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ABSTRACT Pathogenic microorganisms use Darwinian
processes to circumvent attempts at their control through
chemotherapy. In the case of HIV-1 infection, in which drug
resistance is a continuing problem, we show that in one-
compartment systems, there is a relatively narrow window
of drug concentrations that allows evolution of resistant
variants. When the system is enlarged to two spatially dis-
tinct compartments held at different drug concentrations
with transport of virus between them, the range of average
drug concentrations that allow evolution of resistance is sig-
nificantly increased. For high average drug concentrations,
resistance is very unlikely to arise without spatial heterogene-
ity. We argue that a quantitative understanding of the role
played by heterogeneity in drug levels and pathogen trans-
port is crucial for attempts to control re-emergent infectious
disease.

A tremendous range of pest organisms and parasites including
bacteria, protozoans, fungi, macroparasites, insects, and weeds
have used Darwinian processes to evade chemical control. The
resurgence of infectious disease that has become a focal point
of global health efforts is due in large part to the evolution
of resistance to antibiotic drugs. Here, we concentrate our
attention on the important example of drug resistance in HIV
type 1 (HIV-1) infection.

Some progress in the quantitative understanding of the evo-
lution of drug resistance by HIV-1 has been made by using rel-
atively simple mathematical models, which consider the body
as a single compartment (1–8). Using a protypic model, we
show that the range of drug concentrations to which resis-
tance is predicted to arise is unrealistically narrow. For mu-
tants to arise, a parental drug-sensitive virus must replicate at
some non-negligible rate. This occurs only at drug concentra-
tions below some threshold level. On the other hand, the mu-
tant must have a distinct advantage to overtake the parental
strain. We will see that this occurs only for drug concentra-
tions above some second threshold. The evolution of resis-
tance takes place only between these two thresholds, which in
a single compartment system is a narrow window of drug con-
centrations wherein both production of resistant mutants from
their nonresistant precursors, and their subsequent selection
can occur.

We suggest that, in nature, the window of opportunity for
the generation of resistance is widened by having one com-
partment in which mutants are generated, such as a “sanctu-
ary” or region of low drug concentration that HIV-1 can enter,
and a second compartment in which the drug concentration is
high enough to give mutants a selective advantage. For HIV-1,
sanctuaries may be physiologically distinguished sites, such as
the brain (9, 10) or testes or cell populations susceptible to
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infection in which intracellular bioavailability of active drug is
poor. The process of generating mutants in one compartment
and selecting them in another may be repeated several times
in the step-wise accumulation of resistance mutations.

The notion that heterogeneity influences drug resistance
is not new. Examination of the role of spatial heterogene-
ity in the spread of insecticide resistance (11, 12) has shown
that, under appropriate conditons, spatial transport can give
rise to an enhanced rate of spread of the resistant alleles.
In the case of antibiotic resistance to tuberculosis, the effects
of both temporal and spatial heterogeneity have been mod-
eled (13, 14). Those models suggest that noncompliance to
antibiotic regimes, but not spatial heterogeneity, is an impor-
tant cause of treatment failure. These results cannot simply
be applied to the case of HIV-1 infection in which the host–
pathogen interactions are different and are described by dif-
ferent models.

Resistance to the protease inhibitor indinavir provides an
instructive example because measurable resistance is found
only in virus that has acquired at least three amino acid sub-
stitutions in HIV-1 protease (15). Granted that one- or even
two-base substitutions might be found in the pretreatment vi-
ral quasispecies (16, 17), these intermediate strains do not
have the ability to grow in the presence of drug at therapeu-
tic concentrations. Therefore, for uniform concentrations of
drug in the therapeutic range, these strains cannot produce
the three-base mutants that finally do show resistance. But as
we show, sanctuaries make it possible.

Approach. Our model will assume a parental virus popu-
lation, at equilibrium, from which mutants arise. We examine
the process by which a strain, j mutations from wild type, pro-
duces a more resistant strain with m additional substitutions,
where all m are required to produce decreased drug suscep-
tibility. For illustrative purposes, we use the example of in-
dinavir resistance and take j = 1 and m = 2. This choice is
not critical because the number of substitutions required will
simply scale the overall time to appearance of the resistant
strain. We use j = 1 because given the rapid replication rate
of HIV-1, one-base change mutants almost certainly preexist
(16, 17).

