Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1981 Sep;147(3):1063–1076. doi: 10.1128/jb.147.3.1063-1076.1981

Developmental cycle of Coxiella burnetii: structure and morphogenesis of vegetative and sporogenic differentiations.

T F McCaul, J C Williams
PMCID: PMC216147  PMID: 7275931

Abstract

Coxiella burnetii is a gram-variable obligate intracellular bacterium which carries out its development cycle in the phagolysosome of eucaryotic cells. Ultrastructural analysis of C. burnetii, in situ and after Renografin purification, by transmission electron microscopy of lead-stained thin sections has revealed extreme pleomorphism as demonstrated by two morphological cell types, a large cell variant (LCV) and a small cell variant (SCV). Potassium permanganate staining of purified rickettsiae revealed a number of differences in the internal structures of the cell variants. (i) The outer membrane of the sCV and LCV were comparable; however, the underlying dense layer of the SCV was much wider and more prominent than that of the LCV. The periplasmic space of the SCV was not readily visualized, whereas the periplasmic space of the LCV was apparent and resembled that of other gram-negative bacteria. (ii) Complex internal membranous intrusions which appeared to originate from the cytoplasmic membrane were observed in the SCV. The LCV did not harbor an extensive membranous system. (iii) Some LCVs contained a dense body in the periplasmic space. This endogenous structure appeared to arise in one pole of the LCV as an electrondense "cap" formation with the progressive development of a dense body approximately 130 to 170 nm in diameter which was eventually surrounded by a coat of at least four layers. Our observations suggest that the morphogenesis of C. burnetii is comparable, although not identical, to cellular differentiation of endospore formation. A developmental cycle consisting of vegetative and sporogenic differentiation is proposed.

