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Phosphocholine (PCho) is an important substituent of surface structures expressed by a number of bacterial
pathogens. Its role in virulence has been investigated in several species, in which it has been shown to play a
role in bacterial adhesion to mucosal surfaces, in resistance to antimicrobial peptides, or in sensitivity to
complement-mediated killing. The lipopolysaccharide (LPS) structure of Pasteurella multocida strain Pm70,
whose genome sequence is known, has recently been determined and does not contain PCho. However, LPS
structures from the closely related, virulent P. multocida strains VP161 and X-73 were shown to contain PCho
on their terminal galactose sugar residues. To determine if PCho was involved in the virulence of P. multocida,
we used subtractive hybridization of the VP161 genome against the Pm70 genome to identify a four-gene locus
(designated pcgDABC) which we show is required for the addition of the PCho residues to LPS. The proteins
predicted to be encoded by pcgABC showed identity to proteins involved in choline uptake, phosphorylation,
and nucleotide sugar activation of PCho. We constructed a P. multocida VP161 pcgC mutant and demonstrated
that this strain produces LPS that lacks PCho on the terminal galactose residues. This pcgC mutant displayed
reduced in vivo growth in a chicken infection model and was more sensitive to the chicken antimicrobial
peptide fowlicidin-1 than the wild-type P. multocida strain.

Pasteurella multocida is a gram-negative coccobacillus that is
the causative agent of a wide range of diseases in animals,
including fowl cholera, a disease of poultry with worldwide
economic importance (6). P. multocida strains can be differen-
tiated into 5 serogroups (A, B, D, E, and F), based on capsule
antigens, and into 16 serotypes based on lipopolysaccharide
(LPS) structures (7, 14, 26). Fowl cholera is generally caused
by the A:1, A:3, or A:4 strains (37). The pathogenesis of fowl
cholera is not well understood at the molecular level, but it is
likely that susceptible birds are colonized via the trachea
and/or lungs, and once bacteria penetrate to the bloodstream,
they multiply rapidly in the liver and spleen (3). Toward the
end stages of the disease, high levels of bacteremia often occur
(4).

Survival of the bacteria in the blood is critical for pathogen-
esis, and the P. multocida capsule has been identified as the
major virulence determinant that allows the bacteria to survive
complement-mediated killing and to evade phagocytosis (2, 8).
In addition to the role of the capsule, LPS also plays a critical
role in virulence, as mutants expressing truncated LPS are
highly attenuated (13).

The LPS structure has been determined for three fowl chol-
era-causing isolates of P. multocida, namely VP161 (34), X-73
(33), and the genome-sequenced strain Pm70 (35). All three

strains produce two conserved LPS core glycoforms (Fig. 1,
inner core glycoforms A and B), but Pm70 and VP161 LPS
structures differ significantly in their oligosaccharide exten-
sions (Fig. 1). Unlike Pm70, strains VP161 and X-73 have
phosphocholine (PCho) residues on each of their terminal
galactose residues.

PCho-substituted surface components have been identified
in a number of mucosal pathogens including Haemophilus in-
fluenzae, Neisseria spp., and Streptococcus pneumoniae (9, 21,
30). PCho substitutions have been observed with LPS, fim-
briae, capsules, and teichoic and lipoteichoic acids (11, 17, 21,
30), and PCho can contribute to pathogenicity via a number of
mechanisms. In H. influenzae infection, PCho mediates adhe-
sion to, and uptake by, 16HBE14 human bronchial epithelial
cells via the interaction of PCho with platelet-activating factor
receptor (36). Similarly, PCho is critical for the invasion of S.
pneumoniae into lung and brain via interactions with platelet-
activating factor (9, 27). Furthermore, PCho has been shown to
reduce the susceptibility of nontypeable H. influenzae strains to
antimicrobial peptides expressed in the human lower respira-
tory tract (22). In contrast, PCho is a target for C-reactive
protein, and the presence and/or position of PCho affects sus-
ceptibility to complement-mediated killing in both H. influen-
zae and commensal N. meningitidis strains (21, 29).

In this study, we identified and characterized a four-gene
operon responsible for the addition of PCho to the LPS of P.
multocida strains VP161 and X-73. We show that inactivation
of one of the identified genes (pcgC) leads to an inability of the
bacteria to add PCho to the LPS and the growth of these
mutants is reduced in chickens but not in vitro. Furthermore,
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the lack of phosphocholine results in an increase in suscepti-
bility to the chicken antimicrobial peptide fowlicidin-1.