Here, we consider the simplest nontrivial case: two com-
partments, differing only in size and drug concentration, with
movement of virus but not target cells between them. If the
sanctuary is a subpopulation of target cells, then movement of
target cells is not a concern. If the sanctuary is the central ner-
vous system, then movement is possible but highly restricted
due to the blood–brain barrier. Assuming no movement of
target cells, this model is sufficiently simple that we can ob-
tain analytical results on the rate at which viable mutants take
hold and show that the range of average drug concentrations
that allow for the evolution of drug resistance is significantly
widened when sanctuaries exist.

This paper was submitted directly (Track II) to the Proceedings office.
Abbreviation: HIV-1, HIV type 1.
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MODELS AND RESULTS

The model we use has been adapted from a simple model
of HIV-1 dynamics (6, 18) but is quite general and applicable
to a variety of other systems (cf. 19, 20).

Our aim is to compute the waiting time for the arrival of
the first phenotypically resistant virus that survives and founds
the resistant population. We do not model the growth of the
resistant population once it has been established; by defini-
tion, it will grow to take over. By focusing on the produc-
tion and initial establishment of the resistant variant, we need
only consider the dynamics of the parental strain and the very
early stages of the growth of the mutant population. At these
very early times, the resistant population does not affect the
parental population.

Dynamics of Virus Production. As in ref. 18, let T , T ∗
and V designate the population densities of uninfected target
cells (i.e., cells susceptible to HIV-1 infection), productively
infected cells, and free virions, respectively. We assume that
target cells are generated by density-dependent proliferation
as suggested by recent studies (21, 22) and ignore the possi-
ble input of cells from a thymic source. Then this system may
be described by the equations

dT

dt
= rT

(
1− T

T0

)
− kVT; [1]

dT ∗

dt
= kVT − δT ∗; and [2]

dV

dt
= NδT ∗ − cV − kVT; [3]

where T0 is the equilibrium density of T cells in the absence
of virus, r is the maximum rate of T cell population growth, k
is the viral infectivity, δ is the per cell rate of productively in-
fected cell death, and c is the rate constant for virus clearance.
Death of uninfected target cells is incorporated into the logis-
tic growth term so that r presents the maximum proliferation
rate minus the death rate.

Critical Infectivity. Eqs. 1–3 have the property that there
is a critical infectivity, kc , given by kc�N − 1� = c/T0, such
that for k + kc , the only stable equilibrium is the noninfected
state, V̄ = T̄ ∗ = 0, T̄ = T0, where an overbar represents an
equilibrium value. (The condition k + kc is equivalent to re-
quiring that the basic reproductive number R0 be + 1 (4).) For
k , kc , the stable equilibrium is an infected state with a T cell
density less than T0, i.e., V̄ = r�1− T̄ /T0�/k, T̄ = c/�N − 1�k,
and T̄ ∗ = kV̄ T̄ /δ. In this model, if therapy reduces k below
kc , the virus will be eradicated, whereas less effective therapy
will simply establish a new (lower) steady–state viral load.

We can compute kc as a fraction of the infectivity k of the
parental virus from measurement of the equilibrium T cell
level and knowledge of its virus-free equilibrium value. This
gives§

kc =
T̄

T0
k: [4]

During the asymptomatic phase of infection, quasi-steady–
states are established in which the CD4+ T cell count may
typically vary between 200 and 500 cells/mm3 (23) giving ra-
tios T̄ /T0 between 0.2 and 0.5 under the assumption that the
normal CD4 count T0 = 1;000/mm3 and that the T cell count
measured in blood is reflective of the T cell levels in tissue.
Thus, we would expect—if the assumptions going into the for-
mulation of Eqs. 1–3, including that of spatial homogeneity,

§In some models (5, 6, 19, 20), Eq. 1 is replaced by dT/dt = λ−dT−kVT ,
and T0 A λ/d is the equilibrium level of target cells in the absence of
virus. This model, as well as more general ones in which dT/dt = f �T �−
kVT , with f �T0� = 0 and f ′�T0� + 0, leads to an identical equation
for kc .