Full text

PDF
1063

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANACKER R. L., FUKUSHI K., PICKENS E. G., LACKMAN D. B. ELECTRON MICROSCOPIC OBSERVATIONS OF THE DEVELOPMENT OF COXIELLA BURNETII IN THE CHICK YOLK SAC. J Bacteriol. 1964 Oct;88:1130–1138. doi: 10.1128/jb.88.4.1130-1138.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ariel B. M., Khavkin T. N., Amosenkova N. I. Interaction between Coxiellae burnetii and the cells in experimental Q-rickettsiosis. Histologic and electron microscope studies. Pathol Microbiol (Basel) 1973;39(6):412–423. [PubMed] [Google Scholar]
  3. Aronson A. I., Fitz-James P. Structure and morphogenesis of the bacterial spore coat. Bacteriol Rev. 1976 Jun;40(2):360–402. doi: 10.1128/br.40.2.360-402.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baca O. G., Paretsky D. Partial chemical characterization of a toxic lipopolysaccharide from Coxiella burneti. Infect Immun. 1974 May;9(5):959–961. doi: 10.1128/iai.9.5.959-961.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baca O. G., Paretsky D. Some physiological and biochemical effects of a Coxiella burneti lipopolysaccharide preparation on guinea pigs. Infect Immun. 1974 May;9(5):939–945. doi: 10.1128/iai.9.5.939-945.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burton P. R., Kordová N., Paretsky D. Electron microscopic studies of the rickettsia Coxiella burneti: entry, lysosomal response, and fate of rickettsial DNA in L-cells. Can J Microbiol. 1971 Feb;17(2):143–150. doi: 10.1139/m71-025. [DOI] [PubMed] [Google Scholar]
  7. Burton P. R., Stueckemann J., Paretsky D. Electron microscopy studies of the limiting layers of the rickettsia Coxiella burneti. J Bacteriol. 1975 Apr;122(1):316–324. doi: 10.1128/jb.122.1.316-324.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Canonico P. G., Van Zwieten M. J., Christmas W. A. Purification of large quantities of coxiella burnetii rickettsia by density gradient zonal centrifugation. Appl Microbiol. 1972 May;23(5):1015–1022. doi: 10.1128/am.23.5.1015-1022.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Costerton J. W., Poffenroth L., Wilt J. C., Kordová N. Alterations in the ultrastructure of Chlamydia psittaci 6BC harvested from the allantoic fluid of chick embryos. Can J Microbiol. 1976 Jan;22(1):9–15. doi: 10.1139/m76-002. [DOI] [PubMed] [Google Scholar]
  10. Costerton J. W., Poffenroth L., Wilt J. C., Kordová N. The effect of purification on the ultrastructure and infectivity of egg-attenuated Chlamydia psittaci (6BC). Can J Microbiol. 1975 Oct;21(10):1448–1463. doi: 10.1139/m75-216. [DOI] [PubMed] [Google Scholar]
  11. Costerton J. W., Poffenroth L., Wilt J. C., Kordová N. Ultrastructural studies of Chlamydia psittaci 6BC in situ in yolk sac explants and L cells: a comparison with gram-negative bacteria. Can J Microbiol. 1975 Oct;21(10):1433–1447. doi: 10.1139/m75-215. [DOI] [PubMed] [Google Scholar]
  12. Costerton J. W., Poffenroth L., Wilt J. C., Kordová N. Ultrastructural studies of the nucleoids of the pleomorphic forms of Chlamydia psittaci 6BC: a comparison with bacteria. Can J Microbiol. 1976 Jan;22(1):16–28. doi: 10.1139/m76-003. [DOI] [PubMed] [Google Scholar]
  13. DeLAY P. D., LENNETTE E. H., DEOME K. B. Q fever in California; recovery of Coxiella burnetii from naturally-infected air-borne dust. J Immunol. 1950 Aug;65(2):211–220. [PubMed] [Google Scholar]
  14. Friis R. R. Interaction of L cells and Chlamydia psittaci: entry of the parasite and host responses to its development. J Bacteriol. 1972 May;110(2):706–721. doi: 10.1128/jb.110.2.706-721.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Garrett A. J., Harrison M. J., Manire G. P. A search for the bacterial mucopeptide component, muramic acid, in Chlamydia. J Gen Microbiol. 1974 Jan;80(1):315–318. doi: 10.1099/00221287-80-1-315. [DOI] [PubMed] [Google Scholar]
  16. Giménez D. F. Gram Staining of Coxiella burnetii. J Bacteriol. 1965 Sep;90(3):834–835. doi: 10.1128/jb.90.3.834-835.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Goren M. B. Phagocyte lysosomes: interactions with infectious agents, phagosomes, and experimental perturbations in function. Annu Rev Microbiol. 1977;31:507–533. doi: 10.1146/annurev.mi.31.100177.002451. [DOI] [PubMed] [Google Scholar]
  18. Gowans E. J. An improved method of agar pelleted cells for electron microscopy. Med Lab Technol. 1973 Apr;30(2):113–115. [PubMed] [Google Scholar]
  19. Hackstadt T., Williams J. C. Biochemical stratagem for obligate parasitism of eukaryotic cells by Coxiella burnetii. Proc Natl Acad Sci U S A. 1981 May;78(5):3240–3244. doi: 10.1073/pnas.78.5.3240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Handley J., Paretsky D., Stueckemann J. Electron microscopic observations of Coxiella burnetii in the guinea pig. J Bacteriol. 1967 Jul;94(1):263–267. doi: 10.1128/jb.94.1.263-267.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. JANSSEN F. W., LUND A. J., ANDERSON L. E. Colorimetric assay for dipicolinic acid in bacterial spores. Science. 1958 Jan 3;127(3288):26–27. doi: 10.1126/science.127.3288.26. [DOI] [PubMed] [Google Scholar]
  22. KELLENBERGER E., RYTER A., SECHAUD J. Electron microscope study of DNA-containing plasms. II. Vegetative and mature phage DNA as compared with normal bacterial nucleoids in different physiological states. J Biophys Biochem Cytol. 1958 Nov 25;4(6):671–678. doi: 10.1083/jcb.4.6.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. KORDOVA N. Filterable particles of Coxiella burneti. Acta Virol. 1959 Jan;3(1):25–36. [PubMed] [Google Scholar]
  24. KORDOVA N. Study of antigenicity and immunogenicity of filterable particles of Coxiella burneti. Acta Virol. 1960 Jan;4:56–62. [PubMed] [Google Scholar]
