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Neisseria meningitidis serogroup B is a major cause of bacterial meningitis in younger populations. The
available vaccines are based on outer membrane vesicles obtained from wild-type strains. In children less than
2 years old they confer protection only against strains expressing homologous PorA, a major, variable outer
membrane protein (OMP). We genetically modified a strain in order to eliminate PorA and to overproduce one
or several minor and conserved OMPs. Using a mouse model mimicking children’s PorA-specific bactericidal
activity, it was demonstrated that overproduction of more than one minor OMP is required to elicit antibodies
able to induce complement-mediated Kkilling of strains expressing heterologous PorA. It is concluded that a
critical density of bactericidal antibodies needs to be reached at the surface of meningococci to induce
complement-mediated killing. With minor OMPs, this threshold is reached when more than one antigen is

targeted, and this allows cross-protection.

Infectious diseases caused by Neisseria meningitidis are a
significant public health concern. N. meningitidis serogroup B
(MenB) caused 69% of meningococcal disease reported in
Europe in 2004 (10). MenB has also caused outbreaks in sev-
eral countries with annual attack rates of 5 to 50 cases per
100,000 persons, with most cases occurring in young children
(5). Overall, MenB causes a substantial proportion of diseases
across all ages, but the specific distribution varies by age group,
with higher proportions in infants and toddlers than in older
age groups (27, 33). Conjugate polysaccharide vaccines based
on the capsular polysaccharide of N. meningitidis serogroups A,
C, W-135, and Y have been licensed for adolescents, and
pediatric development is ongoing. However, utilization of the
serogroup B capsular polysaccharide as a vaccine antigen has
been hampered by its poor immunogenicity and by potential
concern about inducing autoantibodies that cross-react with
glycosylated host antigens (11, 26). Alternative antigens are
therefore being evaluated as candidates for use in a vaccine
against MenB strains.

It is possible to extract the outer membrane from N. men-
ingitidis or culture supernatant in the form of outer membrane
vesicles (OMVs). Vaccines based on OMVs have been devel-
oped by using detergent extraction to reduce the lipooligosac-
charide (LOS) content (13). PorA is one of the most abundant
outer membrane proteins (OMPs) displaying high antigenic
variability, which is used to classify meningococci (14). OMV
vaccines made from single wild-type strains induce protection

* Corresponding author. Mailing address: Research & Develop-
ment, GlaxoSmithKline Biologicals, Rue de I'Institut 89, B-1330 Rix-
ensart, Belgium. Phone: 32-(0)2-656 9847. Fax: 32-(0)2-656 8113.
E-mail: jan.poolman@gskbio.com.

¥ Published ahead of print on 30 July 2007.

5434

in children more than 4 years old in a PorA serosubtype-
independent way (8). In children less than 2 years old, wild-
type OMYV vaccines predominantly induce PorA serosubtype-
specific serum bactericidal activity (29, 41, 46). Efforts to
develop cross-protective vaccines, especially in younger popu-
lations, are ongoing (32).

Ideally, a vaccine to prevent MenB disease should be safe
and immunogenic in the pediatric population and elicit pro-
tection against a wide range of clinical isolates (34). In this
context, we are actively pursuing the development of a multi-
component vaccine containing conserved surface antigens able
to induce cross-protective immune responses. In order to limit
the risk of the appearance of vaccine escape mutants, our
research is oriented towards a vaccine able to interfere with
several mechanisms of the meningococcal infectious process,
such as iron uptake (39), toxicity (42), and adhesion (4).

To overcome limitations of recombinant expression and
folding of integral OMPs, an alternative expression system in
N. meningitidis was developed by taking into account the ca-
pacity of this organism to produce large amounts of OMVs in
the presence of detergent. Overproduction of OMPs that
might have potential as vaccine antigens was achieved by using
two methodologies referred to as gene delivery and promoter
replacement (35). When the overexpressed gene encodes a
surface component, the resulting recombinant strain produces
OMVs enriched in the desired component.

In the present study, four minor OMPs (TbpA, Hsf, NspA,
and Omp85) that have already shown some potential as vac-
cine candidates, being surface exposed and well conserved
among serogroup B neisseria strains, were overexpressed.
TbpA is an integral OMP that, together with TbpB, makes up
the transferrin receptor of N. meningitidis (21, 30, 36, 40). Sera
from carriers and subjects with meningococcal diseases, but
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FIG. 1. Schematic representation of the pCMK vectors used to deliver genes, operons, and/or expression cassettes in the genome of N.

meningitidis. MCS, multiple cloning site.

not sera from controls, had detectable antibodies to TbpA/B,
suggesting that there is expression of TbpA/B by Neisseria in
vivo (1, 18). Affinity-isolated Tbp proteins from N. meningitidis
induced protection against challenge in mice after passive or
active immunization (7). Omp85 is a minor antigen present in
N. meningitidis and in OMVs (22, 28). Omp85 is highly con-
served (12) and is an essential protein involved in the position-
ing and folding of other OMPs in the bacterial outer mem-
brane (3, 17, 45). There is a correlation between the presence
of antibodies against an 80-kDa protein detected by Western
blotting and bactericidal activity after immunization with wild-
type OMYV vaccine (37). Hsf (or NhhA) is the neisserial auto-
transporter protein homologous to Haemophilus influenzae
Hsf/Hia. Hsf is well conserved among N. meningitidis strains,
its gene has been detected in all strains tested, and the protein
is surface located (31). It has been suggested that Hsf acts as an
adhesin (38). Recombinant Hsf is also recognized by human
serum from patients and carriers (44). NspA is present on the
surface of 99% of meningococcal strains tested and is well
conserved (24). Immunization of mice with NspA induced pro-
tection against N. meningitidis challenge (23). Based on se-
quence similarity with Opa proteins, it is possible that NspA is
an adhesin (43).

