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A highly N-phosphonomethylglycine (glyphosate)-resistant Pseudomonas fluorescens G2 5-enolpyruvyl shi-
kimate-3-phosphate synthase (EPSPS) was mapped to identify potential split sites using a transposon-based
linker-scanning procedure. Intein-mediated protein complementation was used to reconstitute glyphosate
resistance from the genetically divided G2 EPSPS gene in Escherichia coli strain ER2799 and transgenic
tobacco.

N-Phosphonomethylglycine, commonly referred to as
glyphosate, is a popular broad-spectrum, nonselective her-
bicide used for the control of weeds. Glyphosate kills weeds
and crops by inhibiting 5-enolpyruvyl shikimate-3-phosphate
synthase (EPSPS) (EC 2.5.1.19), a key enzyme in the shi-
kimate pathway (1, 19, 23). Recently, a new gene encoding
a highly glyphosate-resistant EPSPS, which was identified
from Pseudomonas fluorescens G2 isolated from a storage
area with a history of glyphosate pollution (29). The G2
EPSPS gene, when expressed in tobacco, corn, cole, and
cotton, provided resistance to glyphosate (our unpublished
results).

More than 200 protein splicing elements, termed inteins,
have been identified from the genome of eubacteria, eu-
karyotes, and archaea (12, 17). A naturally occurring trans-
splicing intein, which consists of a 123-amino-acid N-terminal
splicing domain and a separate 36-amino-acid C-terminal splic-
ing domain, was discovered to be in the DnaE gene of Syn-
echocystis sp. strain PCC6803 (3, 10, 24, 27, 28). An intein-
based split-gene technique, termed intein-mediated protein
complementation (IPC), has been utilized to reconstitute the
activity of a transgenic product with the goal of limiting the
spread of transgenes from genetically modified plants to weedy
relatives (6, 7, 13, 16, 18, 26). Theoretically, the split-transgene
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FIG. 1. Pentapeptide insertion into G2 EPSPS. Positions that tolerate 5-amino-acid insertions are indicated by thick arrowheads. Sites that did
not tolerate an insertion are indicated by empty arrowheads.

7997



methodology is very straightforward, but it is not trivial to find
a site to split a protein and subsequently have the truncated
protein fragments form an active complex (9, 20, 22, 25).

In this study, a G2 EPSPS linker-scanning library was con-
structed using a transposon-based linker-scanning method (3,
4). Linker scanning was carried out according to instructions
provided by the supplier (New England Biolabs). The plasmids
used in this study are listed in Table S1 in the supplemental
material. Escherichia coli EPSPS gene mutant strain ER2799
did not grow on M9 minimal medium unless complemented
with an active EPSPS protein (3, 21) and was utilized in the
assay for a functional EPSPS protein. To identify potential split
sites within G2 EPSPS, the linker-scanning library was trans-
formed into mutant strain ER2799, and active EPSPS proteins
were identified by the ability to restore growth of the mutant
cells on minimal medium. Twelve unique sites that allowed
growth with 5 amino acid residues inserted were identified,
suggesting that these positions were potential sites to divide G2
EPSPS. Seven sites that did not tolerate the 5-amino-acid
insertion were found (Fig. 1) (see Table S2 in the supplemental
material).

The suitabilities of these 12 positions within the G2 EPSPS
protein for IPC were explored using two modified plasmids,
pKEB12(E) and pMEB2(B), which contained genes encoding
C-terminal and N-terminal splicing domains of strain PCC6803
DnaE intein, respectively (3, 8). The G2 EPSPS gene was

divided into two fragments and placed into separate modified
plasmids for expression. The plasmids encoding the C-terminal
strain PCC6803 DnaE intein splicing domain fused to the C
terminus of the gene encoding G2 EPSPS were created by
inserting the appropriate G2 EPSPS gene fragments into the
EcoRI-to-PstI sites in pKEB12(E). The complementary plas-
mids that encode the N-terminal intein splicing domain fused
to an N-terminal fragment of G2 EPSPS were generated by
inserting the appropriate portions of the G2 EPSPS gene into
the BamHI-to-XhoI sites in pMEB2(B). The most successful
complementary plasmids used G2 EPSPS that was split
between amino acid residues F295 and T296, termed
pMEPSN295IN and pKEPSC296IC, respectively (see Fig. S2a
and S2b in the supplemental material). Subsequently, the in-
tein splicing domain was deleted from pKEPSC296IC to gen-
erate a control plasmid, termed pKEPSC296IC(�), and a plas-
mid harboring the complete G2 EPSPS gene was also
constructed with pMEB2(B) to yield pMEPS. Cotransfor-
mation of E. coli ER2799 cells with the two plasmids
pMEPSN295IN and pKEPSC296IC rescued cell growth on M9
minimal plates supplemented with 50 mM glyphosate and 0.3
mM isopropyl-1-thio-D-galactopyranoside (IPTG). Transfor-
mation of the cells with plasmids pMEPSN295IN and
pKEPSC296IC(�), containing both EPSPS protein fragments
but lacking the C-terminal 36 amino acids of strain PCC6803
DnaE intein did not permit cell growth in M9 minimal medium
(see Fig.S3 in the supplemental material).

