). We take each φ(·) to have a stationary GP prior distribution with anisotropic
Matérn correlation function (Section 3.2.2); this parameterization of the processes ensures
that the kernel matrices vary smoothly in an elementwise fashion by forcing their
eigenvalues and eigenvectors to vary smoothly. For simplicity we assume a priori
independence between the eigenprocesses, relying on the data to infer posterior dependence.
Parameterizing the eigenvectors of the kernel matrices using a spatial process of angles of
rotation, with an angle at each location, is difficult because the angles have range [0, 2π) ≡
S1, which is not compatible with the range of a GP. Instead, Γi is constructed from the
eigenvector processes,

where . In turn, λ1(xi)is taken to be , the squared length of the
eigenvector constructed from γ1(xi) and γ2(xi). Any given process realization, f(·), will be
more variable in regions in which λ1(·) and λ2(·) are small, as this corresponds to having
small local spatial ranges.

An alternative to the eigendecomposition parameterization is to represent the Gaussian
kernels as ellipses of constant probability density, parameterized by the focus and size of the
ellipse, and to have the focal coordinates and ellipse sizes vary smoothly over space (Higdon
et al. 1999). However, Higdon et al. (1999) fixed the ellipse size at a constant value common
to all locations, and Swall (1999, p. 94) found overfitting and mixing problems when the
ellipse size was allowed to vary, although we also noticed slow mixing in our
parameterization. Also, the eigendecomposition approach extends more readily to higher
dimensions, which may be of interest for spatial data in three dimensions and more general
nonparametric regression problems (Paciorek and Schervish 2004).

3.2.2 Representation of stationary GPs in the hierarchy—One can represent the
stationary GPs, φ(·) ∈ {log(λ2(·)), γ1(·), γ2(·)}, used to construct the nonstationary covariance
structure in a straightforward way, working with the Cholesky decompositions of the
stationary covariance matrices for each of the processes (Paciorek and Schervish 2004), but
the MCMC computations are slow. Instead, we represent each using a basis function
approximation to a stationary GP (Kammann and Wand 2003). The vector of values of a
spatial process, φ(·), at the observation locations, φ = {φ(x1), …, φ(xn)}, is a linear
combination of basis functions,

(10)

The basis matrix, Zφ, is constructed using radial (i.e., isotropic) basis functions, where Ψφ
contains the pairwise isotropic Matérn covariances, C(·; ρφ, νφ), between the observation

locations and pre-specified knot locations, κk, k = 1, …, K, while  is calculated by
singular value decomposition from the matrix, Ω, which contains pairwise covariances
amongst the knot locations. Knots at all the data locations would give an exact
representation of a stationary GP with mean, μφ, standard deviation, σφ, spatial range, ρφ,
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and differentiability parameter, νφ. Prediction for φ(·) uses , which contains the pairwise
covariances between the prediction locations and the knots. We use a relatively coarse 8 by
8 grid of K = 64 knots, because the eigenprocesses are in the hierarchy of the model and we
do not expect them to be very variable.

To limit the number of parameters involved and improve mixing, we place some constraints
on the hyperparameters of the stationary GPs, while still allowing the eigenprocesses to be
flexible. These constraints are informed by the fact that the values of λ1(·) and λ2(·) play the
role of locally-varying spatial range parameters so we know what values of the
eigenprocesses and their hyperparameters are plausible and when they are so extreme that
the data cannot distinguish between the values. In particular, we fix σφ, letting the variability
of the GP be determined by ρφ (see Zhang (2004) for asymptotic justification). We also fix
μφ, thereby centering the eigenprocesses at reasonable values. Since we are working in
geographic space, in which distances in different directions are measured in the same units,
for the eigenvector processes, we use a single ργ as a spatial range parameter common to the
two processes. For all of the eigenprocesses, we fix ν = 5, because it should have minimal
impact on the spatial surface estimate and is not well-informed by the data. We take uφ ~
N(0, I) and log(ρφ) ~ U(log(0.1), log(3.85)) and force λ1(·) and λ2(·) to lie in (1/(n2), 16).
These constraints ensure propriety (discussed in Berger, De Oliveira, and Sansó (2001)) and
prevent the Markov chain from getting stuck in regions with a flat likelihood.