We developed a mouse model mimicking the PorA-specific
bactericidal response observed in younger populations with
wild-type OMVs. To overcome the PorA-restricted protection
of wild-type OMVs, expression of PorA in the H44/76 strain
was suppressed, and to avoid the presence of the polysaccha-
ride B capsule, the cps gene complex was deleted. This deletion
also removed the galE gene, resulting in the synthesis of trun-
cated LOS. Using the porA galE, acapsulate mutant strain as

the expression host, we evaluated the impact on the vaccine
response of overproduction of four minor well-conserved
OMPs (TbpA, Hsf, NspA, and Omp85) for which a potential
role in protection has been demonstrated.

MATERIALS AND METHODS

N. meningitidis transformation. Cells of N. meningitidis strain H44/76 (B:15:
P1.7,16:L3,7) incubated overnight in the presence of 5% CO, on chocolate base
(GC) (Difco) or Mueller-Hinton (MH) (Difco) medium plates were collected in
2 ml of liquid GC or MH medium containing 10 mM MgCl, and diluted to obtain
an optical density at 550 nm (ODss;) of 0.1. Two micrograms of DNA was added
to the cell suspension, and this was followed by a 6-h incubation at 37°C (with
shaking). After the incubation period, 100 wl of the culture, undiluted or diluted
1/10, 1/100, or 1/1,000, was spread on GC or MH medium plates containing the
appropriate antibiotic (see below). Recombinant colonies appeared after 48 h of
incubation at 37°C in the presence of 5% CO,.

Construction of H44/76 lacking capsular polysaccharides (cps). Plasmid
pMF121 (16) was used to construct an H44/76 derivative lacking the capsular
polysaccharide. This plasmid contains the flanking regions of the gene locus
coding for the biosynthesis pathway of the group B polysaccharide and an
erythromycin resistance gene. Deletion of the group B polysaccharide locus
resulted in loss of expression of the group B capsular polysaccharide and loss of
the active copy of the galE gene, leading to galactose-deficient LOS. Erythro-
mycin (10 wg/ml)-resistant colonies were selected, and capsule-deficient strains
were identified by colony blotting using the anti-group B polysaccharide 735
monoclonal antibody (DadeBehring, Marburg, Germany). Binding of the mono-
clonal antibody was visualized with a biotinylated anti-mouse immunoglobulin
(1/1,000; Amersham).

Construction of plasmid pCMK, targeting integration in the por4 locus of
H44/76. A schematic drawing of the pCMK vector is presented in Fig. 1. pPCMK
is a high-copy-number plasmid that replicates in Escherichia coli, was derived
from a pSL1180 backbone (PharmaciaBiotech), and harbors the bla gene,
thereby conferring resistance to ampicillin. In addition, pCMK contains two porA
flanking regions (porA5’ and porA3’ containing a transcription terminator)
necessary for homologous recombination, a selectable marker conferring resis-
tance to kanamycin, two uptake sequences, a porA/lacO chimeric promoter



5436 WEYNANTS ET AL.

INFECT. IMMUN.

TABLE 1. Primers used in this study

Primer Nucleotide sequence” Relevant characteristic(s)
PorAS'Fwd 5'-CCCAAGCTTGCCGTCTGAATACATCCCGTCATTCCTCA-3' HindIII, uptake sequence
PorA5'Rev 5'-CGATGCTCGCGACTCCAGAGACCTCGTGCGGGCC-3' Nrul
PorA3'Fwd 5'-GGAAGATCTGATTAAATAGGCGAAAATACCAGCTACGA-3' Bglll, stop codons
PorA3'Rev 5'-GCCGAATTCTTCAGACGGCGCAGCAGGAATTTATCGG-3’ EcoRI, uptake sequence
PorAlcOFwd 5'-AAGCTCTGCAGGAGGTCTGCGCTTGAATTG-3’ PstI
PorAlacORev 5'-CTTAAGGCATATGGGCTTCCTTTTGTAA-3’ Ndel
PPA1 5'-GCGGCCGTTGCCGATGTCAGCC-3’

PPA2 5'-GGCATAGCTGATGCGTGGAACTGC-3’

