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The BBK32 protein binds to host extracellular ligand fibronectin and contributes to the pathogenesis of
Borrelia burgdorferi. Here we showed that expression of the BBK32 gene is influenced by multiple environmen-
tal factors and that its regulation is governed by the response regulator Rrp2 and RpoN-RpoS (�54-�S) sigma
cascade in B. burgdorferi.

Borrelia burgdorferi, a spirochetal pathogen that causes Lyme
disease, contains genes encoding numerous lipoproteins in its
genome. Emerging evidence has shown that coordinated regula-
tion of many of these lipoproteins is critical to B. burgdorferi’s
successful maintenance in the enzootic life cycle involving
Ixodes ticks and mammals (28, 37, 38, 46). This is highlighted
by the finding that two of the key virulence factors, outer
surface lipoproteins OspA and OspC, undergo reciprocal al-
teration of their expression in B. burgdorferi during tick feeding
(for a review, see reference 40). In unfed ticks (dormant state),
spirochetes express primarily OspA, an adhesion molecule that
is indispensable for B. burgdorferi colonization of the tick mid-
gut (29, 30, 51). When the tick feeds, OspA is downregulated,
while OspC, a protein required for the early phase of mam-
malian infection and also possibly for the transmission within
the tick vector (16, 20, 31, 36, 45), is upregulated. OspC may
also play a role within ticks, although this hypothesis is con-
troversial. Thus, elucidating the mechanisms underlying differ-
ential expression of lipoproteins is critical to our understand-
ing of B. burgdorferi pathogenesis.

Lipoprotein BBK32 was first identified as an antigen that
elicits an antibody response in infected mice as well as in Lyme
disease patients (14, 44), and it is a potential agent for sero-
logical test and vaccine development (2, 24). The BBK32 pro-
tein was also identified independently as a fibronectin-binding
adhesin of B. burgdorferi (33). Binding to host extracellular
matrix molecules is one of the common strategies that bacterial
pathogens employ for adhesion and invasion of host tissues. B.
burgdorferi is capable of binding to a variety of host extracel-
lular matrix molecules (for reviews, see references 5 and 12).
Although the fibronectin-binding feature of the BBK32 protein
has been recognized for a number of years and the biochemical
mechanism of the binding has been elucidated (23, 34, 35),
biological roles of this protein have only recently been eluci-
dated due to advances in genetic manipulation of B. burgdorferi
(38). Overexpression of the BBK32 protein in a high-passage
B. burgdorferi strain that lacks this protein enhances B. burg-
dorferi’s binding to fibronectin, as well as to glycosaminogly-

cans (17). Furthermore, inactivation of the BBK32 gene in
infectious strains of B. burgdorferi reduced spirochetal binding
to fibronectin, as well as its infectivity in mice (42), although
the mutants had no apparent defect in tick vectors (25). The
biological function of the BBK32 protein is consistent with the
finding that expression of this protein in B. burgdorferi is in-
duced during tick feeding and during mammalian host infec-
tion (15, 25, 26). However, little is known about the molecular
mechanism that governs the differential expression of the
BBK32 protein.

Influence of temperature and pH on BBK32 protein expres-
sion. To study the regulation of the BBK32 protein, we first
investigated the effects on BBK32 protein expression of culture
temperature and pH, two of the well-studied environmental
cues that affect B. burgdorferi gene expression (1, 9, 28, 37, 40,
41, 43). BbAH130, an infectious clone of B. burgdorferi strain
297, was cultivated at either 23 or 37°C in BSK-H medium (32)
or at 37°C in BSK-H medium adjusted to pH 8.0 with 1 M
NaOH. Whole-cell lysates were separated by sodium dodecyl
sulfate-polyacrylamide gel electrophoresis and then subjected
to immunoblotting with a monoclonal antibody against the
BBK32 protein (kindly provided by Seppo Meri, University of
Helsinki, Finland). The specificity of the monoclonal antibody
against the BBK32 protein of B. burgdorferi strain 297 was
demonstrated by immunoblotting against whole-cell lysates
from BbAH130 and an isogenic BBK32 gene knockout mutant
(Fig. 1A). Inactivation of the BBK32 gene in strain 297 was
achieved by inserting an aadA marker (which confers strepto-
mycin resistance in B. burgdorferi [19]) at the XbaI restriction
site located 210 bp downstream of the ATG start codon of the
BBK32 gene. As shown in Fig. 1B, spirochetes cultivated at
23°C did not display any appreciable amount of the BBK32
protein. However, expression of the BBK32 protein was greatly
induced at 37°C. Furthermore, temperature-induced BBK32
protein expression was abolished in spirochetes cultivated at
pH 8.0 (Fig. 1B). This pattern of temperature- and pH-depen-
dent expression of the BBK32 protein is similar to the pattern
for a number of B. burgdorferi lipoproteins, including OspC,
DbpA/B, Mlp, OspF, BBA66, and RevA (10, 11, 13, 47, 49).
The proteins sharing this pattern of expression have been pre-
viously designated the group I proteins (47). Therefore, the
BBK32 protein is an additional group I protein. Interestingly,
Skare and his coworkers recently showed that the BBK32 pro-
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tein, along with several other group I proteins, including OspC
and DbpA, is influenced by CO2 levels in a similar fashion (22),
providing further evidence that group I proteins are coregu-
lated.