Marginally, the prior covariance structure is stationary because the locations are
exchangeable, but any particular realization from the prior, conditioning on sample
eigenprocesses, gives a nonstationary covariance structure. The posterior produces a
nonstationary covariance structure, induced by the posterior distribution of the
eigenprocesses.

Since it is difficult to encapsulate prior knowledge about the spatial surface directly into the
GP priors for the eigenprocesses, one could also place an additional prior on the complexity
of the posterior mean spatial surface, conditional on the eigenprocesses. This induces a prior
on the covariance structure (Hodges and Sargent 2001). Since the GP model is a linear
smoother, the complexity can be estimated by the trace of the smoothing matrix,

(11)

(Hastie and Tibshirani 1990, p. 52; Hodges and Sargent 2001; Ruppert, Wand, and Carroll
2003, p. 256), where we add one to account for the degree of freedom used to estimate μf.
Note that in the case where η = 0 (no nugget effect), the smoother exactly interpolates the
data, a saturated model, and df is equivalent to the number of observations, which is the
sensible upper limit on the complexity it is possible to estimate with a dataset of size n. Our
results are not based on this additional prior, because the nonstationary model did not tend to
use more df than the stationary model, presumably because of the natural Bayesian penalty
on model complexity (Denison, Holmes, Mallick, and Smith 2002, p. 20).

3.2.3 MCMC sampling—One can integrate f, the spatial process evaluated at the
observation locations, out of the GP model, leaving a marginal posterior whose marginal
likelihood is,

(12)
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where  is the nonstationary covariance matrix of the spatial process at the observation
locations. In the stationary GP model, the marginal posterior contains a small number of
hyperparameters to either optimize or sample via MCMC. In the nonstationary case, the

dependence of  on the kernel matrices precludes straightforward optimization; instead
we use MCMC. We sample the parameters at the first level of the prior hierarchy, μf, σf, νf,
and η, via Metropolis-Hastings. Sampling the eigenprocesses and their hyperparameters is
more involved. For a given eigenprocess, φ(·) ∈ {log(λ2(·)), γ1(·), γ2(·)}, we choose to
sample, via Metropolis-Hastings, ρφ and (as a vector) uφ. φ is not sampled directly, but is
determined by the representation (10), thereby involving the eigenprocess hyperparameters

directly in the marginal likelihood through their effect on φ and therefore on  in (12).
This is analogous to the uncentered parameterization discussed in Gelfand, Sahu, and Carlin
(1996), in contrast to the centered parameterization, which in this case would involve
sampling φ rather than uφ and in which acceptance of hyperparameter proposals would
depend only on their priors and the GP distributions of the eigenprocesses. In our
experience, the uncentered approach, in which the hyperparameters are informed directly by
the data, mixes faster than the centered approach. Christensen, Roberts, and Sköld (2006)
discuss on-the-fly reparameterizations, but their focus is on spatial processes that determine
mean structure, unlike this situation in which the eigenprocesses are involved in
parameterizing the nonstationary covariance structure. Furthermore their
reparameterizations are computationally intensive and may involve computations with
numerically singular matrices when the Matérn covariance is used.

Note that in sampling the spatial process conditional on the nonstationary covariance,
pivoting (e.g., see the R chol() function) is sometimes necessary because the conditional
posterior variance (9) is numerically singular. This occurs because the unknown spatial
process is generally estimated to be locally smooth and therefore highly correlated at
locations close in space.

4 Case Study
Simulation results suggest that the nonstationary GP model performs as hoped on relatively
simple datasets, detecting and adjusting to heterogeneity in the unknown function (Paciorek
and Schervish 2004, 2005).

Here we apply the model to real data expected to exhibit nonstationarity, the Colorado
precipitation data introduced in Section 3.1.2, where we applied nonstationary kriging.

To quantitatively assess the performance of the nonstationary model, we compare its
performance to several alternatives, most importantly a stationary GP model, described in
Section 4.3.