are reasonable—that cutting the infectivity k by 50% to 80%,
using antiretroviral drug therapy, should be sufficient to com-
pletely eliminate the virus. These predictions are not borne
out by clinical practice. Monotherapy with zidovudine, which
should have the required efficacy, does not eliminate the virus,
even though resistance develops gradually by the stepwise ac-
crual of mutations (24, 25). Similarly, monotherapy with the
much more potent protease inhibitors (26) and zidovudine–
lamivudine combination therapy (27), cases in which preexist-
ing high level drug resistance is unlikely, do not agree with
the prediction of viral elimination.

Thus, even before we consider the evolution of resistance,
some assumptions of the model appear to need reconsider-
ation. Several possibilities exist including the role of long-
lived productively infected cells (28) and latently infected cells
(29, 30, 31), but we will here focus on the assumption of spa-
tial homogeneity.

Production and Selection of Mutants. The parental popu-
lations will be considered at equilibrium. The rate at which
mutant viral strains are produced from the parental strain is
then �µkV̄ T̄ , i.e., the product of the specific mutation rate,
µ, the rate of infection, kV̄ T̄ , and, since the populations are
given as densities, a volume factor � to give absolute num-
bers.

Here, we consider mutations that occur because of errors
in reverse transcription. Thus, after a virus infects a cell, the
DNA copy of the viral genome that is made, the provirus, may
carry a drug resistant mutation. Not only must the resistant
provirus be produced, however, it must also “take root.” Resis-
tant proviruses may be produced but fail to produce progeny
for purely stochastic reasons (32–34). The probability, p, that
a provirus will propagate is related to the probability, q, that
a free virion will propagate by

p = 1− �1− q�n; q = κp; �5a; b�
where κ is the probability that a given resistant virion produc-
tively infects a cell and n is the number of progeny produced
in the lifetime of an infected cell. The term �1− q�n in Eq. 5a
is the probability that all n of the progeny of the founder
provirus fail to propagate, so 1 − �1 − q�n is the probability
that at least one of the progeny propagates. Eq. 5b says that
a virion propagates if and only if it infects (probability κ) and
the provirus propagates (probability p).¶

If n is considered random rather than fixed, we take the
expectation of Eq. 5a over n. For n, a Poisson random variable
with mean N and using Eq. 5b, this becomes

p = 1− exp�−Nκp�: [6]

Alternatively, if n is fixed at N , with N large, then Eq. 6 is an
excellent approximation to Eq. 5.

The infection probability κ is related to the kinetic param-
eters through

κ = krT̄ /�c + krT̄ �; [7]

where kr is the infectivity of the resistant virion. This equa-
tion comes about from considering the two possible fates of
a virion: clearance and infection, and comparing their rates c
and krT , respectively.

If Nκ + 1, on average less than one cell is infected by
the progeny of a productively infected cell, and p = 0 is the
only non-negative solution of Eq. 6.� By similar logic, one can

¶Here, p and q are the probabilities of a nonterminating line of descent.
However, if we instead require that the resistance mutant only propagate
for a large number of generations, p and q will be approximated by the
solutions of Eq. 5a–5b.
�One can deduce this result by considering the graphs of the functions
y = p and y = 1 − exp�−Nκp� and observing that if Nκ + 1, the latter
function is below the line y = p except when p = 0.
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deduce that before drug is given, wild-type virus must have
Nκ = 1 to establish a quasi-steady–state level, where κ here
refers to the infection by wild-type virus. Lastly, for Nκ , 1
there is a positive solution, i.e., the resistant strains have a
positive probability of surviving and of replacing the wild-type
virus. (Interestingly, the condition Nκ = 1 for wild-type virus
is equivalent to the condition k = c/T̄ �N − 1�, i.e., that k is
equal to its critical value).

An immediate result is that, before the administration of
drug, the drug-resistant mutants that preexist in the parental
quasi-species are not self-sustaining. Assuming that there is a
cost of resistance, either the infectivity or rate of replication of
mutants in the absence of drug will be smaller than that of the
wild-type, i.e., Nκ for the mutant must be less than Nκ = 1
for the wild-type, and so the probability of propagation for
these mutants is zero; they are only maintained by continual
production from the wild-type.