MATERIALS AND METHODS

Bacterial strains, plasmids, and routine culture conditions. The bacterial
strains and plasmids used in this study are listed in Table 1. Escherichia coli was
grown in 2YT broth. P. multocida liquid cultures were grown in brain heart
infusion (BHI) broth (Oxoid, Hampshire, England). For P. multocida culture on
solid medium, 1.5% agar was added to either BHI, nutrient broth with 0.3%
yeast extract, or Columbia agar base (Oxoid) with 5% horse blood. Antibiotics
were used at the following concentrations: ampicillin, 100 �g/ml (E. coli); tetra-
cycline, 12.5 �g/ml (E. coli) or 8 �g/ml (P. multocida); kanamycin, 50 �g/ml;
streptomycin, 100 �g/ml; and spectinomycin, 100 �g/ml.

DNA manipulations. Restriction enzymes and Taq polymerase were purchased
from either Roche Molecular Biochemicals (Hilden, Germany) or New England
Biolabs (Ipswich, MA) and used with the buffers supplied, in accordance with the
manufacturers’ instructions. PCR-amplified DNA was purified using Real Bio-
tech Corp. (Taipei, Taiwan) PCR DNA fragment extraction kit spin columns.
DNA sequence was determined using an ABI dye terminator mixture, and
products were separated on an ABI 3730S genetic analyzer. The DNA sequence
of the P. multocida strain VP161 pcgDABC locus was determined on both strands
(GenBank accession number EU089981), while the corresponding region in P.
multocida strain X-73 was determined on a single strand.

Subtractive hybridization. Subtractive hybridization was performed using a
Clontech (Mountain View, CA) PCR-Select bacterial genome subtraction kit,
following the manufacturer’s instructions. Briefly, 1 �g of VP161 genomic
(tester) DNA was digested with Sau3AI and hybridized against 5 �g of Pm70
genomic DNA (driver DNA). PCR products were cloned into pPCR2.1 (Table
1), and E. coli transformants were selected on 2YT agar containing kanamycin
and ampicillin. The nucleotide sequences of the inserts from 180 clones were
determined, and the functions of genes were predicted based on BLAST analysis.

Construction of a pcgC mutant and complementation. An internal fragment of
the pcgC gene (Fig. 2) was amplified from VP161 genomic DNA, using the
oligonucleotides BAP3356 and BAP3357 (Table 2). This PCR fragment was
digested with SalI and cloned into SalI-digested pUA826 (5), generating pAL297
(Table 1). pUA826 is a � pir-dependent vector which is unable to replicate in P.
multocida and which can be mobilized from the E. coli strain SM10 � pir. Filter
matings were carried out as described previously (12), and transconjugants were
selected on nutrient broth with 0.3% yeast extract containing tetracycline, strep-
tomycin, and spectinomycin.

For complementation of the pcgC mutant, an intact copy of the pcgC gene was
amplified from VP161 genomic DNA using the oligonucleotides BAP3353 and
BAP3354 (Table 2). The amplified fragments were digested with BamHI and
SalI and cloned into BamHI/SalI-digested pAL99, generating pAL293 (Table 1).
Expression of the cloned pcgC gene in pAL99 is driven by the strong, constitu-
tively active P. multocida tpiA promoter. The pcgC mutant (AL571) was trans-
formed with pAL293, generating the complemented strain AL829 and with
pAL99 generating the control strain AL831 (Table 1).

Analysis of LPS by PAGE and immunoblotting. Proteinase K-treated whole-
cell lysates were analyzed on a Bio-Rad miniprotein gel apparatus, using sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) as described
previously (19). LPS was then visualized by carbohydrate silver staining using a
SilverSNAP stain kit II (Pierce Biotechnology, Rockford, IL) according to the
manufacturer’s instructions. For immunoblotting, samples were transferred to
polyvinylidene difluoride membranes (Immobilon-P; Millipore, Billerica, MA)
by electroblotting. Membranes were incubated at 20°C for 16 h with a 1/800
dilution of TEPC-15, an antibody specific for phosphocholine (39), washed with
Tris-buffered saline containing 5% skim milk, and incubated for 1 h at 37°C with
a 1/1,000 dilution of goat anti-mouse immunoglobulin A-horseradish peroxidase
conjugate (Sigma-Aldrich, St. Louis, MO). Enzyme-labeled bands were detected
by chemiluminescence with an ECL Western blotting detection reagent (Amer-
sham Pharmacia Biotech, Buckinghamshire, England) and visualized on a Fuji-
film LAS-3000 (Raytest, Germany).