4.1 Data
We fit the model to the full set of data from 1981 (n = 217) to qualitatively assess the
performance of the nonstationary model and analyze the degree and nature of the
nonstationarity in the data. We then compare the fit of the nonstationary model to the
alternative methods based on held-out data. To this end, we use the replication in time
available in the data archive to create 47 datasets of annual precipitation (1950–1996) in
Colorado with 120 training locations and 30 test locations for each year, fitting each year
separately. Note that both training and test locations differ by year and that more than 150
locations are available for most years, but that we use only 150 to keep the amount of
information in each dataset constant.
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4.2 Evaluation criteria
We use several criteria to assess the quality of fit based on held-out data. We compute the

proportion of variance explained, , where 
is the estimated surface (held-out value) at test locations, , m = 1, … , M. This assesses
the surface point estimate (the posterior mean for the Bayesian models). To assess the model
as a whole (for the Bayesian estimators only), we report the log predictive density, h(y*|y)
(Carlin and Louis 2000, p. 220), on test data using the full posterior, averaging over the
MCMC samples, t = 1, …, T:

where η (t) is the sampled error standard deviation and fm,(t) is the sampled function value.
Larger values of LPD indicate better estimates. Finally, we estimate the coverage and
average length of prediction intervals at the test locations.

For Bayesian methods, adequate mixing and convergence are important and determine the
number of MCMC samples needed and therefore the computational speeds of the methods.
We compare the iterations of the sample log posterior density (Cowles and Carlin 1996) and
key parameters between the methods to get a general sense for how many iterations each
needs to run, examining the autocorrelation and effective sample size (Neal 1993, p. 105),

where T is the number of MCMC samples and ρd(θ) is the autocorrelation at lag d for the
quantity/parameter θ.

4.3 Alternative methods
The first group of alternatives includes standard methods that can be easily implemented in
R, most using library functions. The second group comprises Bayesian methods that in
theory can adapt to heterogeneity in the function by sampling the basis functions within the
MCMC. The abbreviations used in the results are given parenthetically here in the text. The
Bayesian nonstationary GP model is abbreviated ‘nsgp’.

4.3.1 Standard spatial methods—The first method (sgp) is a stationary, anisotropic
version of the nonstationary Bayesian GP model. After integrating the spatial process values
at the training locations out of the model, the parameters, {μ, η, σ, ρ1, ρ2, ψ, ν}, are sampled
via MCMC. The second method (krig) is likelihood-based kriging as described in Section
3.1.2, but we also estimate ν in the numerical optimization. The third method (tps) fits the
surface as a thin plate spline (Green and Silverman 1994), using the Tps() function in the
fields library in R, in which the smoothing parameter is chosen automatically by generalized
cross-validation (GCV). The fourth method (gam) also fits the spatial surface using a thin
plate spline and GCV, but in a computationally efficient way (Wood 2003), coded in the
gam() function in the mgcv library in R. One advantage of gam() over Tps() that arises in
applications is that gam() allows the inclusion of additional covariates, including additional
smooth terms, using an algorithm that can optimize multiple penalty terms (Wood 2000).
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Since these methods all rely on a small number of smoothing parameters/penalty terms that
do not vary with location, none are designed to handle nonstationarity. Also note that only
the kriging and the stationary Bayesian GP approaches are designed to handle anisotropy.

4.3.2 Nonparametric regression models—There are many nonparametric regression
methods, with much work done in the machine learning literature as well as by statisticians.
These methods can be used for spatial smoothing; we restrict our attention to a small number
of methods with readily available code. Other potential methods include wavelet models,
mixtures of GPs or thin plate splines, and regression trees. The first two methods considered
are free-knot spline models that, by allowing the number and location of the knots to change
during the fitting procedure, can model nonstationarity. Denison et al. (1998) created a
Bayesian version of the MARS algorithm (Friedman 1991), which uses basis functions that
are tensor products of univariate splines in the truncated power basis, with knots at the data
points. The second method (mls) uses free-knot multivariate linear splines (MLS) where the
basis functions are truncated linear planes, which gives a surface that is continuous but not
differentiable where the planes meet (Holmes and Mallick 2001). In the simulations and
case study, we report numerical results only for the MLS basis, because it performed better
than the MARS basis. The final method (nn) is a neural network model, in particular a
multilayer perceptron with one hidden layer, with the spatial surface modelled as