The mean time τ to appearance of propagating mutants, or
founders, is the inverse of their production rate:

τ = �p�µkV̄ T̄ �−1: [8]

Effect of Drug. For simplicity, we assume the drug is a re-
verse transcriptase inhibitor and affects the infectivity of the
virus. If the drug is a protease inhibitor, noninfectious virions
are produced, which to a good approximation can be modeled
by a change in infectivity (35). Let ε be the plasma (effective)
drug concentration. Then, we may write

k�z� = k0/�1+ ε/IC50� = k0/�1+ z�; [9]

where k0 is the viral infectivity in the absence of drug, z is a
scaled drug concentration, z = ε/IC50, and IC50 is the plasma
drug concentration at which k is reduced to 50% of its drug-
free value.

For the resistant strain, we use the form

kr�z� = ρk0/�1+ βz�; [10]

where ρ � 1 is a factor by which the resistant infectivity is de-
creased relative to the wild-type in the absence of drug, i.e.,
a cost of resistance, and β � 1 is a factor by which the drug
concentration is effectively reduced for the resistant strain rel-
ative to the wild-type. The other viral parameters c and N are
assumed unchanged in the presence of drug. In other viral dis-
eases (20), it might be more appropriate to fix k and allow N
to change due to drug, or to allow both to change; the results
obtained in this alternative approach are qualitatively similar.

Window of Opportunity. One can now see why there is
a problem in the generation of propagating resistant mu-
tants. The production rate of resistant viruses, p��µkV̄ T̄ �,
is a product of two functions: the first, p, the probability
of propagation, is an increasing function of z that is zero
below some positive value of z, which we call zL (where
Nκ�zL� = 1), while the second, the overall mutant produc-
tion rate, is a decreasing function of the drug concentration
z that becomes zero at some finite value of z, which we call
zU (where k�zU� = kc and hence V = 0). As shown in Fig. 1,
the product of these functions generates a curve that has a
single maximum and which goes to zero at finite values of z
on either side of the hump. Richman (36) has presented a
strikingly similar figure for the production of drug resistant
mutants at different drug concentrations based on qualita-
tive arguments. We now have explicitly calculated the shape
of this curve for a simple one-compartment model. What is
interesting about our theoretical result is that it shows that,
only within a window in z, between zL and zU , can mutants
be generated. This window is surprisingly narrow with zU cor-
responding to a concentration of the order of the IC50 of the
drug. By going to a two-compartment model with drug con-
centration differences between the two, the viral window of
opportunity is widened considerably, as we now show.

Fig. 1. In a one-compartment model the mean production rate of
resistant virions (solid line), equal to the inverse of the mean time
to the arrival of the founding resistant virus and labeled 1/τ, is non-
zero only over a finite window of drug concentrations, z, from zL to
zU . According to our theory, the production rate is the product of two
functions (dashed lines). The curves were computed assuming Eqs. 1–
3 were at steady-state and that k0 = 1:5 3 10−5 mm3 day−1, c = 3
day−1, T0 = 1000/mm3, r = 0:01 day−1, N = 1000, β = 0:1, ρ = 0:95.
With these values, the equilibrium values of T and V are 200/mm3

and 5:3 3 105/ml, respectively. Note that above z = 4, k + kc and
the production rate falls to zero. The scaling factors for the production
rate, µ� are µ = 2 3 10−10, corresponding to the acquisition of two
independent mutations, and � = 2:5 3 108 mm3, assuming a 5 liter
blood capacity and that the T cell count in the blood needs to be
multiplied by 50 to account for the 98% of CD4+ T lymphocytes that
are in tissues. Note that the production rate curves scale simply with
the mutation rate µ, so that if only one mutation were required the
waiting time would be orders of magnitude shorter.

Two Compartment Model. Now consider virus occupying
two compartments and moving between them by passive trans-
port. The first compartment will be considered the bulk com-
partment with larger volume and larger drug concentration.
The second will represent the sanctuary, with lower drug con-
centrations and smaller volume. Let subscripts 1 and 2 desig-
nate T cells or virus particles per unit volume specific to each
of the two compartments, with u1 = 1 − u and u2 = u, being
the relative volumes of the two compartments.