NO1-full-Ndel 5'-GGGAATTCCATATGAAAAAAGCACTTGCCACAC-3’ Ndel

Ndel-NspA 3 5'-GGAATTCCATATGTCAGAATTTGACGCGCAC-3' Ndel

HSF 01-Ndel 5'-GGAATTCCATATGATGAACAAAATATACCGC-3' Ndel

HSF 02-Nhel 5'-GTAGCTAGCTAGCTTACCACTGATAACCGAC-3’ Ndel

ProD15-51X 5'-GGGCGAATTCGCGGCCGCCGTCAACGGCACACCGTTG-3' EcoRI

ProD15-52 5'-GCTCTAGAGCGGAATGCGGTTTCAGACG-3’ Xbal

TnRD15-Kpnl/Xbal 5'-CGCCGGTACCTCTAGAGCCGTCTGAACCACTCGTGGACAACCC-3’ Kpnl and Xbal, uptake

sequence

TnRO3Cam(Kpnl) 5'-CGCCGGTACCGCCGCTAACTATAACGGTC-3’ Kpnl

PorA-01 5'-CGCCGGTACCGAGGTCTGCGCTTGAATTGTG-3' Kpnl

PorA02 5'-CGCCGGTACCTCTAGACATCGGGCAAACACCCG-3' Kpnl

BAD16 5'-GGCCTAGCTAGCCGTCTGAAGCGATTAGAGTTTCAAAATTTATTC-3' Nhel, uptake sequence

BAD17 5'-GGCCAAGCTTCAGACGGCGTTCGACCGAGTTTGAGCCTTTGC-3’ HindIII, uptake sequence

BAD18 5'-TCCCCCGGGAAGATCTGGACGAAAAATCTCAAGAAACCG-3' Xmal and BglII

BAD19 5'-GGAAGATCTCCGCTCGAGCAAATTTACAAAAGGAAGCCGATATGCA BgllI and Xhol
ACAGCAACATTTGTTCCG-3'

BAD21 5'-GGAAGATCTCCGCTCGAGACATCGGGCAAACACCCG-3’ BgllI and Xhol

BAD20 5'-TCCCCCGGGAGATCTCACTAGTATTACCCTGTTATCCC-3’ Xmal, BglIl, and Spel

“ Restriction sites are in bold type; uptake sequences or stop codons are underlined.

repressed in the E. coli host [BL21(DE3)] expressing lacI9 but transcriptionally
active in N. meningitidis, and a multiple cloning site (with five sites: Ndel, Kpnl,
Nhel, PinAl, and SphI) necessary for insertion of foreign DNA into pCMK.

The porAS' and porA3' recombinogenic regions and the porA/lacO promoter
were PCR amplified from genomic DNA extracted from H44/76 using oligonu-
cleotides PorAS5'Fwd, PorA5'Rev, PorA3'Fwd, PorA3’Rev, PorAlacORev, and
PorAlacOFwd (Table 1) under the conditions described by the supplier of HiFi
DNA polymerase (Boehringer, Mannheim, Germany) and cloned in pSL1180.
The kanamycin resistance cassette was excised from pUC4K (PharmaciaBiotech)
by Pstl restriction and introduced between the porA5’ flanking region and the
porA/lacO promoter region.

Construction of an H44/76 AporA strain. The H44/76 cps strain was trans-
formed with 2 pg of supercoiled pCMK plasmid DNA as described above and
plated on kanamycin-containing plates (200 pg/ml). Kanamycin-resistant colo-
nies were screened for deletion of the porA gene by PCR with boiled bacterial
lysates using primers PPA1 and PPA2 (Table 1). The absence of PorA synthesis
was further confirmed by sodium dodecyl sulfate (SDS)-polyacrylamide gel elec-
trophoresis (PAGE) analysis.

Overproduction of NspA and Hsf in H44/76 (gene delivery). The gene coding
for NspA was PCR amplified from genomic DNA extracted from H44/76 using
the NO1-full-NdeI and NdeI-NspA 3 oligonucleotide primers containing Ndel
restriction sites (Table 1). The corresponding amplicon was digested with Ndel
and inserted into the Ndel restriction site of the pCMK delivery vector.

The gene coding for Hsf was PCR amplified from genomic DNA extracted
from H44/76 using the HSF 01-Ndel and HSF 02-Nhel oligonucleotide primers
(Table 1). Because of the sequence of the HSF 01-Ndel primer, the Hsf protein
produced contained two methionine residues at the N terminus. The correspond-
ing amplicon was subsequently cloned in the Ndel restriction site of the pCMK
delivery vector. In the recombinant plasmid, designated pCMK-Hsf, we deleted
the lacO gene present in the chimeric porA/lacO promoter.

Two micrograms of pPCMK-NspA or pCMK-Hsf was used to transform the
H44/76 Acps strain. Kanamycin-resistant colonies were screened for deletion of
the porA gene and insertion of a second copy of the nspA gene or the hsf gene
by PCR using boiled bacterial lysates. The absence of PorA synthesis and over-
production of NspA or Hsf were further confirmed by SDS-PAGE analysis.