, where the gk(·) functions are tanh functions and the uk
parameters determine the position and orientation of the basis functions. This is very similar
to the MLS model, for which gk(·) is the identity function. We use the Bayesian
implementation of R. Neal (http://www.cs.toronto.edu/~radford/fbm.software.html) to fit the
model, fixing K = 200 to allow for a sufficiently flexible function but minimize
computational difficulties.

4.4 Results
4.4.1 Qualitative performance—We first consider the stationary and nonstationary GP
models fit to the 1981 data. Figure 3 shows the posterior mean and pointwise posterior
standard deviation of the spatial surfaces from the two models. The results match our
intuition, with features that follow the topography of Colorado (Fig. 1). The nonstationary
surface is smoother in the east than the stationary surface, while both are quite variable in
the mountainous west. The posterior standard deviations are much smaller for the
nonstationary model in the east than for the stationary model and generally somewhat larger
in the west, particularly at locations far from observations. The stationary model, in trying to
capture the variability in western Colorado, infers what appears to be too little smoothness
and too little certainty in eastern Colorado. With either approach (as we will see with other
smoothing methods as well) it appears very difficult to estimate a precipitation surface in
western Colorado based on such a small number of weather stations. The posterior means of
the degrees of freedom (11), averaging across the iterations, are 194 for the stationary model
and 140 for the nonstationary model for a dataset with only 217 observations. The best
model selection criteria for distinguishing between these Bayesian models is unclear, but if
we consider the AICC criterion (Hurvich et al. 1998) applied to each iteration of the chains,
the nonstationary model outperforms the stationary model, with the larger residual variance
of the nonstationary model offset by the penalty on the larger degrees of freedom of the
stationary model.

The correlation structure for the nonstationary model is shown in Figure 4 by ellipses of
constant density representing the Gaussian kernels, Kxi(·); i = 1, …, used to parameterize the
nonstationary covariance structure. Analogous ellipses are also shown for the kriging
models and the stationary GP model. The kernels for the nonstationary model are much
larger in the east than in the west, as expected, but also increase in size in the extreme west
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of the state where the topography is less extreme. The posterior standard deviations for the
surface correspond (Fig. 3d) to the size of the kernels (Fig. 4d). The model imposes
smoothly varying kernels, in contrast to the kernels used in the ad hoc nonstationary kriging
approach (Fig. 4b), thereby removing the east-west boundary discontinuity seen with
nonstationary kriging (Fig. 3). The substantive result that the surface is smoother and more
certain in the east remains qualitatively similar to splitting the state into two regions. The
nonstationary model has the advantage of giving shorter pointwise credible intervals for the
unknown function (Section 4.4.2 suggests there is no loss of coverage), with an average
interval length of 0.79 for the nonstationary model and 1.14 for the stationary model over a
regular grid of 1200 locations.

The Matérn differentiability parameter exhibits drastically different behavior in the
stationary and nonstationary models, with the posterior mass concentrated near 0.5 for the
stationary model (E(ν|y) = 0.7; P(ν < 1|y) = 0.92), while being concentrated at large values
for the nonstationary model (E(ν|y) = 16; P(ν > 1|y) = 0.99). Because differentiability
concerns behavior at infinitesimal distances, we suspect that when ν is estimated in the
model it does not provide information about the differentiability of the surface, but rather
about the correlation structure at the finest scale resolved by the data. In the stationary case,
ν seems to account for inadequacy in model fit, reflecting local variability that the model
would otherwise be unable to capture because of the global correlation structure. In the
nonstationary model, the varying kernels are able to capture this behavior. Small values of ν
are unnecessary, but the model has little ability to distinguish large values of ν. Paciorek
(2003, chap. 4) found a similar difference between stationary and nonstationary models in
one-dimension for a simple, highly-differentiable function with a sharp bump. We suspect
that the popularity of the exponential covariance in spatial statistics can be explained in part
by the fact that small ν compensates for stationary model inadequacy and allows for local
adaptation when the underlying function is highly variable with respect to the resolution of
the observation locations.