Control of BBK32 protein expression by RpoN and RpoS. In
the past few years, advances in Borrelia genetics (38) led to the
identification of a novel regulatory pathway, the RpoN-RpoS
pathway, that governs differential expression of numerous Bor-
relia genes, including many of the group I genes, such as ospC,
dbpA/B, mlp, ospF, and the BBA66 gene (11, 13, 18, 21, 48–50).
This pathway consists of the response regulator Rrp2 and two
alternative sigma factors, RpoN (�54; encoded by rpoN or ntrA)
and RpoS (�s; encoded by rpoS) (21, 48). It was shown that
Rrp2, an enhancer-binding protein (EBP) (48), in conjunction
with RpoN, controls the transcription of rpoS. RpoS, a global
regulator, further activates transcription of many genes in B.
burgdorferi. In addition, RpoS was recently shown to be indis-
pensable for the repression of OspA and other proteins when
spirochetes were cultivated in a host-adapted model (6, 8).
Accumulated evidence has emerged that supports the hypoth-
esis that the RpoN-RpoS pathway functions as a central reg-
ulatory system that modulates expression of many Borrelia
genes essential for spirochetal transmission in ticks and infec-
tion in mammals (4, 7, 8, 18, 20, 21, 27, 48, 49, 51).

Because the BBK32 protein has an expression pattern sim-
ilar to that of the group I proteins, it is reasonable to hypoth-
esize that the BBK32 gene is also regulated by the RpoN-RpoS
pathway. However, previous microarray analyses showed that
there is no significant difference between the BBK32 gene
mRNA levels of the wild-type strain and an rpoN or rpoS
mutant when the organisms are cultivated in vitro (18). To

examine if the RpoN-RpoS pathway plays a role in BBK32
protein expression, wild-type B. burgdorferi 297 (BbAH130)
and various isogenic B. burgdorferi strains were cultivated in
BSK-H medium at 37°C and whole-cell lysates were subjected
to immunoblotting. As shown in Fig. 2A, inactivation of either
rpoN or rpoS (21) abolished BBK32 protein expression,
whereas the cis-complemented rpoN strain (21) or the trans-
complemented rpoS strain rescued the mutants’ defect. Of
note, complementation of the rpoS mutant in trans was
achieved by transforming a pBSV2 shuttle vector carrying a
wild-type rpoS gene with 4 kb of flanking sequence (data not
shown), a strategy similar to that used by Caimano et al. (6).
These results strongly suggest that BBK32 protein expression
is controlled by RpoN and RpoS.

Control of BBK32 protein by RpoN via RpoS. Results of
recent microarray analyses suggested that in addition to the
genes governed by the RpoN-RpoS pathway, RpoN and RpoS
each may independently control additional sets of genes. To
test the possibility that BBK32 protein expression might be
modulated by RpoN and RpoS independently, we further ex-
amined BBK32 protein expression in BbAH64, an rpoN mu-
tant that harbors a pGK12-based shuttle vector (39) carrying

FIG. 1. Temperature and pH influence BBK32 protein expression
in B. burgdorferi. Infectious clone BbAH130 (wt) or the isogenic
BBK32 gene mutant (bbk32�) was cultivated in BSK-H medium at
various temperatures or pHs. Spirochetes were harvested at the late
logarithmic phase of growth (�5 � 107 spirochetes/ml), and whole-cell
lysates (5 � 107 spirochetes/gel lane) were subjected to immunoblot
assays. (A) Specificity of monoclonal antibody directed against the
BBK32 protein. Spirochetes were cultivated at 37°C and pH 7.5. The
band corresponding to the BBK32 protein is indicated on the right.
(B) (Top panel) Coomassie blue-stained gel. The band corresponding
to OspC is indicated by an arrow. (Bottom panels) Immunoblots with
monoclonal antibodies against the BBK32 protein or FlaB (loading
control).