Overproduction of Omp85 in H44/76 (promoter delivery). A promoter re-
placement plasmid was constructed using E. coli cloning methodologies. A DNA
fragment covering nucleotides —983 to —48 with respect to the omp85 gene start
codon (ATG) was PCR amplified from genomic DNA extracted from the H44/76

strain using oligonucleotides ProD15-51X and ProD15-52 containing EcoRI and
Xbal restriction sites, respectively (Table 1). This fragment was subjected to
restriction and inserted into the pUCI18 plasmid (PharmaciaBiotech) restricted
with the same enzymes. The construct that we obtained was subjected to in vitro
mutagenesis using the genome priming system (with the pGPS2 donor plasmid)
commercialized by New England Biolabs. Clones in which a mini-transposon
(derived from Tn7 and harboring a chloramphenicol resistance gene) was in-
serted were selected. One clone containing a mini-transposon insertion located
in the omp85 5' flanking region, 401 bp downstream from the EcoRI site, was
isolated and used for further studies. This plasmid was subjected to circle PCR
mutagenesis in order to (i) delete a repeated DNA sequence (Tn7R) generated
by the transposition process, (ii) insert meningococcal uptake sequences required
for transformation, and (iii) insert suitable restriction sites allowing cloning of
foreign DNA material, such as promoters. The circle PCR was performed using
the TnRD15-KpnlI/Xbal and TnR03Cam(Kpnl) oligonucleotides containing up-
take sequences and restriction sites (Kpnl and Xbal) (Table 1). The resulting
PCR fragment was gel purified, digested with Asp718 (isoschizomer of KpnI),
and ligated to a 184-bp DNA fragment containing the porA promoter and
generated by PCR using the PorA-01 and PorA02 oligonucleotides containing
Kpnl restriction sites. A recombinant plasmid (pUC OMPS85) carrying a porA
promoter inserted in the correct orientation was selected and used to transform
H44/76 lacking capsular polysaccharide (Acps) and PorA (AporA). Recombinant
H44/76 clones resulting from a double-crossover event (PCR screening) were
selected on GC medium containing 5 wg/ml chloramphenicol and analyzed for
Omp85 synthesis.

Overproduction of TbpA in H44/76 (promoter delivery). The tbpB gene was
deleted and replaced by the Cm'/PorA promoter cassette. A 3,218-bp DNA
fragment corresponding to the 509-bp 5’ flanking region of the tbpB gene, the
2,139-bp thpB coding sequence, the 87-bp intergenic sequence, and the first 483
nucleotides of the tbpA coding sequence was PCR amplified from H44/76
genomic DNA using oligonucleotides BAD16 and BAD17 containing uptake
sequences and Nhel and HindIII restriction sites (Table 1). This PCR fragment
was cloned in a pGEM-T vector (Promega). The plasmid was subjected to circle
PCR mutagenesis in order to (i) insert suitable restriction sites allowing cloning
of a Cm'/PorA promoter cassette and (ii) delete 209 bp of the 5’ flanking
sequence of tbpB and the tbpB coding sequence. The circle PCR was performed
using the BAD18 and the BAD19 oligonucleotides containing Xmal, BglII, and
Xhol restriction sites (Table 1). The Cm'/PorA promoter cassette was amplified
from the pUC OMPS5 plasmid using primers BAD21 and BAD20 containing
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TABLE 2. Summary of invasive N. meningitidis strains used in
bactericidal assays
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TABLE 3. Complement-mediated bactericidal titers of sera from
mice immunized with PorA™ OMV vaccines”

. . Year PorA Epidemic
Strain Country of origin isolated  classification strain
H44/76 Norway 1976 P1.7,16 Yes
CU385 Cuba 1980 P1.19,15 Yes
M97-250687  United Kingdom 1997 P1.19,15 No
NZ124/98 New Zealand 1998 P1.7,4 Yes

Xmal, Spel, Bglll, and Xhol restriction sites (Table 1). This PCR fragment was
cloned in the circle PCR plasmid. Two micrograms of this plasmid was used to
transform the H44/76 Acps AporA strain. Integration by double crossover in the
upstream region of thpA directed insertion of the porA promoter directly up-
stream of the tbpA start codon. Recombinant H44/76 clones resulting from a
double-crossover event (PCR screening) were selected on GC medium contain-
ing 5 wg/ml chloramphenicol and analyzed for TbpB down-expression and TbpA
synthesis.

Culture and preparation of OMVs. A vial of frozen N. meningitidis (recombi-
nant or not recombinant) was thawed and streaked onto a modified Frantz agar
plate, which was then incubated at 37°C for 18 h. Colonies were resuspended,
added to a flask containing modified Frantz medium supplemented with the
appropriate antibiotic, and incubated at 37°C for 16 h with shaking. The cells
were separated from the culture broth by centrifugation at 5,000 X g at 4°C for
15 min. OMVs were isolated using deoxycholate as described previously (15).

SDS-PAGE. OMV preparations were analyzed by SDS-PAGE. After heating
for 5 min at 100°C in sample buffer, 15 pg was loaded onto the gel. After
electrophoresis, gels were stained with Coomassie brilliant blue R250.

Mice and immunizations. Outbred OF1 mice (female; 6 to 8 weeks old; also
known as CF1; Charles River, Lyon, France) received three injections with
OMVs via the intramuscular route on days 0, 21, and 28. With each 50-ul
injection, 5 pg of antigen formulated in the GSK proprietary AS04 adjuvant
(AIPO, plus 3-O-deacyl-4’-monophosphoryl lipid A) was administered. Control
mice received only adjuvant. Blood samples were collected 14 days after the third
injection. The experiments complied with the relevant national guidelines of
Belgium and institutional policies of GlaxoSmithKline Biologicals.