FIG. 1. LPS structures of P. multocida strains Pm70 and VP161. Two LPS inner core forms are observed for both strains; one is as shown
(inner core glycoform A), while the other has the boxed residues replaced by the boxed residues shown between the Pm70 and VP161
structures and labeled inner core glycoform B. The Pm70 and VP161 genes that are either known or predicted to encode transferases for
each addition are shown below or beside the appropriate linkages. The LPS expressed by P. multocida strain X-73 is identical to the VP161
LPS molecule shown except that a phosphoethanolamine residue is linked to the 6 position of each of the terminal galactose residues.
Residues are Glc, glucose; Hep, heptose; Gal, galactose, GlcNAc, N-acetylglucosamine; PEtn, phosphoethanolamine; KDO, 3-deoxy-D-
mannooctulosonate; P, phosphate.
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Competitive growth assays, direct virulence trials, and fowlicidin-1 sensitivity
assays. Competitive growth assays to assess the abilities of the pcgC mutant and
the complemented strains to grow in vivo and in vitro were performed as de-
scribed previously (12). The virulence of the pcgC mutant and the parent strain
AL435 were determined by injection of either 40 CFU (of the pcgC mutant) or
60 CFU (of strain AL435) into the breast muscle of groups of seven 10-week-old
Hy-Line Brown chickens. Birds were observed closely for signs of fowl cholera
and were euthanized when deemed incapable of survival. All animal work was
performed with the approval of the relevant Animal Ethics Committees. Sensi-
tivity to the chicken antimicrobial peptide fowlicidin-1 (RVKRVWPLVIRTVI
AGYNLYRAIKKK) (41) was determined by direct colony counts as described
previously (12). Statistical significance of the differences in sensitivity between
the parent and the mutant strains was determined by using an unpaired t test.

Purification of LPS, LPS-OH, and core OS. Preparation of LPS and LPS-OH
for small-scale analyses was done as previously described (12). For large-scale
analyses, flask-grown cells (at 37°C, 200 rpm for 16 h in 2 liters of BHI broth
following inoculation from chocolate agar plate-grown cells) were killed by the
addition of phenol to 2%. LPS was isolated and purified as described previously
(34). Briefly, cells (�17.3 g [wet weight]) were freeze-dried, yielding �3.0 g, and
washed with organic solvents (1� ethanol, 2� acetone, 2� light petroleum
ether) to remove lipids and other lipophilic components. Washed cells (2.51 g)
were extracted by the hot phenol/water method and treated with DNase and
RNase at 37°C for 4 h and then proteinase K at 37°C for 4 h. Small peptides were
removed by dialysis. After freeze-drying, the retentate was made up to a 2%
solution in water and centrifuged at 8,000 � g for 15 min (yielding a pellet of �24
mg), followed by further centrifugation of the supernatant at 100,000 � g for 5 h.
The pellet containing purified LPS was redissolved and freeze-dried, yielding �1

mg. Pellet material (1 mg) was O deacylated. The core oligosaccharide (OS) was
isolated by separately treating the 8,000 � g pellet material (�20 mg) and the
LPS (�1 mg) with 1% acetic acid (10 mg/ml; 100°C; 1.5 h), with subsequent
removal of the insoluble lipid A by centrifugation (5,000 � g). The lyophilized
OS sample from the 8,000 � g pellet was subsequently purified further on a
Bio-Gel P-2 column.

Analytical methods, mass spectrometry, and NMR spectroscopy. Sugars were
identified as their alditol acetate derivatives, and linkage analysis was determined
following methylation analysis by gas-liquid chromatography–mass spectrometry
(GLC-MS) as described previously (34). Combined capillary electrophoresis-
electrospray mass spectrometry (CE-ES-MS) analysis and nuclear magnetic res-
onance (NMR) experiments were performed as previously described (34).

RESULTS

Identification of genes involved in PCho addition to LPS.
The P. multocida strains VP161 and X-73 both express LPS
with terminal PCho residues (33, 34). The genome sequence of
P. multocida strain Pm70 has been determined (23), but this
strain expresses LPS without PCho (35), and its genome does
not contain any genes with a similarity to PCho transferases.
Therefore, to identify the genes involved in PCho addition to
P. multocida strain VP161 LPS, we used a subtractive hybrid-
ization of VP161 genomic DNA against Pm70 genomic DNA.