FIG. 2. Effects of Rrp2, RpoN, and RpoS on BBK32 protein ex-
pression in B. burgdorferi. Wild-type and various mutant strains of B.
burgdorferi were cultivated at 37°C either in BSK-H medium at pH 7.5
(A and C) or in BSK-H medium adjusted to pH 6.8 (B). Spirochetes
were harvested at late logarithmic phase (�5 � 107 spirochetes/ml)
and subjected to immunoblotting. Each gel lane was loaded with ap-
proximately 5 � 107 spirochetes. wt, wild-type B. burgdorferi strain
BbAH130; rpoN�, RpoN-deficient mutant; rpoN�/�, RpoN-deficient
mutant complemented with a wild-type copy of rpoN; rpoS�, RpoS-
deficient mutant; rpoS�/�, RpoS-deficient mutant complemented with
a wild-type copy of rpoS; rpoN� � flgBp-rpoS, RpoN-deficient mutant
complemented with a constitutively expressed wild-type copy of rpoS;
rrp2(G239C), rrp2 mutant; rrp2�, a wild-type rrp2 allele was restored in
the rrp2 mutant. Monoclonal antibodies used for the immunoblots are
indicated on the left.
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an rpoS gene under the control of a constitutive flgB promoter
(flgBp-rpoS) of B. burgdorferi (21). It is noteworthy that we
observed that BbAH64 expresses a much higher level of RpoS
when it is cultivated at pH 6.8 than when it is cultivated at pH
7.5. Therefore, the wild type, the rpoN mutant, and BbAH64
were cultivated at 37°C and pH 6.8, and whole-cell lysates were
subjected to immunoblotting. Unlike expression in the rpoN
mutant, expression of OspC and expression of the BBK32
protein were readily detected in BbAH64 (Fig. 2B). These data
indicate that RpoN-independent RpoS expression could over-
come the RpoN deficiency in BBK32 protein expression and
that RpoN controls BBK32 protein expression via RpoS.

Control of BBK32 protein expression by Rrp2. RpoN re-
quires an EBP to activate gene transcription from a unique
�24/�12 �54 promoter (3). Rrp2 is the only EBP present in
the B. burgdorferi genome. We previously showed that a point
mutation (G239C) in the activation domain of Rrp2 abolishes
the RpoN-dependent transcriptional activation of rpoS, which
in turn diminishes the expression of OspC and other RpoS-
controlled genes in B. burgdorferi (48). Thus, the rrp2(G239)
mutant should have a similar defect in BBK32 protein expres-
sion. Indeed, the BBK32 protein level was greatly diminished
in the rrp2 mutant cultivated at 37°C (Fig. 2C), which further
supports the notion that the BBK32 protein is governed by the
RpoN-RpoS regulatory pathway.

To confirm that regulation of the BBK32 gene occurs at the
mRNA level, quantitative reverse transcription PCR (qRT-
PCR) was performed with RNA isolated from wild-type B.
burgdorferi cultivated under different temperature conditions
and from various B. burgdforferi mutants. Total RNA was ex-
tracted using an RNeasy mini kit (QIAGEN). PCR was first
performed with the RNA samples to ensure that there was no
detectable DNA contamination. cDNA was then synthesized
using the ThermoScript reverse transcription system (Invitro-
gen). Quantitative PCR was performed in triplicate with an
ABI 7000 sequence detection system using Platinum SYBR
green quantitative PCR SuperMix (Invitrogen). Similar to the
protein level, the BBK32 gene transcript was upregulated more
than 30-fold by an elevated culture temperature (Fig. 3A). This
result was consistent with the results of previous microarray
(28, 37, 46) and qRT-PCR analyses (25), which showed that
there was a 1.7- to 28-fold increase in the transcript level of the
BBK32 gene when an elevated culture temperature was used.
Similar to results observed for the BBK32 protein, a mutation
in rrp2 or inactivation of either rpoN or rpoS greatly diminished
the BBK32 gene mRNA level, supporting the notion that reg-
ulation of the BBK32 gene by Rrp2, RpoN, and RpoS occurs
at the transcriptional level (Fig. 3B). These data are also con-
sistent with the results of a very recent microarray analysis by
Caimano et al., which demonstrated that the BBK32 gene is
among the more than 40 B. burgdorferi genes whose transcrip-
tion is dependent on RpoS under both in vitro and host-
adapted conditions (8).

In summary, the data presented here, along with previous
findings of other workers (8, 22, 25, 28, 37, 46), demonstrate
that the BBK32 gene is coregulated with ospC and other group
I genes by multiple environmental factors and that its expres-
sion is modulated by the Rrp2-dependent RpoN-RpoS regu-
latory pathway. Such a mechanism of activation ensures that
there is coordinated expression of the BBK32 protein, OspC,

and other group I proteins prior to B. burgdorferi transmission
from the tick vector to the mammalian host. Further research
is warranted to delineate whether the BBK32 gene is directly
controlled by RpoS, as demonstrated for ospC, or is indirectly
controlled via an undefined transcriptional regulator.
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