Mixing with these complicated real data was slow. For the year 1981, we ran the stationary
model for 10,000 iterations (5 hours in R for 217 observations and 1200 prediction
locations) and saved every tenth iteration, while running the nonstationary model for
220,000 iterations (in R, several days run time), again saving every tenth. Based on the log
posterior density of the models from these runs, the effective sample size for the stationary
model was 809 while for the nonstationary model it was only 140 (12 based on only the first
1000 subsampled observations to match the stationary model), with particularly slow mixing
for the eigenprocess hyperparameters. The picture is somewhat brighter for the spatial
surface estimates; averaging over the estimates at 10 test locations, the effective sample size
based on the 1000 subsampled iterations was 334 with a standard deviation of 7 for the
stationary model and, based on the 22,000 subsampled observations, 2950 (488 from the
first 1000) with a standard deviation of 1890 (228) for the nonstationary model. While we
believe the estimates from the nonstationary model are reasonable for calculating posterior
means and standard deviations, albeit not for quantiles, we remain concerned about mixing
and computational efficiency, but note that computational approaches mentioned in Section
5 may help mixing. Note that the MCMC performance of the free-knot spline and neural
network models was also poor, suggesting that nonstationary methods are generally difficult
to fit.

4.4.2 Comparison based on multiple datasets—Based on the 47 years of data,
Colorado precipitation appears to be difficult for any method to predict, with an average of
20–40 percent, and for some datasets zero percent, of the variability in held-out data
explained by the spatial surface (Fig. 5a). Based on this test R2, the stationary and
nonstationary GP models outperform the other methods (p < 0.0002), but the nonstationary
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model does no better than the stationary model. This lack of improvement mirrors the lack
of improvement found when comparing between the simple kriging, thin plate spline and
GAM approaches and those same approaches with Colorado divided into two regions, with
the regional approaches providing little improvement (Fig. 5a).

Turning to the log predictive density comparison, the nonstationary GP is significantly better
than the stationary GP and MLS (p < 0.007), marginally better than the neural network (p =
0.10), and significantly worse than the likelihood-based kriging estimates, interpreted as
Bayesian estimates (p < 0.0032) (Fig. 5c).

The coverage of prediction intervals on the test data, averaged over the 47 years, is 0.949
and 0.945 for the stationary and nonstationary models, respectively. Both coverages are
good, but the nonstationary model performs slightly better because it has shorter intervals on
average, 1.14, compared to 1.21 for the stationary model. The relatively small difference in
intervals compared to the difference in Section 4.4.1 reflects the fact that the test locations
are more concentrated in the mountainous areas than the 1200 grid locations considered
previously, more of which lie in eastern Colorado. Both models have long intervals in the
mountainous areas, whereas the nonstationary intervals are shorter than the stationary
intervals in eastern Colorado.

Given the poor mixing of the hyperparameters for the eigenprocesses in the nonstationary
GP model and the potential to borrow strength across the 47 years of data, we reran the
model with common hyperparameter values for all 47 years, fixed based on the runs
reported above, but found little difference in the results.