Antibody assays. Omp85 and TbpA derived from strain H44/76 were ex-
pressed without their signal sequence in E. coli, where they accumulated in
inclusion bodies. These bodies were purified and solubilized as described previ-
ously (20). The passenger domain of Hsf derived from strain H44/76 was ex-
pressed and purified from E. coli as a C-terminally His-tagged protein. NspA
derived from strain B11 was expressed without its signal sequence and was
purified from E. coli as an N-terminally His-tagged protein.

Enzyme-linked immunosorbent assay (ELISA) plates were coated with TbpA,
Hsf, NspA, or Omp85 in phosphate-buffered saline (PBS). The assays were
performed as described previously (20).

Complement-dependent bactericidal antibody assays. Wild-type MenB strains
used in this study were isolated either from cases during epidemics occurring in
different regions around the world (epidemic strains) or from a case isolate in the
United Kingdom (nonepidemic strain) (Table 2). The strains were grown over-
night on MH agar (Difco) containing 1% (vol/vol) Polyvitex (Biomérieux) and
1% horse serum (Sigma) at 37°C in a 5% CO, atmosphere. The bacteria were
inoculated into tryptic soy broth (Becton Dickinson) with 50 wM of the iron
chelator desferrioxamine mesylate (Sigma) and were grown in shaking flasks for
3 h at 37°C until an OD,, of 0.5 was reached. Each culture was then diluted in
PBS containing 0.5 mM MgCl, 0.9 mM CaCl,, and 0.1% glucose (PBS-glucose)
in order to obtain an ODg, of 0.4 (bacterial suspension). The sera were heat
inactivated (40 min at 56°C) and subsequently diluted 1/50 in PBS-glucose. In
wells of sterile flat-bottom microtiter plates (Nunc), 25 pl of diluted test serum
was mixed with 12.5 pl of baby rabbit complement (selected for the absence of
bactericidal activity against the test strains; Cerdarlane Laboratories) and 12.5 pl
of the bacterial suspension. Serial dilutions of test sera were treated similarly.
The controls included bacteria plus complement, bacteria plus heat-inactivated
complement, and test serum plus bacteria plus heat-inactivated complement.
Antiserum from mice immunized three times with whole bacterial cells (5 pg of
protein with AS04 per injection) was used as a positive control in the bactericidal
assays and also to validate or reject each microtiter plate. The microtiter plates
were then sealed and incubated with shaking (520 rpm) for 75 min at 37°C
without CO,. After this incubation, 50 pl of MH medium containing 0.9% agar
was added to each well. A second layer of 50 wl of PBS containing 0.9% agar was

Bactericidal activity with strain”:

Vaccine

H44/76 Cu3ss M97-250687  NZ124/98
(P17,16)  (P119,15)  (PL.19,15) (P1.7.4)

P1.7,16 OMVs 1,568 <100 <100 <100

P1.19,15 OMVs <100 1,082 870 <100

“The bactericidal activity is expressed as the reciprocal dilution of serum
required to kill 50% of bacteria. The assay was performed with pooled sera from
10 mice per group.

> The PorA serosubtypes of the strains are indicated in parentheses.

added 30 min later. After overnight incubation at 33°C in the presence of 5%
CO,, the colonies were counted. The average number of CFU in the controls
corresponding to bacteria plus complement was defined as 100%. The bacteri-
cidal titer was defined as the reciprocal of the serum dilution that resulted in 50%
killing.

Possible additive or synergistic effects of antibodies directed against different
overexpressed minor OMPs were studied by using several pooled sera. Pools
were obtained from sera derived from 20 mice after immunization with the same
vaccine preparation. For mixing experiments, equal volumes of pools from the
same treatment group were combined and subsequently tested in the bactericidal
assay.

Statistical analysis. Differences in bactericidal antibody titers were deter-
mined by the Kruskal-Wallis nonparametric test with the one-tailed Dunn test. A
P value of =0.05 was considered statistically significant.

RESULTS

Relevance of the mouse model to the clinical situation of
infants. OMVs prepared from wild-type strains H44/76 and
Cu385 and formulated in the AS04 Adjuvant System were
administered to OF1 mice (10 animals per group) via the
intramuscular route at 0, 21, and 28 days. Serum samples were
obtained 2 weeks after the third injection, pooled (10 sera per
group), and tested for their bactericidal activity against four
strains isolated from cases in different countries around the
world. These strains expressed PorA which was either homol-
ogous or heterologous to the PorA of the vaccine strains.

Pooled antisera prepared from mice immunized with OMVs
obtained from H44/76 producing P1.7,16 PorA were bacteri-
cidal against strain H44/76 but not against the heterologous
PorA strains Cu385, M97-250687, and NZ124/98 (Table 3).
Similar observations were made with pooled antisera from
mice immunized with OMVs from strain Cu385 producing
P1.19,15 PorA, which were bactericidal against the Cu385 and
M97-250687 strains but not against heterologous PorA strains
(H44/76 and NZ124/98). Control sera from mice immunized
with AS04 alone exhibited no or undetectable bactericidal ac-
tivity against the four strains. Positive control sera were ob-
tained from mice immunized with the corresponding heat-
inactivated whole bacteria (data not shown).

These results demonstrate that the immunogenicity of
OMVs in OF1 mice reflects the immunogenicity of wild-type
OMV vaccines in human infants; i.e., they predominantly in-
duce a PorA serosubtype-specific serum bactericidal activity
(41).