The generalization of Eqs. 1–3 for this case is then

dTi
dt
= rTi

(
1− Ti

T0

)
− kiViTi; [11]

dT ∗i
dt
= kiViTi − δT ∗i ; [12]

dVi
dt
= NδT ∗i − cVi − kiViTi +Di�Vı̂ − Vi�; [13]

where the circumflexed subscript means “the other one”; e.g.,
2̂ = 1.

In this model, we neglect, for simplicity, the passage of tar-
get cells between compartments but allow passive transport
of virus between the two compartments characterized by the
transport coefficients Di. This form of the transport coefficient
arises from requiring that there is no net flow of virus between
compartments when the respective concentrations are equal.
Requiring that transport itself does not lead to an increase or
decrease in the total amount of virus yields

0= d

dt
�u1V1+u2V2�=u1D1�V2 − V1�+u2D2�V1−V2�; [14]

where only the transport terms have been considered. This is
satisfied for all V1; V2 only when D1 = u2D2/u1. Therefore, we
assume this condition for our model and write D2 = D and
D1 = uD/�1 − u�. We expect that Di changes with the vol-
ume of the compartments in a way that is dependent on the



Applied Mathematics, Medical Sciences: Kepler and Perelson Proc. Natl. Acad. Sci. USA 95 (1998) 11517

specific transport mechanisms involved and on geometric de-
tails. For example, if transport is by diffusion, the surface area
of the interface between the compartments (possibly u2/3) en-
ters. Alternatively, if transport is by convection, Di in simple
models depends on the volume flow rate divided by the com-
partment volume. Here D is a parameter, but we caution that
its value can depend on u.

Although we have very little knowledge of the “true” value
of D, we find that the system functions as if it has a “sanctu-
ary” only if neither D1 or D2 is significantly larger than the vi-
ral clearance rate. Thus, we will take D2, which is the larger of
the two (because we are taking compartment 2 as the smaller
compartment), to be of the order of c.

It may eventually be possible to make inferences about the
magnitude of viral transport from studies of genetically dis-
tinguishable viruses isolated in different compartments, e.g.,
brain isolates vs. spleen isolates (10). However, such data is
confounded by differential selection in the two areas, a fac-
tor about which very little is known. Here, we focus on the
effect of spatial heterogeneity per se and neglect differential
selection between compartments. Thus, the infectivities ki are
given as in the single compartment model, but now the drug
concentrations in the two compartments differ, so we have zi
rather than z.

Production and Selection of Mutants. A virus in compart-
ment i can do one of three things: (i) productively infect,
thereby producing an average of N progeny, (ii) perish with-
out leaving any progeny, or (iii) move to the other compart-
ment. Let the probability that the virus infects productively
in compartment i be denoted κi and the probability that it
moves to the other compartment be denoted mi. If pi and
qi are the probabilities that a provirus and virus in compart-
ment i propagate, respectively, they will be described by the
equations

p1 = 1− exp�−q1N�; q1 = m1q2 + κ1p1; �15a; b�
p2 = 1− exp�−q2N�; q2 = m2q1 + κ2p2: �15c; d�

Eqs. 15a and 15c have the same interpretation as Eq. 6, i.e.,
in order for a provirus in compartment i to propagate (prob-
ability pi), at least one of its progeny virions must propagate
(again, we are assuming a large fixed number or a Poisson
distribution of offspring numbers). In order for a virion in
compartment 1 to propagate (Eq. 15b), it must either infect
a cell and propagate as a provirus (probability κ1p1) or move
to compartment 2 and propagate (probability m1q2).

Eqs. 15a–d are always satisfied by the trivial solution
�p1; q1; p2; q2� = �0; 0; 0; 0�. For any fixed value of the prod-
uct m1m2, we can define a critical curve in the κ1, κ2 plane,
on one side of which, in addition to the trivial solution, a non-
trivial solution is produced:** This curve is the lower branch
of the hyperbola given by �Nκ1 − 1��Nκ2 − 1� = m1m2.
For �κ1; κ2� values to the right of this curve, a newly pro-
duced virion has a positive probability of propagating. Note
that when either m1 or m2 vanishes, this condition becomes
Nκi , 1 for either i.