5 Discussion
We have introduced a class of nonstationary covariance functions, generalizing the kernel
convolution approach of Higdon et al. (1999). The class includes a nonstationary Matérn
covariance function with parameterized sample path differentiability. When there is a nugget
effect, we do not think that one can reliably estimate the differentiability parameter and
interpret the value as reflecting the differentiability of the underlying surface, but our
generalized kernel convolution approach allows us to avoid specifying infinitely
differentiable realizations, which is the case under the original Higdon et al. (1999) form.
Stationarity is a special case of the nonstationary covariance function. The model is built
upon spatially varying covariance parameters; if these parameters vary smoothly, the
nonstationary covariance function can be thought of as being locally stationary. Building
nonstationarity from local stationarity is an appealing approach; Haas (1995), Barber and
Fuentes (2004), and Kim et al. (2005) consider nonstationary models with subregions of
stationarity. We demonstrate an ad hoc fitting approach for a nonstationary kriging model
and develop a fully Bayesian model, which we have shown elsewhere to perform well in
simulations (Paciorek and Schervish 2004, 2005). On a challenging real data example, the
model produces qualitative results that are more sensible than a stationary model. The
lengths of prediction intervals vary sensibly in accord with climatological considerations,
and the model gives good coverage with smaller intervals than a stationary model. However,
the model improves little upon the stationary model based on several predictive criteria
evaluated with held-out data. The nonstationary model also provides a graphical approach
for assessing spatial correlation structure based on the posterior kernel ellipses, which may
be of interest for either replicated or nonreplicated data. With sufficient replicated data, one
could plot the spatial correlation contours for individual locations; our approach allows one
to visually judge the spatial correlation structure for all locations in one plot.
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In defense of the method relative to other nonstationary models, we have seen little
quantitative evidence in other work that nonstationary models outperform stationary models
for prediction or coverage in spatial settings. The limited improvement of the nonstationary
model over the stationary model and the lack of predictive improvement seen when
stationary models are applied separately to eastern and western Colorado relative to a
stationary model for the whole state indicate the difficulty in fitting a complicated, locally
highly-variable surface with relatively few observations even though substantive knowledge
of Colorado and model selection criteria (Section 3.1.2) suggest that a stationary model is
not appropriate. Part of this may be due to a bias-variance tradeoff, with the bias of the
stationary method offset by the high variance of the nonstationary method, although this
does not explain why fitting just two stationary models applied separately to eastern and
western Colorado does not improve matters. One difficulty with spatial data, as opposed to
regression data, is that local heterogeneity may be much more important than spatially
uncorrelated noise in any decomposition of the nugget effect (the decomposition is
discussed in Cressie (1993, sec. 3.2.1)). With sparse data and most of the heterogeneity truly
spatial in character, we may nearly interpolate the data; note the large number of degrees of
freedom in Section 4.4.1. In this situation, the exact weighting involved in the local
averaging performed by smoothing methods may not be all that important. The key to
success for a stationary model may be merely that it avoid oversmoothing; in areas in which
the spatial surface is relatively smooth, a stationary method that has a single small spatial
range estimate and relies more on local averaging than a ‘correct’ nonstationary method may
perform just as well because of the lack of uncorrelated noise that, in a regression setting,
would hurt the performance of a stationary smoother. This may be the case for the point
predictions in the Colorado example.

5.1 Computational improvements
While the Bayesian nonstationary model nicely ties the local covariance parameters together
in a smooth way, the computational demands are a drawback. The slowness of model fitting
arises because of the O(n3) matrix calculations involved in the marginal posterior, after
integrating the function values at the observation locations out of the model, as well as the
calculations involved in calculating the kernel matrices that determine the nonstationary
covariance. We have provided a basis function representation of the processes in the
hierarchy of the model that determine the kernel matrices at the locations of interest. This
approximation speeds the calculations, but other representations may be faster and may
produce faster mixing. One possibility is to use a thin plate spline basis as in Ngo and Wand
(2004). Alternatively, Wikle (2002) and Paciorek and Ryan (2005) use a spectral basis
representation of stationary Gaussian processes, which allows use of the FFT to dramatically
improve speed, while also showing mixing benefits by a priori orthogonalization of the basis
coefficients. The circulant embedding approach, which also relies on FFT calculations, is
another possibility (Wood and Chan 1994). Relatively coarse resolutions are likely to be
sufficient given that the processes in the hierarchy in the model should not be complicated
functions.