Overproduction of minor OMPs. To avoid a predominant
bactericidal response directed against PorA, we decided to
analyze the impact of overproduction of minor OMPs in a por4
knockout background. Similarly, to further increase vaccine



5438 WEYNANTS ET AL.

INFECT. IMMUN.

A
KDa 1 2 3 KDa 4 6 KDa 7 8
175 — — —— |«=Hst
175 —
175 —
83 — e —— |4=ThpA 83 —
e e OMp8S 83 o o . &5
AN 62 — 47.5 —
47.5 — 475— — 325 =— Z%ﬁﬁ
s s PR SRR
2s— S S >t s25— |GG o8 5 —
. — o 16.5 — zhoslgid NspA
65
16.5—] e 16—
B
Upregulated ~ Methodology ELISA titers after immunization with
OMPs Upregulated OMVs  Control OMVs AS04
TbpA PR 1,600 <50 <50
Hsf GD 51,200 <50 <50
NspA GD 400 <50 <50
Omp85 PR 200 <50 <50
TbpA/Hsf PR/GD 400/51,200 <50 <50

FIG. 2. Overproduction of Omp85, Hsf, TbpA, and NspA. (A) Impact on the content of proteins in MenB OMVs. OMVs purified from
different N. meningitidis strains were separated by SDS-PAGE and stained with Coomassie brilliant blue. The strains used are wild-type strain
H44/76 (lanes 1 and 7), a galE porA mutant derivative of H44/76 (lane 2), and galE porA mutants overexpressing Omp85 (lane 3), Hsf (lane 4),
TbpA (lane 5), Hsf and TbpA simultaneously (lane 6), or NspA (lane 8). In lane 8, bands corresponding to denatured and nondenatured NspA
are present. (B) Impact on the induction of antibodies against minor OMPs in mice immunized with OMVs purified from either overproducing
strains or control strains or in mice immunized with adjuvant alone (AS04) (20 mice per group). Overproduction was achieved by either the
promoter replacement (PR) or gene delivery (GD) strategy. ELISA titers are expressed as the reciprocal dilutions of pooled sera required to obtain
an ODyy, of 0.5, using purified recombinant TbpA, Hsf, NspA, or Omp85.

specificity and prevent unwanted responses, such as the pro-
duction of bactericidal antibodies directed against LOS, a galE
mutant background was used.

Two different strategies were used to overproduce minor
OMPs. TbpA and Omp85 were overproduced by promoter
replacement, while Hsf and NspA were overproduced by gene
delivery. In both cases, the por4 promoter was selected for
overexpression.

The impact of overproduction of minor OMPs on their
amounts in OMVs prepared from recombinant strains was
determined by SDS-PAGE. PorA was not present in OMVs
purified from recombinant strains (Fig. 2A, lanes 2, 3, 4, 5, 6,
and 8). Compared to wild-type OMVs (lanes 1 and 7), the
levels of Omp85 (lane 3), Hsf (lanes 4 and 6), TbpA (lanes 5
and 6), and NspA (lane 8) were clearly enhanced in OMVs
from the genetically modified strains. We were also able to
overproduce simultaneously two different OMPs (lane 6).
However, the double overproduction of TbpA and Hsf in a
single strain reduced the level of TbpA compared to the level
when it was overproduced alone (lanes 5 and 6), whereas the
level of Hsf was not affected (lanes 4 and 6).

Thus, overproduction of TbpA, Hsf, NspA, and Omp85 by

gene delivery or promoter replacement resulted in significant
increases in the amounts of these proteins in OMVs.

Impact of overproduction of minor OMPs on antibody re-
sponses. Groups of 20 mice were immunized intramuscularly
with different OMV preparations (5 wg protein per injection)
formulated with ASO4. Serum samples were obtained 2 weeks
after the third dose and pooled. In ELISA, pooled sera from
control mice inoculated with adjuvant alone or from mice
immunized with OMVs from a nonoverproducing strain had
no detectable antibodies directed against TbpA, Hsf, NspA,
and Omp85 (titers, <50), whereas immunization of mice with
OMVs prepared from the strain that overproduced minor
OMPs elicited the production of antibodies against the respec-
tive OMPs (Fig. 2B). The most impressive increase was ob-
served with Hsf (at least a 1,024-fold increase). The lower
overproduction of TbpA in H44/76 overexpressing both tbpA
and hsf affected the anti-TbpA response (titer, 400 versus
1,600).

Antibodies induced via ThpA and Hsf overproduction show
additive effects in complement-mediated bactericidal activity.
The serum samples obtained from mice immunized with dif-
ferent OMV preparations were tested individually in serum
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TABLE 4. Impact of upregulation of minor OMPs on the induction of complement-mediated killing by bactericidal antibodies in mice

MenB strain H44/76

MenB strain Cu385

MenB strain NZ124/98

porA knockout galE  Geometric

Geometric

Geometric

OMYV vaccine mean titer Ie 92‘;% Seroconversion  mean titer C 9;(;% Seroconversion  mean titer Ie 95570 Seroconversion
for 50% ‘?“t o (%) for 50% ‘.’“t o (%) for 50% ‘.’“t o (%)
killing* fterva killing mterva killing mterva