The stochastic parameters are related as before to the dy-
namic parameters through

mi =
Di

Di + c + kriT̄i
and κi =

kriT̄i
Di + c + kriT̄i

: [16]

For this system, the waiting time for production of prop-
agating mutant virus is the reciprocal of the sum of the net

**Near the critical curve, pi and qi are small. Thus, Eqs. 15a–d can
be linearized about the origin and written, to first order, in the form
A�p1; q1; p2; q2�T = 0, where A is a matrix. This equation has a non-
trivial solution if and only if the determinant of A vanishes. The equa-
tion for the hyperbola results from setting the determinant of A to zero.

production rates in the two compartments,

τ = ��µ��1− u�k1T̄1V̄1p1 + uk2T̄2V̄2p2��−1: [17]

Below we provide numerical solutions to the model for a
particular choice of parameter values, described in the cap-
tion to Fig. 1, which may be viewed as characteristic of a
mid-stage AIDS patient. The figures showing these solutions
are meant to be illustrative of various general principles and
trends that occur as parameters characterizing the sanctuary
and drug regime are varied. While, for simplicity, we call τ
the mean time to resistance, it is only the time for the ini-
tial production of a propagating mutant, not the time until
phenotypic resistance would be observed in a patient.

A Widened Window of Opportunity. In a sanctuary, where
the drug penetrance is small, partially resistant strains can pro-
liferate and produce more resistant mutants, which can then
leave the sanctuary and proliferate in the bulk compartment.
Thus, in the presence of a sanctuary, the window of opportu-
nity is dramatically widened. For example, as shown in Fig. 2,
when the relative sanctuary volume u2 = 0:001, the window
is widened 810-fold from an upper threshold of z1 = 4 for
the one-compartment model to approximately z1 = 40 for the
two-compartment model. Above this new upper threshold, re-
sistance is unlikely. This result is more in line with experience
in which drug concentrations of 50- to 100-fold greater than
the IC50 have therapeutic value.

There are now two distinct regimes to the window. In the
first, corresponding to the original window where the infectiv-
ity kr�z� is above its critical value, the step-wise acquisition of
mutants is very rapid. In the second regime, where the bulk
infectivity kr�z� is below the critical value, the waiting time be-
tween subsequent stages in the acquisition of resistance may
be quite long but in the presence of the sanctuary, finite.

In Fig. 2, the sanctuary was completely drug-free. Fig. 3
shows the waiting time between mutations as the drug pen-
etrance, z2/z1, is varied. For very high bulk concentrations,
z1, the effect of heterogeneity is essentially lost. The drug
concentration in the bulk is too high even for the resistant
strain. The sanctuary now acts as a single compartment in
which both production and selection must occur. For very
small values of z2, the drug concentration in the sanctuary,
we again have increasingly large waiting times (see the curves
labeled z1 = 16; 32, or 64 in Fig. 3). This effect, in which
evolution of drug resistance is prevented by lowering the con-
centration of drug in the sanctuary (i.e., lowering the selective
advantage of a resistant mutant), is likely particular to the

Fig. 2. Mean time to resistance, τ, vs. z1, the drug concentration
in the bulk compartment for various relative volumes, u2, of the sanc-
tuary, assumed to be drug-free, i.e., z2 = 0. The curve labeled 0.0 has
no sanctuary and represents the reciprocal of the quantity shown in
the solid line in Fig. 1. Parameters are as in Fig. 1, and D = 5 day−1.
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Fig. 3. Mean time to resistance, τ, vs. the drug penetrance z2/z1.
z1 is held constant at the indicated value for each of the curves shown
and parameters are as in Fig. 2. The sanctuary has relative volume
u = 0:01. For average concentrations above z1 = 4, a homogeneous
system has infinite waiting time (Fig. 1). As seen here, heterogeneous
systems are able to produce resistant strains even when z1 , 4.

two-compartment model. In a model with many compartments
or a continuum within which gradients of drug concentration
can be found, facilitation of the evolution of resistance would
be found even at small sanctuary drug concentrations (see
below).