Western blot analysis was performed using crude cell ex-
tracts and antibodies against the N- or C-terminal peptides of
G2 EPSPS. The reaction was visualized with a BCIP (5-bromo-
4-chloro-3-indolylphosphate)/nitroblue tetrazolium color devel-
opment substrate (Promega). Full-length EPSPS, about 47
kDa, indicating trans-splicing activity, was not detected
when ER2799 was cotransformed with pMEPSN295IN and
pKEPSC296IC, which express residues 1 to 295 of EPSPS
fused to the N-terminal splicing domain of strain PCC6803
DnaE intein (EPSPSN295-IN) and the C-terminal domain of
strain PCC6803 DnaE intein fused to residues 296 to 445 of
EPSPS (IC-EPSPSC296), respectively. But the two unre-
acted EPSPSN295-IN and IC-EPSPSC296 fragments were
present (Fig. 2). These results indicated that the G2 EPSPS
protein split between F295 and T296 reconstitutes enzyme
activity by IPC in E. coli. In order to further evaluate the
effectiveness of IPC in this research system, kinetic charac-
terization of crude proteins extracted from ER2799 contain-
ing different plasmids was undertaken using the malachite
green dye assay method as previously described (2, 5, 11,
14). The standard reaction was carried out at 28°C in a final

FIG. 2. Western blot analysis of the split EPSPS proteins ex-
tracted from E. coli ER2799 and its transformants. (A) Western
blot analysis using antibodies against the C terminus of EPSPS.
(B) Western blot analysis using antibodies against the N terminus of
EPSPS. Lanes: 1, ER2799 control; 2, ER2799 containing pMEPS; 3,
ER2799 containing pMEPSN295IN plus pKEPSC296IC; 4, ER2799
containing pMEPSN295IN; 5, ER2799 containing pKEPSC296IC.

TABLE 1. Kinetic constants of E. coli-expressed intact G2 EPSPS and reconstituted G2 EPSPSa

Enzyme Mean sp act
(U/mg) � SD Km (PEP) (�M) � SD Ki (glyphosate)

(�M) � SD
Ki/Km

(PEP) � SD Vmax (U/mg) � SD

Intact G2 EPSPS 7.12 � 0.13 95.20 � 5.73 49.5 � 3.17 0.52 7.24 � 0.16
Reconstituted G2-EPSPS 4.48 � 0.79 96.80 � 11.01 35.0 � 5.78 0.36 4.761 � 0.92
EPSPSN295IN — ND ND ND ND
ICEPSPSC296 — ND ND ND ND

a The results presented are averages of two sets of experiments performed in triplicate. —, the specific enzyme activity is less than 0.1% of that of intact enzyme;
ND, not determined.
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volume of 100 �l containing 50 mM HEPES (pH 7.0), 1 mM
shikimate-3-phosphate, 1 mM phosphoenolpyruvate (PEP),
and 5 �l crude extracts. As can be seen in Table 1, there are
no significant kinetic differences between the intein-recon-
structed G2 EPSPS and the intact G2 EPSPS, suggesting
that the EPSPS fragments were brought together by the
intein splicing domains to generate a fully active G2 EPSPS
(Table 1).

The G2 EPSPS gene was genetically divided into N-terminal
and C-terminal inactive fragments from the F295/T296 sites by
PCR and then fused to the N terminus and C terminus of strain
PCC6803 DnaE intein by overlap extension PCR, namely,
EPSPSN-IN (ENIN) and IC-EPSPSC (ICEC). ENIN, ICEC, the
full-length G2 EPSPS gene were inserted into the plant ex-
pression vector pBI121 (Clontech, Palo Alto, CA). The expres-
sion vectors pBENIN, pBICEC, and pBEPSPS were introduced
into Agrobacterium sp. strain LBA4404 (Clontech, Palo Alto,
CA) and transformed into Nicotiana tabacum var. NC89 (15).
Transgenic plants were obtained, and glyphosate resistances of
transgenic plants were compared at different growth stages. T1

generation seeds were germinated on half-strength MSo

medium (21) containing 100 mg/liter of kanamycin and glypho-
sate with different concentrations from 0 to 1 mM for 4 weeks

(Fig. 3A). The six- to eight-leaf-stage transgenic plants were
sprayed with a 1% (vol/vol) solution of the herbicide Roundup
containing 41.0% glyphosate isopropylamine salt (Monsanto
Inc.) at a dose of 1 liter/ha (Fig. 3B). Transgenic plant seed-
lings from pBEPSPS or both pBENIN and pBICEC exhibited
almost equal levels of resistance to glyphosate, suggesting that
the strain PCC6803 DnaE intein N- and C-terminal splicing
domains can act as in vivo affinity domains and reconstitute the
EPSPS activities in plant cells.

Nucleotide sequence accession number. The GenBank ac-
cession number of the G2 EPSPS gene sequence is EF155478.
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