No upregulation 71 46-109 15 59 42-82 5 50 50-50 0
TbpA upregulated 134 61-296 30 117 57-241 30 85 48-149 20
Hsf upregulated 74 45-122 15 73 44-121 15 88 52-149 25
TbpA and Hsf 727 342-1,546 90 244 117-511 65 222 91-542 45

upregulated

“The geometric mean titer for 50% killing was calculated with individual sera (n = 20).

b Percentage of responder mice (titer, >50).

bactericidal assays against three MenB strains (20 mice per
group). These strains included parental wild-type strain
H44/76 and heterologous strains Cu385 and NZ124/98. Vac-
cine preparations obtained from porA galE mutant strains
either not overproducing OMPs (control vaccine) or overpro-
ducing Hsf alone elicited low or undetectable serum bacteri-
cidal antibody titers in mice (geometric mean titer, =88) with
a low percentage of seroconversion (from 0 to 25% of mice
developed detectable bactericidal antibodies) (Table 4). The
serum bactericidal titers against H44/76 or Cu385 were slightly
higher when tests were performed with sera from mice immu-
nized with OMVs from the TbpA-overproducing strain, and
the seroconversion rates were also slightly higher. However,
the bactericidal responses elicited by the control vaccine and the
single-OMP-overproducing-strain vaccines were not statistically
different. In contrast, mice immunized with OMVs from the
TbpA/Hsf-overproducing strain had significantly higher bacte-
ricidal antibody titers against H44/76 and Cu385 than mice
immunized with single-overexpressed-OMP vaccines (P =
0.036) or control vaccine (P = 0.0003). When measured with
strain NZ124/98, sera from mice immunized with TbpA/Hsf
OM Vs had significantly higher bactericidal antibody titers than
sera from mice immunized with the control vaccine (P =
0.0007). This immunization experiment was repeated twice
with similar results (data not shown).

In order to confirm the additive activity of anti-TbpA and
anti-Hsf antibodies in the induction of complement-mediated
killing, serum-mixing experiments were performed. For this
purpose, 20 sera from mice immunized with OMVs from either
TbpA- or Hsf-overproducing strains were pooled. The pools
were tested alone or mixed in serum bactericidal assays against
strains H44/76 and Cu385. A pool of 20 sera from mice immu-
nized with TbpA/Hsf OMVs was used as a control. The bac-
tericidal antibody titers measured against H44/76 and Cu385
are shown in Fig. 3A and B. The sera from mice immunized
with OMVs from the strain overproducing only one minor
OMP had lower bactericidal titers than the sera from mice
immunized with OMVs from the strain overproducing both
TbpA and Hsf and than the mixed sera. The bactericidal titers
of the mixed sera and TbpA/Hsf sera were similar.

Combination of minor OMPs has synergistic effects on com-
plement-mediated bactericidal titers. A second combination
experiment was performed with OMVs from NspA- and
Omp85-overproducing strains. First, pools of 20 sera from
mice immunized with NspA OMVs or Omp85 OMVs were

analyzed for the ability to mediate, alone or in combination,
bactericidal activity against strain M97-250687 (Fig. 3C).
Pooled sera from mice immunized with OMVs from strains
overproducing NspA or Omp85 had low or undetectable bac-
tericidal antibodies (titers, =74), but the mixture of pools
displayed clear bactericidal activity against strain M97-250687
(titer, 239). Mice immunized with OMVs from the TbpA/Hsf-
overproducing strain also had significant bactericidal activity
against strain M97-250687 (titer determined with pooled sera,
412). To evaluate the additive effect of bactericidal antibodies
directed against different minor OMPs, pooled sera from mice
immunized with NspA, Omp85, and TbpA/Hsf OMVs were
combined. The bactericidal activity was enhanced when the
three serum pools were mixed (titer, 1,920) compared to the
activity obtained with the combination of NspA plus Omp85 or
the TbpA/Hsf serum pool alone (titers, 239 and 412, respec-
tively). As observed with the other serum combinations de-
scribed above, the bactericidal titer obtained with a mixture of
the three sera was higher than the sum of the bactericidal titers
obtained with the individual pooled sera. This indicates that
there is a synergistic effect of antibodies directed against dif-
ferent minor OMPs, which is observed with two or more minor
OMPs depending on the strain used in the bactericidal assays.

DISCUSSION

In children less than 2 years old, OMV vaccines prepared
from wild-type MenB strains are able to elicit a bactericidal
antibody response against homologous PorA strains but not
against heterologous PorA strains (41). We developed a mouse
model that mimics bactericidal antibody responses induced in
infants by wild-type OMYV vaccines. To avoid a PorA immu-
nodominant response, we genetically modified strain H44/76 to
knock out the porA gene. In this strain, the cps gene complex
was also deleted, resulting in the absence of capsular polysac-
charide and the a-chain of LOS. In our mouse model, a vaccine
containing OMVs produced from this strain induced a weak or
undetectable bactericidal antibody response against parental
wild-type strain H44/76. The genetically modified strain was
used to evaluate the impact of overproduction of minor and
well-conserved OMPs on the bactericidal antibody response
elicited by OMVs. We selected four minor, well-conserved
OMPs with potential as vaccine antigens, which were overpro-
duced either by promoter replacement or by gene delivery. For
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FIG. 3. Bactericidal activity against N. meningitidis strains of serum
antibodies from mice immunized with OMV vaccines. Sera from 20
mice (see Table 4) were pooled, and two to four pools were combined.
Bactericidal assays with (A) H44/76 and (B) Cu385 were performed
using pooled sera from mice immunized with OMVs from either
TbpA-, Hsf-, or Tbp/Hsf-overproducing strains or with a 1:1 (vol/vol)
mixture of serum pools from mice immunized with OMVs from TbpA-
and Hsf-overproducing strains. Bactericidal activity is expressed as
the reciprocal antibody titer. (C) Bactericidal assays with strain M97-
250687 were performed using pooled sera from mice immunized with
OMVs from either Omp85-, NspA-, or TbpA/Hsf-overproducing
strains or a combination thereof. The data are the means of three
different mixing experiments performed using the same serum samples
and are expressed as the reciprocal bactericidal titers.