The rate at which virus is transported between compart-
ments also affects the mean time needed for drug resistance
to arise (Fig. 4). There is an “optimal” transport coefficient
at which the heterogeneity between compartments is maximal
and for which the mean time to resistance is at a minimum.
This optimum occurs for D of order 5–10 days−1 for the drug
concentrations shown in Fig. 4. For z1 = 4, the mean waiting
time is short and virtually independent of the transport coef-
ficient. For higher drug concentrations, the waiting time rises
quite sharply as the larger transport coefficient D becomes
larger than the clearance rate c and acts like an enhancement
of this clearance. In the other limit, in which D is very small,
the compartments are approaching isolation, and the resistant
mutants produced in the sanctuary cannot easily move to the
high-drug compartment where they have an advantage. This
effect is not as dramatic when the sanctuary has a drug con-

Fig. 4. The effect of increasing transport coefficient D on the
mean waiting time until resistance, τ. Compartment 2 is drug-free
(z2 = 0) and of relative size u = 0:01. Other parameters are as in
Fig. 1. The drug concentration z1 in the larger compartment labels
the appropriate curves.

centration sufficiently high that the resistant mutants can still
propagate without moving to the other compartment, though
moving would increase their chances.

DISCUSSION

The evolution and spread of drug-resistant pathogens is
known to occur with great robustness in a wide variety of sit-
uations. We have shown that simple models that fail to con-
sider heterogeneity of drug concentration underestimate the
range of mean drug concentrations that support the estab-
lishment of drug resistance (Fig. 1). The existence of even
quite small sanctuaries, places where the drug concentration
is much smaller than in the bulk compartment, can greatly
enhance the probability of generating resistant mutants. The
sanctuaries provide a place where ongoing replication of the
parental strain continues and therefore allows mutants to be
produced. Once produced, they may then migrate to the bulk
areas where the drug concentration is higher and where they
can exercise their advantage and replicate.

Our analysis is based upon a relatively simple two-compart-
ment model with fixed drug concentrations in either compart-
ment. Further improvements to this approach can be antici-
pated. First, a spatially continuous model is likely to reveal
further effects of concentration gradients. Our preliminary
analyses of models based on partial-differential equations in
one spatial dimension (T.K., Babai, and A.S.P., unpublished re-
sults) show that the step-wise accumulation of resistance mu-
tations is facilitated by the presence of continuous gradients of
drug concentration. Within these gradients, there are locations
within which the conditions for growth of any given level of
drug-resistance are ideal. As new strains are produced, they
migrate and preferentially replicate at their ideal locations,
producing the next level of resistant mutants. The process con-
tinues with subsequent levels of resistant strains climbing the
gradient of drug concentration. Here, we have viewed com-
partments as being spatially distinct. Another possibility is that
drug penetrance differs within different cell populations and
thus different cell populations may comprise different com-
partments. If there were many such populations, it would be
analogous to having a gradient in drug concentration.

Another improvement would be to include temporal fluctu-
ations. Drugs are administered at discrete times, so that the
concentration of drug fluctuates temporally. We have found
a facilitation of drug resistance evolution due to spatial inho-
mogeneities, and we expect that there may be a similar en-
hancement due to temporal inhomogeneities.

The role of sanctuaries in the evolution of drug resistance is
likely to be even more central for multi-drug therapies. When
three or more drugs are used, many mutations are typically
required to confer resistance to the therapy as a whole. But
even long times on these therapies with no detectable serum
virus should be greeted with caution. Waiting times for fully
resistant strains in the presence of sanctuaries can be quite
long. However, in some cases it is infinite. Thus, emergence
of drug resistance is not inevitable; the conditions under which
we expect emergence are given by Eqs. 15–17.

An effective strategy for reducing human sickness and mor-
tality caused by infectious microorganisms will necessitate a
far more complete understanding of the large-scale patterns of
drug resistance evolution than is presently available. More so-
phisticated mathematical models that account for spatial and
temporal structure, in conjunction with improved experimen-
tal measurments of drug and virus levels in multiple compart-
ments, will likely be a tool of great importance in this ongoing
endeavor.
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