FIG. 2. Genetic organization of the VP161 region involved in PCho addition to LPS. For comparison, the gene organization of the similar
region in Pm70 is shown below. The section of pcgC used for insertional mutagenesis to construct the PCho mutant strain AL571 is shown by the
black line below the pcgC gene and labeled AL571.

TABLE 1. Strains and plasmids used in this study

Strain or plasmid Details and genotype Reference or source

E. coli
SM10 �pir Strain for propagation of pUA826 and its derivatives; thi thr leu tonA lacY

supE recA::RP4-2-Tc::Mu Km
31

AL562 E. coli SM10 �pir containing pAL297 This study
DH5� General laboratory cloning strain; deoR endA1 gyrA96 hsdR17(rK

� mK
�)

recA1 relA1 supE44 thi-1 �(lacZYA-argF)U169 	80lacZ�M15 F�
Bethesda Research

Laboratories

P. multocida
VP161 Serotype A:1 wild-type strain isolated from a chicken in Vietnam 40
AL435 VP161 carrying a Tn916 insertion in the pml417 gene; still fully virulent This study
AL571 PCho�; pcgC mutant of AL435 This study
AL829 PCho�; AL571 pcgC mutant complemented with pAL293 This study
AL831 PCho�; AL571 pcgC mutant harboring pAL99 This study

Plasmids
pAL99 P. multocida expression vector; cloned genes are expressed from the strong

constitutive P. multocida tpiA promoter
13

pUA826 Mob�, R6K replicon, Apr Strepr Specr 1
pAL297 Internal fragment of pcgC cloned into pUA826 This study
pAL293 Intact copy of pcgC cloned into the P. multocida expression vector pAL99 This study
pPCR2.1 E. coli cloning vector; Apr Kanr Clontech
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We sequenced 180 putative VP161-specific DNA fragments, of
which more than 60 showed either no or very limited (
15%)
identity to Pm70 genes (data not shown). One of these frag-
ments encoded two incomplete open reading frames whose
predicted products were similar to the choline kinase (LicA)
and the choline permease (LicB) from H. influenzae. The DNA
surrounding this gene fragment was amplified using inverse
PCR (25), and the nucleotide sequence was determined. Four
open reading frames were identified and designated phospho-
choline addition to galactose (pcg)D, pcgA, pcgB, and pcgC. A
comparison of the VP161 nucleotide sequence of this region
with the corresponding sequence from Pm70 showed that the
PCho operon was located between the genes rpL31_2 and losA,
which in Pm70 consists of a short noncoding sequence (Fig. 2).
PCR analysis of the genomic region upstream of the rpL31_2
gene revealed that genes pm1138 through to pm1141 were
absent (Fig. 2). Moreover, we were unable to individually am-
plify genes pm1138, pm1139, and pm1141 from VP161 by using
low annealing temperatures, indicating that they are not lo-
cated elsewhere on the genome (data not shown). The absence
of these genes from strain VP161 is not unexpected as the
glycosyltransferases encoded by pm1138 through pm1141 are
predicted to be required for the assembly of the outer core
region of the Pm70 LPS molecule but are not required for
assembly of the VP161 LPS structure (Fig. 1).

All of the proteins predicted to be encoded by pcgA, pcgB,
and pcgC were highly similar to proteins known to be involved
in phosphocholine metabolism. PcgA was 41% identical to the
choline kinase (LicA) from H. influenzae, PcgB displayed 39%
identity to the LicB (putative choline permease) protein from
H. influenzae, and PcgC displayed 46% identity to the CTP:
phosphocholine cytidylyltransferase (LicC) from H. influenzae.
PcgD showed very limited similarity to characterized bacterial
proteins but was 29% identical to the human protein encoded
by the fukutin gene, which is implicated in Fukuyama-type
congenital muscular dystrophy (18). The last gene in the H.
influenzae lic operon (LicD) encodes a phosphocholine trans-
ferase required for the transfer of the activated phosphocho-
line to the nascent LPS molecule (21). Although the predicted
protein encoded by pcgD did not show similarity to LicD, using
normal BLAST (expected [E] value of �10) analysis, it showed
significant similarity to LicD after 3 PSI-BLAST iterations
(E � 8 � 10�11). Furthermore, pcgD encoded a section with
identity to part of the LicD domain (pfam04991; E � 0.002).
Therefore, we predict that the pcgD gene encodes the PCho
transferase.

Construction and complementation of a VP161 pcgC mu-
tant. To confirm that the pcg gene cluster was required for

PCho addition to LPS, we constructed a pcgC mutant by in-
sertional mutagenesis using the mobilizable P. multocida sui-
cide plasmid pUA826. An internal fragment of pcgC (Fig. 2)
was cloned into pUA826, generating pAL297, and this plasmid
was mobilized into the VP161 strain AL435 (Tetr) by conju-
gation. Transconjugants were selected on tetracycline, strepto-
mycin, and spectinomycin, and one colony was designated
AL571 (Table 1). Insertion of pAL297 into pcgC was con-
firmed by PCR (data not shown). The mutant was then com-
plemented with pAL293, which expresses intact pcgC, to gen-
erate AL829 (Table 1). As a control, the mutant was also
transformed with the empty expression vector pAL99 to gen-
erate AL831 (Table 1).

Structure of the LPS produced by the P. multocida pcgC
mutant. The LPS structures produced by the pcgC mutant, the
parent strain AL435, and the complemented strain AL829
were assessed by SDS-PAGE, followed by silver staining and
Western immunoblotting. The pcgC mutant (AL571) and the
pcgC mutant harboring the vector pAL99 (AL831) expressed
truncated LPS (Fig. 3A, lanes 3 and 4) and did not react with
the anti-PCho TEPC-15 antibody (Fig. 3B, lanes 3 and 4). Both
properties were restored in the complemented strain AL829
(Fig. 3A and B, lanes 5). O-deacylated LPS (LPS-OH) and
core OS were prepared from flask-grown cells and analyzed by

FIG. 3. Phenotypes of the pcgC mutant and the complemented
strains as analyzed by silver-stained PAGE (A) and Western blotting
probed with TEPC-15 (anti-PCho) antibody (B). Equal amounts of
proteinase K-treated whole-cell lysates (panel A) or untreated whole-
cell lysates (panel B) of the following strains were run as follows: lane
1, wild-type strain VP161; lane 2, parent strain AL435; lane 3, pcgC
mutant (AL571); lane 4, pcgC mutant harboring vector pAL99
(AL831); lane 5, complemented mutant (AL829).

TABLE 2. Oligonucleotides used in this study

Oligonucleotide Sequence Description and gene

BAP3353 CCAATTGGATCCATGGCTCTAAACATAACA Forward primer for amplification of the complete pcgC gene;
contains a BamHI site for cloning

BAP3354 AAATTAGTCGACTTCTAGGGGAATTTTTAAGG Reverse primer for amplification of the complete pcgC gene;
contains a SalI site for cloning

BAP3356 AAAACAGTCGACAAAACCTTATCGAAGCAGGA Forward primer for amplification of an internal segment of pcgC;
contains a SalI site for cloning

BAP3357 TTTTATGTCGACAGCGTCTGATTTTGACCA Reverse primer for amplification of an internal segment of pcgC;
contains a SalI site for cloning
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CE-ES-MS. Compositions consistent with the absence of PCho
were inferred from the MS analysis of both the LPS-OH and
OS, but a composition containing PCho was inferred from the
mass spectra of both the wild-type strain and the comple-
mented mutant (Table 3). MS analysis also revealed composi-
tions consistent with lesser amounts of hexose in the pcgC
mutant than in the parent and complemented strains, consis-
tent with the notion that one of the terminal galactose residues
was inefficiently attached in the absence of the PCho residue.
1H NMR analyses of the core OS from the mutant strains were
performed which confirmed and extended the MS inferences.
The characteristic signal at 3.3 ppm from the nine protons of
the choline moiety was absent in the 1H NMR spectrum
from the pcgC mutant. Additionally, the chemical shifts of
the galactose residue were consistent with it now being a ter-
minal residue, with upfield shifts for the H-1, H-2, H-3, and
H-4 resonances compared to that of the wild-type strain (data
not shown). Nuclear Overhauser effect connectivities sug-
gested that the galactose residue linked to the 4 position of the
outer core heptose residue was consistently present but there
was only a minor amount of the second terminal galactose
residue (linked to the 6 position of the outer core heptose),
consistent with the MS analysis. Finally, methylation analysis
confirmed the presence of terminally located galactose, and
the identification of a 4-linked mono-substituted heptose res-
idue and a 4,6-linked disubstituted heptose residue in an ap-
proximate 2:1 ratio confirmed the NMR inference that the
galactose at the 6 position of the distal heptose residue is
mainly absent in this mutant background (data not shown).
These data clearly indicate that intact pcgC is required for the
addition of PCho to P. multocida strain VP161 LPS. Further-
more, the lack of galactose at the 6 position of the distal
heptose in most LPS glycoforms expressed by the pcgC mutant
suggests that the galactose transferase required for this addi-
tion requires PCho on the galactose linked to the heptose for
efficient acceptor recognition.

Virulence of the pcgC mutant. The ability of the pcgC mutant
and of the complemented mutant to grow in vivo was assessed
by using competitive growth assays (Table 4). The pcgC mutant
lacking PCho, AL571, was reduced in its ability to grow in
chickens, following either intramuscular (i.m.) inoculation (rel-
ative competitive index [rCI] � 0.1  0.1) or transmucosal
intratracheal (i.t.) inoculation (rCI � 0.003  0.008). The
complemented mutant (AL829) showed a significant increase
in rCI (rCI � 0.5  0.1; P � 0.02) compared with those of both
the pcgC mutant and the pcgC mutant containing empty vector.
Direct challenge assays and subsequent PCR analyses of re-
covered bacteria showed that the PCho mutant could still
cause fowl cholera in all chickens injected with AL571 (40
CFU). However, the time to establish the disease was much
longer than that seen following direct challenge with the parent
strain. Chickens injected with the parent strain AL435 (60
CFU) all showed clinical signs of fowl cholera within 24 h, and
all birds had to be euthanized before 36 h postinfection (av-
erage time, 28  6 h). In contrast, birds injected with the PCho
mutant showed no signs of fowl cholera until at least 50 h

TABLE 3. O-deacylated LPS (LPS-OH) from P. multocida VP161 wild-type and mutant strainsa

Strain

CE-ES-MS data

Proposed composition
[M-4H]4� [M-3H]3� [M-2H]2� Observed

molecular ion
Calculated

molecular ion
Relative
intensity

AL435 743.8 991.9 1,488.6 2,979.1 2,977.6 1.0 2PCho, 3Hex, 4Hep, 2Kdo, lipid A-OH
749.4 999.2 1,499.4 3,001.0 2,999.5 0.7 2PCho, 4Hex, 4Hep, Kdo-P, lipid A-OH
780.2 1,040.5 3,124.6 3,122.6 0.3 2PCho, 4Hex, 4Hep, Kdo-P-PEtn, lipid A-OH

AL571 620.7 828.0 1,242.0 2,486.5 2,485.3 1.0 2Hex, 4Hep, 2Kdo, lipid A-OH
626.4 835.2 1,253.0 2,508.5 2,507.3 1.0 3Hex, 4Hep, Kdo-P, lipid A-OH
657.0 876.1 1,314.5 2,631.3 2,630.3 0.5 3Hex, 4Hep, Kdo-P-PEtn, lipid A-OH
666.0 889.2 2,669.3 2,669.4 0.2 4Hex, 4Hep, Kdo-P, lipid A-OH

AL829 743.7 992.1 1,488.1 2,978.6 2,977.6 1.0 2PCho, 3Hex, 4Hep, 2Kdo, lipid A-OH
749.2 999.3 1,499.3 3,000.7 2,999.5 0.8 2PCho, 4Hex, 4Hep, Kdo-P, lipid A-OH
780.0 1,040.2 1,560.8 3,123.6 3,122.6 0.3 2PCho, 4Hex, 4Hep, Kdo-P-PEtn, lipid A-OH

AL831 620.7 827.8 1,242.3 2,486.6 2,485.3 0.7 2Hex, 4Hep, 2Kdo, lipid A-OH
626.3 835.1 1,253.0 2,508.3 2,507.3 0.7 3Hex, 4Hep, Kdo-P, lipid A-OH
656.9 876.2 1,314.9 2,631.7 2,630.3 1.0 3Hex, 4Hep, Kdo-P-PEtn, lipid A-OH

a Negative-ion CE-ES-MS data and proposed composition of O-deacylated LPS (LPS-OH) from the P. multocida VP161 wild-type and mutant strains are shown.
Average molecular mass units were used for the calculation of molecular weight based on the proposed composition, as follows: lipid A, 952.00; Hex [hexose], 162.15;
Hep [heptose], 192.17; Kdo [3-deoxy-D-mannooctulosonate], 220.18; Kdo-P [3-deoxy-D-mannooctulosonate phosphate], 300.13; PEtn [phosphoethanolamine], 123.05;
PCho, 165.05.

TABLE 4. Competitive growth assays of the pcgC mutant and
complemented strains

Strain Description rCI  SDa Infection
route

AL571 PCho�; pcgC mutant 0.1  0.1 i.m.
AL571 PCho�; pcgC mutant 0.003  0.008 i.t.
AL829 PCho�; pcgC mutant

complemented with pcgC
0.5  0.1 i.m.

AL831 PCho�; pcgC mutant harboring
pAL99

0.01  0.01 i.m.

a rCI values were calculated for individual animals by dividing the in vivo
competitive index (CI) by the in vitro CI, and the values shown are the average
rCI values for three replicate animals  1 standard deviation (SD). Each CI
value was determined by dividing the output mutant/wild-type ratio by the input
mutant/wild-type ratio.
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postinfection, and six of the seven birds in the group showed
only initial signs when the experiment was terminated at 66 h.
These data indicate that the pcgC gene is involved in but not
essential for the virulence of P. multocida in chickens.

Susceptibility of the pcgC mutant to fowlicidin-1. The sus-
ceptibility of the pcgC mutant to the antimicrobial peptide
fowlicidin-1 was determined by assessing the survival of wild-
type and mutant strains in the presence of various concentra-
tions of fowlicidin-1 for 1 h at 37°C (Fig. 4). The pcgC mutant
was significantly more susceptible to killing in the presence of
fowlicidin-1 than the parent strain (AL435), with 12% survival
for the mutant in the presence of 2 �g/ml fowlicidin-1 after 1 h,
compared with 68% survival for the parent strain (P 
 0.0001;
unpaired t test). Therefore, the loss of the terminal PCho
substituents of LPS results in increased sensitivity to
fowlicidin-1.

DISCUSSION

PCho is a common constituent of surface structures of mu-
cosal and respiratory bacterial pathogens such as Neisseria and
Haemophilus spp., where it plays a clear role in virulence (9, 22,
36). Terminal PCho residues have been identified on the LPS
structures from the P. multocida serotype A:1 fowl cholera-
causing strains X-73 and VP161 but not on the LPS of the
genome-sequenced strain Pm70 (serotype F:3) (33–35). To
identify the unique regions on the VP161 genome, including
the genes encoding the proteins required for phosphocholine
biosynthesis, we performed subtractive hybridization of the
VP161 genomic DNA against Pm70 genomic DNA. A locus
was identified consisting of four genes, three of which (pcgA,
pcgB, and pcgC) encoded proteins with significant similarity to
the H. influenzae proteins LicA, LicB, and LicC, respectively,
required for the import of choline (LicB), phosphorylation of
choline to phosphocholine (LicA), and activation of phospho-
choline by the addition of CTP (LicC). The first gene in the

operon, pcgD, encoded a protein which contained a partial
LicD domain and showed identity to LicD, following a PSI-
BLAST search, and we predict that this gene encodes the
PCho transferase that adds the activated PCho to the galactose
residues on the VP161 LPS molecule. Interestingly, the pcgD
gene product has only limited similarity with any characterized
bacterial proteins but shares identity with genes encoding the
human fukutin proteins, which are predicted to be involved in
glycosylation of neuronal �-dystroglycan and are implicated in
Fukuyama congenital muscular dystrophy (18, 28). It is tempt-
ing to speculate that the human fukutin proteins may also have
a role in PCho addition to �-dystroglycan, although it is pos-
sible that the protein domains which show identity are involved
solely in sugar-acceptor binding.

In order to demonstrate involvement of the pcg operon in
the PCho addition to P. multocida LPS, we attempted an in-
sertional inactivation of the putative phosphocholine trans-
ferase gene, pcgD, as it was the first gene in the VP161 PCho
locus, but we were unsuccessful (data not shown). Subse-
quently, we generated a mutant pcgC strain, which we pre-
dicted carries the CTP:phosphocholine cytidylyltransferase re-
quired to activate the phosphocholine residue prior to transfer
to the LPS structure. Structural analysis of the LPS expressed
by the pcgC mutant, AL571, and the lack of immunoreactivity
with the TEPC-15 PCho-specific antibody demonstrated that
this mutant was unable to add PCho to LPS. Moreover,
complementation with an intact pcgC gene restored the ability
of the bacteria to add PCho to LPS, thus confirming that pcgC
is required for the PCho addition to LPS (Table 3 and Fig. 3).

To assess the mutant and complemented strains for their
abilities to grow in vivo, competitive growth assays were per-
formed using the i.m. route of infection that showed that the
mutant displayed significantly reduced growth compared to
that of VP161. The in vivo growth of the mutant was restored
to near wild-type levels by in trans complementation with the

FIG. 4. Sensitivity of P. multocida strains to the action of fowlicidin-1. Bacterial survival was determined by direct colony counts after incubation
with various concentrations of synthetic fowlicidin-1 for 1 h at 37°C. Numbers are the mean percentages of survival for three replicates and error
bars are  1 standard deviation. The differences between the mean percent survival values for parent and mutant strains were statistically
significant at all concentrations tested (��, P 
 0.001; �, P � 0.01).
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intact pcgC (Table 4). In H. influenzae, PCho is important for
adhesion and invasion of epithelial cells (36), so we anticipated
that the PCho mutant might exhibit a more significant in vivo
growth defect following the mucosal route of infection. How-
ever, competitive growth assays showed there were no statis-
tically significant differences between the survival of the PCho
mutant after i.m. compared with i.t. inoculation.

Competitive growth assays require both the mutant and the
wild-type strains to grow within the same environment and do
not assess the ability of a strain to independently colonize the
host and establish disease. To determine if the PCho mutant
was capable of causing fowl cholera, direct virulence trials
showed that while all birds injected with the PCho mutant
showed symptoms of fowl cholera, the disease progressed at a
much slower rate than that caused by the parent strain. Previ-
ously we have shown that inactivation of the waaQPM gene in
P. multocida results in a strain that expresses severely trun-
cated LPS and is unable to cause disease in chickens (13). The
results in this study indicate that the PCho mutant is not as
attenuated as the waaQPM mutant, indicating that the addition
of PCho onto the distal galactose residues in the VP161 LPS
structure plays a role, but not an essential one, in the patho-
genesis of fowl cholera.

In H. influenzae, PCho is found on LPS and has been shown
to be important for colonization and persistence at the mucosal
surface (15, 38). Conversely, PCho decoration of LPS has also
been shown to increase susceptibility to complement-mediated
killing in serum by the direct binding of C-reactive protein to
PCho (9, 21, 38). Thus, for H. influenzae, the expression of
PCho on LPS gives a selective advantage at the mucosal sur-
face during initial colonization and invasion but is disadvanta-
geous during systemic growth (16). For P. multocida, it is un-
likely that PCho plays a significant role in susceptibility to
complement-mediated killing as P. multocida strains are highly
resistant to killing in serum, and this property is mediated
primarily by the capsule (8). Furthermore, a waaQPM mutant
which expresses no full-length LPS was no more susceptible to
complement-mediated killing than the parent strain (13).

The presence of PCho residues on the LPS structure has
been shown to decrease the sensitivity of H. influenzae to the
human upper respiratory tract peptide cathelicidin LL-37/
hCAP18 (22). To test whether PCho is important for the re-
sistance of P. multocida to host antimicrobial peptides, we
synthesized the chicken cathelicidin fowlicidin-1. This peptide
is expressed in a wide range of chicken tissues including giz-
zard, small and large intestines, liver, kidney, trachea, and
bone marrow (20) Furthermore, fowlicidin-1 has high antimi-
crobial activity against both gram-positive and gram-negative
bacteria (41). We analyzed the sensitivities of the P. multocida
parent strain and the PCho mutant to the antibacterial effects
of fowlicidin-1 (Fig. 4). The PCho mutant was significantly
more susceptible to fowlicidin-1 than the parent strain (Fig. 4).
Thus, the presence of terminal PCho residues on the LPS
mediates significant resistance to the fowlicidin-1 antimicrobial
peptide, but our results do not preclude a role for other resi-
dues. It has been proposed that cationic antimicrobial peptides
must interact with the negatively charged lipid A before they
can cause bacterial lysis (10, 24, 32, 42). Thus, it is likely that
the LPS oligosaccharide sugars play some role in shielding
lipid A from the cationic peptide, thereby increasing bacterial

resistance. To this end, the positively charged PCho clearly
plays an important role.

In conclusion, we have identified a four-gene locus in P.
multocida strain VP161 which is necessary for the PCho addi-
tion to LPS. The presence of PCho on the LPS is required for
full in vivo growth of P. multocida during the infection of
chickens, and the loss of the PCho residues increases the sen-
sitivity of the bacteria to the chicken antimicrobial fowlicidin-1.
However, clearly, other LPS components play a pivotal role in
in vivo growth in chickens, and we are currently exploring the
roles these other LPS substituents play in virulence.
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