both overexpression strategies the strong por4 promoter was
used.

We demonstrated that gene delivery or promoter replace-
ment results in overproduction of minor OMPs in OMV prep-
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arations and that overexpression is needed to elicit the pro-
duction of specific antibodies in nonprimed mice immunized
with OMVs from a por4 knockout strain. It is noteworthy that
induction of antibodies against well-conserved minor OMPs,
such as NspA, could also be achieved by sequential immuni-
zations with different wild-type OMVs produced from PorA
heterologous strains (25).

Using our mouse model, we observed that enhancement of
the antibody response against one minor OMP may not be
sufficient to mediate bactericidal activity against MenB strains
even if very high specific antibody titers are induced (e.g., an
ELISA titer of 51,200 for Hsf). Efficient complement-mediated
killing was observed only when at least two minor OMPs were
targeted by bactericidal antibodies. This was observed with
anti-TbpA and anti-Hsf antibodies mediating bactericidal ac-
tivity against heterologous MenB strains (Cu385, NZ124, and
M97-250687) and also with anti-NspA and anti-Omp85 anti-
bodies (tested only against strain M97-250687). Moreover, in-
creasing the number of targeted minor antigens on the surface
of the bacteria leads to further enhancement of bactericidal
antibody titers, which are clearly higher than the simple sum of
bactericidal titers obtained when only two minor OMPs are
targeted. Our hypothesis is that a minimal density of bacterial
surface proteins occupied by bactericidal antibodies must be
reached to allow activation of the complement cascade via the
classical pathway (Fig. 4). We suggest that activation of com-
plement requires at least two adjacent antibodies, which do not
necessarily have to be directed against the same antigens.
However, the corresponding antigens should be close enough
to each other on the bacterial surface to allow binding of a Clq
molecule to at least two Fc domains, which is the first step in
the initiation of the classical complement cascade (6). This
situation is probably more characteristic of coccal bacteria. For
example, bacillary and coccobacillary bacteria have polar lo-
calization of autotransporter proteins, but in coccal bacteria,
such as N. meningitidis, expression of these proteins is observed
at different loci (19). Consequently, when only one minor me-
ningococcal OMP is targeted, the bactericidal antibodies are
scattered over the surface of the bacteria and would not be
able to fix the Clq factor, which is the first step of the classical
pathway activation of the complement cascade leading to the
formation of the membrane attack complex. To increase the
density of bactericidal antibodies on the surface of the bacte-
ria, our strategy was to target several minor, well-conserved
OMPs simultaneously. This strategy could also be applied to
other gram-negative bacterial species that naturally do not
produce blebs by producing mutations in the tol-pal genes that
result in the formation of blebs (2, 9).

The overproduction of several well-conserved minor OMPs
induced a cross-reactive bactericidal antibody response, which
has two advantages for a MenB vaccine with broad coverage.
First, it allows interference with several stages of the menin-
gococcal infection process, such as iron uptake (via TbpA),
adhesion (via Hsf and possibly NspA), and vital function (via
Omp85). Second, it reduces the risk of emergence of vaccine
escape mutants.

In conclusion, we have demonstrated that it is possible to
induce a protective bactericidal antibody response against
MenB strains by immunization with OMVs from strains lack-
ing the major, variable PorA OMP and overproducing selected
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FIG. 4. Schematic representation of the impact of the antigen density on the bactericidal activity of antibodies on the surface of coccal MenB
strains. A defined density is required to induce significant bactericidal antibody killing mediated by complement. This threshold density is reached
when at least two minor OMPs (Ag 1 and Ag 2) are targeted by antibodies. For an efficacious OMV vaccine, at least two minor OMPs must be
overproduced, resulting in vaccine-induced bactericidal antibody killing. Ag, antigen; Abs, antibodies; SBA, serum bactericidal activity. The first
step of the classical pathway for activation of the complement cascade is binding of the Clq factor to antibodies, leading to the formation of the

membrane attack complex.

well-conserved minor OMPs. Our results for a limited number 6.
of heterologous strains also suggest that the use of well-con- ;
served minor OMPs results in a cross-protective response. This
approach may be the key to development of a fully protective
vaccine for meningococcal disease and may also be a strategy 8
that is generally applicable to other host-adapted bacterial
pathogens in which phase and antigenic variation of major
OMPs has stifled vaccine development.

9
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