GP models, stationary or nonstationary, are relatively slow to fit because of the marginal
likelihood computations. One computational strategy would be to use a knot-based approach
similar to that of Kammann and Wand (2003) (Section 3.2.2), representing the function at
the observation locations as f = μf 1 + σfΨΩ−1/2uf, where Ψ is a matrix of nonstationary
correlations between the n observation locations and K knot points based on the
nonstationary covariance given in this paper and Ω is a similar matrix with pairwise
nonstationary correlations between knot locations. While this approach requires one to
sample the vector of coefficients, uf, rather than integrating f out of the model, it replaces
the O(n3) matrix calculations of the marginal posterior model with O(K3) calculations.
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Williams, Rasmussen, Schwaighofer, and Tresp (2002) and Seeger and Williams (2003) use
a similar computational approach, with Ω based on a subset of the training locations. Higdon
(1998) uses a discrete representation of the kernel convolution (3) to avoid matrix
inversions, representing nonstationary processes as linear combinations of kernel smooths of
discrete white noise process values. While computationally efficient, we have had difficulty
in getting this approach to mix well (Paciorek 2003, chap. 3).

In this work, we achieve nonstationary by letting the range and directionality parameters of
stationary, anisotropic correlation functions vary over the space of interest. In light of Zhang
(2004)’s result that the range and variance parameters in a GP with stationary Matérn
covariance cannot be simultaneously estimated in a consistent fashion, one might consider
achieving nonstationarity by instead letting the variance parameter vary over the space of
interest, σ2(·), taking f(·) ~ GP(μ, σ2(·)RS(·; ρ, ν)), with RS(·) a stationary correlation function.
This has a positive definite covariance function and is simpler to model because one needs
only one hyperprocess, for the variance, instead of the various processes determining the
kernels in the approach presented in this paper. Such an approach would be similar to the
penalized spline models of Lang and Brezger (2004) and Crainiceanu et al. (2004).

5.2 Extensions
We have focused on Gaussian responses and simple smoothing problems, but the
nonstationary covariance structure may be useful in other settings, and, provided the
computational challenges are overcome, as the spatial component in more complicated
models, such as spatio-temporal and complicated hierarchical Bayesian models. When the
domain is a large fraction of the earth’s surface, nonstationary models can adapt to the
distortion of distances that occurs when the spherical surface of the earth is projected. One
could easily use the nonstationary model within an additive model with additional
covariates. Finally, the Bayesian model in Section 3.2.1 simplifies easily to one-dimension
and has been extended to three dimensions in practice (Paciorek and Schervish 2004) and in
principle can be extended to higher dimensions. Given the success and variety of
nonparametric regression techniques for one-dimensional smoothing, the model may be of
most interest for higher dimensional smoothing problems, such as three-dimensional spatial
models.

The nonstationary covariance and spatial model proposed here can be easily extended in
principle to non-Gaussian responses using standard link functions, as demonstrated in
Paciorek and Schervish (2004) for Bernoulli data in a one-dimensional domain. However,
even stationary models for non-Gaussian data are slow to fit and mix (Paciorek and Ryan
2005; Christensen et al. 2006), so estimating nonstationarity in practice may be difficult,
particularly for non-Gaussian data with limited information per observation, such as binary
data.

The nonstationary covariance may also be used for replicated data with the advantage of the
additional covariance information provided by the replications. However, when we tried this
for the multi-year Colorado dataset, using common kernel matrices across time, we found
that the poor mixing prevented us from fitting the Bayesian model in reasonable time. Ad
hoc approaches might involve estimating the kernels at each location based on the
replications and local information (e.g., Barber and Fuentes 2004). Stein (2005) has
extended our class of nonstationary covariance functions to allow for spatially-varying ν by
allowing the scale parameter, S, defined in Appendix 2, to have a distribution that varies
spatially. This extension which would be of most interest with replicated data.
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6 Appendix 1: Convolution
Here we show that the nonstationary covariance function introduced by Higdon et al. (1999)
has a simple closed form when Gaussian kernels, Kx(u) = (2π)−P/2|Σ|−1/2exp(−(1/2)(x
−u)TΣ−1(x−u) are used. We make use of the equivalence of convolutions of densities with
sums of independent random variables:

Recognize the expression as the convolution

where h(·) is the Gaussian density function, A ~ N(0, Σi), U ~ N(xj, Σj), and A and U are
independent. Now consider the transformation W = U − A and V = U, which has Jacobian of
1. This gives us the following equalities based on the change of variables:

Since W = U − A, W ~ N(xj, Σi + Σj) and therefore
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Absorbing the necessary constants into the matrices in the quadratic form and dividing by

the standard deviation function, , we arrive at the nonstationary correlation
function, RNS(·, ·), defined by

7 Appendix 2: Proof of Theorem 1
Proof of Theorem 1: The proof is a simple application of Theorem 2 of Schoenberg (1938,
p. 817), which states that the class of functions positive definite on Hilbert space is identical
to the class of functions of the form,

(13)

where H(·) is non-decreasing and bounded and s ≥ 0. The class of functions positive definite
on Hilbert space is identical to the class of functions that are positive definite on ℜp for p =
1, 2, … (Schoenberg 1938). We see that the covariance functions in this class are scale
mixtures of the squared exponential correlation function. The underlying stationary
correlation function with argument  can be expressed as

where  is a Gaussian kernel with mean xi and variance  and the last step follows by
the convolution computation of Appendix 1. Since S is non-negative, it simply scales the
kernel matrices, and the last expression can be seen to be positive definite by the same
argument as (4):
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Q.E.D.

Remark: The new class of nonstationary covariances has, as members, scale mixtures of the
original nonstationary covariance of Higdon et al. (1999). Using different distributions, H,
for the scale parameter, S, produces different nonstationary correlation functions. Using an
integral expression for the Bessel function (Gradshteyn and Ryzhik 1980, p. 340, eq. 9;
McLeish 1982), one can easily show that for the Matérn form (8), S is distributed inverse-
gamma (ν, 1/4). Another example is the rational quadratic covariance, whose stationary form

is , which produces GPs with infinitely differentiable realizations (Paciorek
2003, chap. 2). A nonstationary version of the rational quadratic correlation function is

which can be seen to be of the scale mixture form by taking S ~ Γ(ν, 1),

where MS is the moment generating function of S. This makes sense because the rational
quadratic correlation function has the form of a t density, which is a mixture of Gaussians
with an inverse gamma distribution for the variance, proportional to , of the Gaussian.

Paciorek (2003, chap. 2) shows that the existence of moments of S is directly related to the
existence of sample path derivatives of GPs parameterized by the nonstationary covariance
(this is also true for stationary covariance functions). The number of moments of the inverse
gamma distribution depends on its first parameter, which for the scale mixture for the
nonstationary Matérn is ν. In the rational quadratic form, the gamma distribution has
infinitely many moments, which corresponds to infinitely many sample path derivatives for
GPs parameterized by either the stationary or nonstationary versions of the correlation
function.
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Figure 1.
(a) Topography of Colorado, with thicker line indicating state boundary, and (b) image plot
of log-transformed annual precipitation observations in 1981, with the color of the box
indicating the magnitude of the observation.
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Figure 2.
Surface estimates from stationary (a) and nonstationary (c) kriging with corresponding
standard deviations (data locations overlaid as points), (b) and (d).
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Figure 3.
Posterior mean surface estimates from stationary (a) and nonstationary (c) GP models with
corresponding posterior standard deviations (data locations overlaid as points), (b) and (d).
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Figure 4.
Kernels (ellipses of constant probability density of Gaussian densities) representing the
estimated correlation structure for (a) stationary kriging, (b) nonstationary kriging based on
two regions, (c) the fully Bayesian stationary GP model, and (d) the nonstationary GP
model. For the Bayesian models, the ellipse-like figures are the posterior means of constant
probability density ellipse values at a sequency of angles, 0,…,2π.
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Figure 5.
(a) Test R2 and (b) log predictive density (LPD) for the methods (labels indicated in Section
4.3) on 47 years of Colorado precipitation for test locations within the convex hull of the
training data. Values of LPD larger than 3 are not plotted. Methods with a ‘2’ in their label
(krig2, tps2, gam2) were fit separately to eastern and western Colorado.
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