  25. Kishimoto R. A., Veltri B. J., Canonico P. G., Shirey F. G., Walker J. S. Electron microscopic study on the interaction between normal guinea pig peritoneal macrophages and Coxiella burnetii. Infect Immun. 1976 Oct;14(4):1087–1096. doi: 10.1128/iai.14.4.1087-1096.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kishimoto R. A., Veltri B. J., Shirey F. G., Canonico P. G., Walker J. S. Fat of Coxiella burnetti in macrophages from immune guinea pigs. Infect Immun. 1977 Feb;15(2):601–607. doi: 10.1128/iai.15.2.601-607.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kordová N. Chlamydiae, rickettsiae, and their cell wall defective variants. Can J Microbiol. 1978 Apr;24(4):339–352. doi: 10.1139/m78-058. [DOI] [PubMed] [Google Scholar]
  28. Kordová N., Kováová E. Appearance of antigens in tissue culture cells inoculated with filterable particles of Coxiella burneti as revealed by fluorescent antibodies. Acta Virol. 1968 Sep;12(5):460–463. [PubMed] [Google Scholar]
  29. LAWN A. M. The use of potassium permanganate as an electron-dense stain for sections of tissue embedded in epoxy resin. J Biophys Biochem Cytol. 1960 Feb;7:197–198. doi: 10.1083/jcb.7.1.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. LITWIN J., OFFICER J. E., BROWN A., MOULDER J. W. A comparative study of the growth cycles of different members of the psittacosis group in different host cells. J Infect Dis. 1961 Nov-Dec;109:251–279. doi: 10.1093/infdis/109.3.251. [DOI] [PubMed] [Google Scholar]
  31. LITWIN J. The growth cycle of the psittacosis group of micro-organisms. J Infect Dis. 1959 Sep-Oct;105:129–160. doi: 10.1093/infdis/105.2.129. [DOI] [PubMed] [Google Scholar]
  32. Nermut M. V., Schramek S., Brezina R. Electron microscopy of Coxiella burneti phase I and II. Acta Virol. 1968 Sep;12(5):446–452. [PubMed] [Google Scholar]
  33. Nermut M. V., Schramek S., Brezina R. Further investigations on the fine structure of coxiella burneti. Zentralbl Bakteriol Orig A. 1972 Feb;219(2):211–226. [PubMed] [Google Scholar]
  34. Ohkuma S., Poole B. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3327–3331. doi: 10.1073/pnas.75.7.3327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Ormsbee R. A. Rickettsiae (as organisms). Annu Rev Microbiol. 1969;23:275–292. doi: 10.1146/annurev.mi.23.100169.001423. [DOI] [PubMed] [Google Scholar]
  36. Poffenroth L., Costerton J. W., Kordová N., Wilt J. C. Ultrastructural studies of Chlamydia psittaci 6BC variant strains. I. Ultrastructure of the surface layers of egg-passaged 6bc strain. Can J Microbiol. 1973 Aug;19(8):887–894. doi: 10.1139/m73-142. [DOI] [PubMed] [Google Scholar]
  37. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. ROSENBERG M., KORDOVA N. Study of intracellular forms of Coxiella burneti in the electron microscope. Acta Virol. 1960 Jan;4:52–55. [PubMed] [Google Scholar]
  39. RYTER A., KELLENBERGER E., BIRCHANDERSEN A., MAALOE O. Etude au microscope électronique de plasmas contenant de l'acide désoxyribonucliéique. I. Les nucléoides des bactéries en croissance active. Z Naturforsch B. 1958 Sep;13B(9):597–605. [PubMed] [Google Scholar]
  40. STOKER M. G., FISET P. Phase variation of the Nine Mile and other strains of Rickettsia burneti. Can J Microbiol. 1956 May;2(3):310–321. doi: 10.1139/m56-036. [DOI] [PubMed] [Google Scholar]
  41. Schramek S. Isolation and characterization of deoxyribonucleic acid from Coxiella burneti. Acta Virol. 1968 Jan;12(1):18–22. [PubMed] [Google Scholar]
  42. Spurr A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res. 1969 Jan;26(1):31–43. doi: 10.1016/s0022-5320(69)90033-1. [DOI] [PubMed] [Google Scholar]
  43. Sutton J. S. Potassium permanganate staining of ultrathin sections for electron microscopy. J Ultrastruct Res. 1967 Dec;21(5):424–429. doi: 10.1016/s0022-5320(67)80150-3. [DOI] [PubMed] [Google Scholar]
  44. Tamura A., Matsumoto A., Higashi N. Purification and chemical composition of reticulate bodies of the meningopneumonitis organisms. J Bacteriol. 1967 Jun;93(6):2003–2008. doi: 10.1128/jb.93.6.2003-2008.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. WELSH H. H., LENNETTE E. H., ABINANTI F. R., WINN J. F., KAPLAN W. Q fever studies. XXI. The recovery of Coxiella burnetii from the soil and surface water of premises harboring infected sheep. Am J Hyg. 1959 Jul;70(1):14–20. [PubMed] [Google Scholar]
  46. WYATT G. R., COHEN S. S. Nucleic acids of Rickettsiae. Nature. 1952 Nov 15;170(4333):846–847. doi: 10.1038/170846a0. [DOI] [PubMed] [Google Scholar]
  47. Wachter R. F., Briggs G. P., Gangemi J. D., Pedersen C. E., Jr Changes in buoyant density relationships of two cell types of Coxiella burneti phase I. Infect Immun. 1975 Aug;12(2):433–436. doi: 10.1128/iai.12.2.433-436.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Weiss E. Growth and physiology of rickettsiae. Bacteriol Rev. 1973 Sep;37(3):259–283. doi: 10.1128/br.37.3.259-283.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wiebe M. E., Burton P. R., Shankel D. M. Isolation and characterization of two cell types of Coxiella burneti phase I. J Bacteriol. 1972 Apr;110(1):368–377. doi: 10.1128/jb.110.1.368-377.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Williams J. C., Peacock M. G., McCaul T. F. Immunological and biological characterization of Coxiella burnetii, phases I and II, separated from host components. Infect Immun. 1981 May;32(2):840–851. doi: 10.1128/iai.32.2.840-851.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Wisseman C. L., Jr Some biological properties of rickettsiae pathogenic for man. Zentralbl Bakteriol Orig. 1968 Apr;206(3):299–313. [PubMed] [Google Scholar]
  52. YOUNG I. E., FITZ-JAMES P. C. Chemical and morphological studies of bacterial spore formation. II. Spore and parasporal protein formation in Bacillus cereus var. alesti. J Biophys Biochem Cytol. 1959 Dec;6:483–498. doi: 10.1083/jcb.6.3.483. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES