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Resistance genotyping provides an important resource for the clinical management of patients infected with
human immunodeficiency virus type 1 (HIV-1). However, resistance to protease (PR) inhibitors (PIs) is a
complex phenotype shaped by interactions among nearly half of the residues in HIV-1 PR. Previous studies of
the genetic basis of PI resistance focused on fixed substitutions among populations of HIV-1, i.e., host-specific
adaptations. Consequently, they are susceptible to a high false discovery rate due to founder effects. Here, we
employ sequencing “mixtures” (i.e., ambiguous base calls) as a site-specific marker of genetic variation within
patients that is independent of the phylogeny. We demonstrate that the transient response to selection by PIs
is manifested as an excess of nonsynonymous mixtures. Using a sample of 5,651 PR sequences isolated from
both PI-naive and -treated patients, we analyze the joint distribution of mixtures and eight PIs as a Bayesian
network, which distinguishes residue-residue interactions from direct associations with PIs. We find that
selection for resistance is associated with the emergence of nonsynonymous mixtures in two distinct groups of
codon sites clustered along the substrate cleft and distal regions of PR, respectively. Within-patient evolution
at several positions is independent of PIs, including those formerly postulated to be involved in resistance.
These positions are under strong positive selection in the PI-naive patient population, implying that other
factors can produce spurious associations with resistance, e.g., mutational escape from the immune response.

The human immunodeficiency virus type 1 (HIV-1) protease
(PR) cleaves itself and other viral proteins from the gag-pol
polypeptide precursor (37). Ever since its essential role in the
formation of mature viral particles was experimentally con-
firmed (41), HIV-1 PR has been productively exploited as a
target for the development of antiretroviral agents. There are
currently nine PR inhibitors (PI) approved for clinical use, with
several more in development (23). PIs have become an impor-
tant component of highly active antiretroviral therapy, which
can successfully reduce viral load and extend the life expec-
tancy of HIV-infected patients (55). However, an HIV-1 pop-
ulation that is exposed to PIs will rapidly acquire mutations
that render its PR resistant to one or more PIs (14). PI mono-
therapy, for instance, is characterized by a transient suppres-
sion of viral load that is inevitably followed by the emergence
of resistant virus.

Resistance to PIs is a complex phenotype of HIV-1 that
tends to require the fixation of multiple mutations within the
PR-encoding region of pol (14, 49). Nevertheless, the genetic
sequence of HIV-1 PR can be used to predict its resistance to
PIs and anticipate the evolutionary response of the virus pop-
ulation, e.g., genotypic resistance testing (80). Genotypic test-
ing provides results within a shorter period of time and is
generally less expensive than directly assaying the resistance
phenotype of a variant. Retrospective and prospective studies
demonstrated that resistance genotyping contributes benefi-
cially to the clinical management of patients undergoing highly

active antiretroviral therapy regimens (2, 21, 75). Investigators
at both the Los Alamos National Laboratory (57) and Stanford
University (60) maintain public databases of PR and reverse
transcriptase (RT) genotypes associated with drug treatment,
resistance phenotype, or clinical outcome. In addition, a vol-
unteer panel of experts in the field has regularly updated a list
of PR and RT mutations associated with resistance, which was
compiled from a consensus review of the empirical literature
(35).

Nevertheless, it is difficult to formulate accurate clinical
guidelines for interpreting results from HIV-1 resistance geno-
typing. Roughly half of the 99 codon sites in the HIV-1 PR
sequence have been implicated in the evolution of PI resis-
tance. For example, Wu et al. (78) previously reported statis-
tically significant associations with PI treatment at 45 different
sites from an analysis of 2,248 subtype B HIV-1 PR sequences
isolated from both PI-naive and PI-active patients. A more
conservative list of resistance mutations compiled by an expert
panel refers to 36 different sites in PR (35), and the Stanford
HIV Drug Resistance Database currently assigns resistance
scores to amino acid substitutions affecting 32 different sites
(60). The evolution of resistance to PIs in HIV-1 typically
requires several mutations to attain substantial levels of resis-
tance (13, 49). HIV-1 populations tend to acquire such muta-
tions in a particular order, so that primary mutations, which
are the first to emerge, are followed by secondary mutations
that often compensate for the fitness costs of the primary
mutations (30, 54, 74, 78). Finally, combination therapy has
become more prevalent than monotherapy, confounding the
individual effects of PIs on genetic variation.

A comprehensive array of statistical methods, many of which
are computationally intensive, has been used to map from the
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multidimensional space of PR sequences to the resistance phe-
notype, including pairwise correlation tests (34, 78), linear
regression (5, 77), support vector machines (6), decision trees
(68), neural networks (20, 76), hierarchical clustering (71), and
Bayesian networks (1, 18, 19). However, these methods uni-
formly neglect important features of the evolution of HIV-1.
First of all, the data are mostly population-based (i.e., bulk)
sequences obtained from the direct sequencing of each patient
isolate, i.e., “standard” genotyping. As a result, subsequent
analyses can detect only trends in HIV-1 sequence variation
among patients, i.e., fixed substitutions in divergent virus pop-
ulations. The analysis of population-based sequences is suffi-
cient to find associations between PI resistance and the
strongly selected mutations that rapidly become incorporated
into the dominant genotype of each HIV-1 population. On the
other hand, the evolution of HIV-1 within patients is charac-
terized by extensive genetic variation that is commensurate
with the level of divergence in the patient population. Minority
variants can play an important role in the evolution of PI
resistance by enabling the population to explore alternative
evolutionary pathways to resistant genotypes, which may even-
tually replace the dominant variant over the course of an in-
fection (11, 22, 65). Although the clinical significance of per-
sistent minority variants remains unresolved, they are clearly a
common feature of failed drug regimens (22, 48). Therefore,
there is a clear mandate to determine what associations may
exist between minority variants and clinical outcomes. Sec-
ondly, comparative studies of PI resistance in HIV-1 have
neglected the common ancestry of sequences (24). Bhatta-
charya et al. (8) recently demonstrated the impact of common
ancestry in their reanalysis of a landmark comparative study
associating the diversity of human leukocyte antigens (HLAs)
with the evolution of HLA-restricted epitopes in HIV-1 (50).
They found that the majority of statistically significant associ-
ations described in that study were false-positive results caused
by founder effects in which epitope variants and HLA alleles
became linked within a clade through identity by descent and
epidemiological mixing, respectively. In other words, a virus is
often likely to possess a specific variant of an epitope by in-
heriting it from an ancestor rather than evolving it de novo in
response to selection. Although founder effects are often
caused by divergence among HIV-1 subtypes, their influence is
also evident in variation within subtypes (10). Similar mecha-
nisms must also influence statistical associations between ge-
netic variation in HIV-1 PR and the use of PIs. As a result, a
set of HIV-1 PR sequences cannot be treated as a random
sample, which previous work has customarily done.

We propose to address both of these limitations by using
sequencing mixtures to quantify the evolution of resistance
within patients. A sequencing mixture occurs when multiple
peaks occur at the same point in a sequencing electrophero-
gram such that the “correct” nucleotide is ambiguous. The
application of mixtures to study evolutionary processes has
several advantages. First, mixtures can provide a measure of
the transient response to selection within patients. Mixtures
have been used successfully to screen HIV-1 populations for
minority variants above a frequency threshold that ranges from
10% to 25% (32, 43, 46, 67). Population genetic models predict
that a new mutation that reaches this intermediate range of
frequencies in the population is more likely to be driven by

selection (17). Although many within-host polymorphisms go
undetected due to the inherent sampling variability of popu-
lation-based sequencing, the range of polymorphisms most
likely to become sampled as mixtures is enriched for variants
under selection. Mixtures are frequently used to diagnose the
likelihood that an HIV-1 population will become resistant to a
new drug regimen (67). As noted above, they have yet to be
applied to the mapping of genetic determinants of resistance.
Secondly, the genetic variation of an HIV-1 population within
a patient is independent of founder effects. Thirdly, mixtures
are easy to count (i.e., twofold ambiguous base calls are en-
coded by the characters “W,” “R,” “K,” “Y,” “S,” and “M”),
which allows us to process very large samples (n � 1,000) of
population-based sequences. For a large sample of patients,
clonal sequencing remains a prohibitively expensive and time-
consuming technique for assaying within-patient genetic vari-
ation.

To evaluate the influence of PI therapy on the site-specific
rates of evolution in HIV-1 PR, we analyzed the distribution of
mixtures in 5,651 subtype B sequences that were isolated either
from patients undergoing a regimen of one or more PIs (“PI
treated”) or from patients who have not used any PIs (“PI
naive”). We validate the interpretation of mixtures as a site-
specific proxy for the evolution of resistance within patients by
contrasting the distribution of mixtures against the level of
diversifying selection among patients. By convention, the latter
quantity is measured by the statistic dN � dS or dN/dS, where
dN is the observed number of nonsynonymous substitutions,
scaled by the expected number of nonsynonymous substitu-
tions at the codon site, and dS is the equivalent for synonymous
substitutions (38). In a previous study, we proposed the use of
an analogous statistic, mN � mS, to quantify selection within
patients as a function of the nonsynonymous and synonymous
mixture frequencies (59). By applying this statistic to HIV-1
PR sequences from PI-naive patients, we found that the rela-
tive excess of nonsynonymous mixtures at a codon site pre-
dicted the relative excess of nonsynonymous substitutions from
diversifying selection (59). Here, we investigate associations
between the site-specific frequency of nonsynonymous mix-
tures and specific PIs by associating each sequence in the
current data set with the PI regimen at time of isolation. These
observations were analyzed as a joint probability distribution of
discrete-valued random variables encoded as a Bayesian net-
work model. A Bayesian network is a compact graphical rep-
resentation of the joint distribution of random variables, where
an edge between nodes in the graph corresponds to a condi-
tional dependency between the corresponding variables (58).
We employ our model to identify the genetic determinants of
resistance that emerge within patients in the context of the
entire PR sequence.

MATERIALS AND METHODS

Data. We retrieved 5,651 full-length HIV-1 subtype B PR sequences from the
Stanford HIV Drug Resistance Database (60), where each sequence represented
a unique patient. Within this sample, 2,648 sequences had been isolated from
PI-treated patients, i.e., undergoing a drug regimen including at least one PI. The
regimens were comprised of eight different PIs: amprenavir (APV) (n � 233),
atazanavir (ATV) (n � 24), indinavir (IDV) (n � 1,407), lopinavir (n � 128),
nelfinavir (NFV) (n � 1,335), ritonavir (n � 925), saquinavir (SQV) (n � 1,007),
and tipranavir (n � 92). Roughly half of these regimens (n � 1,316) included two
or more PIs. The remaining sequences (n � 3,003) in our sample had been
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isolated from PI-naive patients, omitting sequences corresponding to patients
who were already represented in the “PI-treated” subset. We further screened
the PI-naive set for resistant sequences according to the Stanford algorithm (60).
The algorithm identified 21 sequences from the PI-naive set (0.7%) with resis-
tance scores exceeding a cutoff of 30. Removal of these sequences had no
discernible effect on our results. The sequence alignment was adjusted manually
using the alignment editor Se-Al (Andrew Rambaut [http://evolve.zoo.ox.ac.uk
/software.html]) (the alignment is available upon request). Only 64 out of 5,651
sequences (1.1%) contained gaps, which occurred exclusively at the 3� ends of the
sequences, suggesting that these gaps were caused by the truncation of low-
quality sequence regions rather than deletions.

The sequences were screened for twofold mixtures (i.e., an ambiguous base
call that can be resolved as two different nucleotides at the same position) using
a custom Python script. Out of the 10,039 mixtures found, we omitted 77 three-
fold mixtures (0.8%) from further analysis. Each mixture was classified as a
nonsynonymous or synonymous polymorphism in the context of the codon in
which it occurred. For example, the codon “ATR” contains a nonsynonymous
mixture in the third position, indicating that a fraction of the sequences in the
population encode an isoleucine (“ATA”) at that position, while others encode
methionine (“ATG”). Conversely, the codon “AAR” contains a synonymous
mixture because both “AAA” and “AAG” encode the amino acid lysine. When
more than one mixture occurred in the same codon, the mixtures were omitted
from the analysis unless every possible resolution was synonymous, e.g., serine,
leucine, or arginine. Following this procedure, we converted our alignment into
two 5,651-by-99 binary-valued matrices for the presence or absence of nonsyn-
onymous or synonymous mixtures, respectively. For instance, a codon without
any mixtures was encoded as a “0” in either case. For each codon site, we tallied
the frequency of nonsynonymous or synonymous mixtures and normalized each
quantity by the mean number of nonsynonymous or synonymous sites in the
codon (59), herein indicated as mN and mS, respectively.

Selection analysis. To estimate the rates of nonsynonymous (dN) and syn-
onymous (dS) substitutions (as a site-specific marker of diversifying selection
among hosts), we employed the method of single-likelihood ancestor counting
(SLAC) as implemented in HyPhy (38, 40). First, we estimated a neighbor-
joining tree in HyPhy using Tamura-Nei nucleotide distances (73) with rate
variation across sites, parameterized by a gamma distribution with the shape
parameter � � 0.5 (representative of HIV-1-derived values) and the scale pa-
rameter � � �. For analyzing selection in sequences isolated from PI-active
patients, we excluded codon sites that have been associated with primary PI
resistance mutations (35) to minimize the influence of convergent evolution on
the reconstruction of the phylogeny (45).

We fit a Muse-Gaut codon substitution model (52), crossed with a general
time-reversible model of nucleotide substitution (42), to the nucleotide align-
ment and tree by maximum likelihood, thereby reconstructing the ancestral
sequences at the internal nodes of the tree. On the basis of this ancestral
reconstruction, the SLAC analysis inferred the expected number of nonsynony-
mous or synonymous substitutions at each codon site, which were scaled by the
expected number of nonsynonymous or synonymous sites in the codon to yield
estimates of the quantities dN and dS, respectively. Ambiguous codons contain-
ing sequencing mixtures were resolved to the most frequent codon at that site.
This procedure for resolving mixtures yields estimates of substitution rates that
are independent of mixture frequencies but may underestimate the numbers of
nonsynonymous and synonymous substitutions per site as a result. To evaluate
the extent of this bias, we ran an additional SLAC analysis with resolution of
mixtures by averaging over the relative frequencies of codons at that site (38).
We found that resolution to the most frequent codon indeed underestimated the
number of substitutions but only by a fractional amount (�1% on average).

Bayesian network inference. A Bayesian network is a graph encoding a set of
conditional independence assertions over a joint probability distribution of ran-
dom variables (58). Each random variable is represented by a node in the
network. A directed edge originating from node A and terminating at node B
(A3B) indicates that the outcome of B is conditionally dependent on A, i.e.,
P(B�A) 	 P(B). In other words, a directed edge can be interpreted as the
hypothesis that A “causes” B (58). Conversely, the lack of an edge between nodes
indicates that the nodes are conditionally independent. Conditional indepen-
dence is an important concept, particularly when dealing with complex systems.
For example, if there are two nodes, B and C, that are both dependent on A
(B4A3C), then B can appear to be directly influenced by C when failing to
account for A. Hence, B is conditionally independent of C, expressed formally by
the equation P(B�C�A) � P(B�A)P(C�A). Pairwise association tests are particu-
larly susceptible to false-positive results in this example, because the outcome of
A is masked from the test. In contrast, such conditional dependence relations
have an explicit representation in a Bayesian network, providing a more accurate

reproduction of biological causation. The set of directed edges encoding depen-
dence relationships is referred to as the “structure” of a Bayesian network.
Bayesian networks have previously been applied to detect associations between
PIs and genetic variation in PR at the level of the patient population (1, 18, 19)
but have not been able to account for the lack of phylogenetic independence
among sequences.

In our analysis, each PR sequence was encoded as a binary vector indicating
the presence or absence of a nonsynonymous mixture at every codon site. We
omitted 16 out of 99 codon sites (alignment consensus residues P1, G27, A28,
D29, G40, W42, P44, G52, V56, Q59, G78, T80, P81, G94, T96, and F99) at
which nonsynonymous mixtures occurred in fewer than three sequences. In
addition, each mixture vector was concatenated with a binary vector encoding the
presence or absence of the eight PIs upon isolation of the corresponding se-
quence. Hence, all sequences isolated from PI-naive patients were associated
with zero vectors. The resulting vectors were combined as rows to form a binary
matrix comprised of 5,651 rows and 91 columns. We carried out a Bayesian
network analysis of this matrix in order to detect associations between the
presence or absence of specific PIs (encoded by “drug” nodes) and the presence
or absence of a nonsynonymous mixture at a codon site (encoded by “mixture”
nodes). This model also accounted for associations between codon nodes, such as
those that would result from a compensatory interaction between residues in PR
(54). We assumed that sequences associated with PIs in the Stanford HIV
database had been isolated after the onset of the drug regimen. This assumption
was expressed by a ban on all networks containing directed edges that originated
at codon nodes and terminated in drug nodes, which would imply that the
emergence of a nonsynonymous mixture influenced the composition of the as-
sociated drug regimen (i.e., a reversal of chronological order). We also carried
out an analysis of a Bayesian network without any banned edges to evaluate the
sensitivity of our results to this assumption.

We implemented a Monte Carlo Markov chain (MCMC) procedure for the
inference of Bayesian network structures (26) as a component of the software
package HyPhy (40). In practice, it is unlikely that the available data will favor a
single structure because the number of possible structures is a combinatorial
function of the number of nodes (64). For example, there are approximately
10276 possible structures for a network comprised of 40 nodes only. Conse-
quently, Friedman and Koller proposed an MCMC-based procedure to identify
the most robust interactions among nodes through Bayesian model averaging
over subsets of structures (26). We employed this procedure to estimate the
marginal posterior probability for each potential edge of the network. A vague
prior probability of 0.5 was assigned to every edge. To calculate the posterior
probabilities of structures, we employed the K2 scoring metric (15), which tends
to favor structures comprised of fewer edges, thereby generating a more parsi-
monious and interpretable network.

We ran a single Markov chain for 3 
 105 iterations. The first 5 
 104

iterations were discarded as a burn-in period, and the marginal posterior prob-
abilities of edges were sampled at every 2,500 iterations of the remainder. Our
burn-in period and sampling frequency were derived from MCMC settings de-
scribed previously by Friedman and Koller (26). We found that this sampling
frequency sufficiently reduced autocorrelation in our sample of the chain. In
addition, we ran replicate chains initialized with randomized states to evaluate
convergence behavior (Gelman-Rubin convergence diagnostic of 1.03; 97.5%
quantile, 1.17) (29). A consensus network structure was assembled from all
edges, with marginal posterior probabilities exceeding a threshold value of 0.9.
To quantify our level of confidence in edges of the consensus network, we
employed a nonparametric bootstrap method by resampling the data with re-
placement to generate 100 samples comprised of 5,651 sequences each. We
repeated the MCMC-based analysis of Bayesian networks for each bootstrap
sample and recorded the frequency across samples that edges occurred with a
posterior probability exceeding a threshold of 0.5.

RESULTS

Frequency distribution of mixtures. We counted 9,962 nu-
cleotide mixtures in our sample of 5,651 HIV-1 PR sequences.
There were 287 codons containing multiple mixtures that were
omitted from subsequent analyses as a result. Mixtures were
slightly more abundant overall in sequences isolated from PI-
active patients (averaging 1.9 mixtures per sequence) than in
sequences from PI-naive patients (1.6 mixtures); this difference
was statistically significant (W � 3.58 
 106 by Wilcoxon rank
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sum test; P � 2 
 10�7). A significantly greater proportion of
mixtures were nonsynonymous in PI-active sequences (�2 �
242.9 [logistic regression, likelihood ratio]; P �� 0.001). We
also observed greater variation among codon sites in the num-
ber of nonsynonymous than synonymous mixtures (coefficients
of variation of 1.32 and 0.89, respectively).

We calculated mN � mS for each codon site from mixture
frequencies. We found that this quantity was negative when
averaged across codon sites for both PI-naive and PI-active
patients, indicating that the net effect of selection within pa-
tients was to suppress nonsynonymous mixtures in the popu-
lation. Nevertheless, we observed a considerable excess of non-
synonymous mixtures (mN � mS � 0.01) in PI-active
sequences at positions 13, 71, 77, and 93. All four of these
positions were previously associated with minor resistance to
PIs (35). The P value of this outcome occurring by chance was
0.001.

Mixtures indicate selection for resistance. We detected sig-
nificant positive (i.e., diversifying) selection (dN � dS � 0)
among patients on active PI regimens at 16 codon sites in PR
(positions 12, 13, 19, 33, 35, 37, 54, 62, 71, 73, 74, 77, 82, 84, 90,
and 93) after applying a conservative Bonferroni correction for
multiple comparisons (� � 5.0 
 10�4). These sites were
consistent with those found in previous analyses of selection in
HIV-1 PR (12, 39), and the majority of sites (13 out of 16) were
previously associated with PI resistance (35). The largest ex-
cess of nonsynonymous substitutions occurred at sites 37, 82,
and 90 (dN � dS � 3.0). Primary or secondary resistance-
associated mutations have previously been described for all
eight PIs at sites 82 and 90. However, codon site 37 has no
known association with PI resistance. A similar analysis of
selection on sequences isolated from PI-naive patients de-
tected significant positive selection at nine codon sites in PR
(positions 12, 13, 19, 35, 37, 63, 64, 77, and 93) after correcting
for multiple comparisons. Again, we found strong positive se-
lection at codon site 37 (dN � dS � 5.3), suggesting that

variation at this site was shaped by divergent immune selection
in the patient population irrespective of drug therapy. None of
other values for dN � dS at sites under significant positive
selection exceeded 3.0 in the PI-naive sample (median dN �
dS � 1.7).

We found strong positive correlations across codon sites
between dN � dS and mN � mS in both PI-naive and PI-active
patient samples (�active � 0.87 and �naive � 0.83 [Spearman’s
rank correlation]; P �� 0.001) (Fig. 1) such that codon sites
under stronger host-specific selection also had a greater excess
of nonsynonymous mixtures. Sites with documented primary or
secondary resistance mutations were clustered in the upper-
right limit of the joint distribution for PI-active sequences (Fig.
1), implying that resistance to PIs was a major influence on
selection at both levels of the population. Also, the cluster of
primary resistance sites appeared to be displaced towards the
lower-right quadrant of the PI-active plot, indicating that non-
synonymous mixtures were less abundant than expected for
this class of codon site. This observation was consistent with
stronger selection for primary resistance mutations, suppress-
ing nonsynonymous mixtures by rapidly driving the fixation of
favorable variants within patients (59). In contrast, within the
joint distribution of dN � dS and mN � mS from PI-naive
sequences, sites associated with primary or secondary resis-
tance mutations were indistinguishable from other sites
(Fig. 1).

Anatomy of a drug mixture network. We analyzed the joint
distribution of nonsynonymous mixtures and the composition
of drug regimens using an MCMC-based Bayesian network
model (26). The resulting distribution of marginal posterior
probabilities for all edges in the network was distinctly U
shaped, indicating that our sample size was sufficient to distin-
guish real associations from background variation. A consen-
sus network structure, assembled from a total of 56 edges with
marginal posterior probabilities exceeding 0.9, is shown in Fig.
2. Nearly all edges in the consensus network represented “pos-

FIG. 1. Correlations for variation in HIV-1 protease within and among patients. Each point corresponds to a unique codon site in the HIV-1
PR sequence. The red triangles indicate codon sites that have been associated with major effects on resistance to PIs (35). Inverted blue triangles
indicate positions with minor effects on resistance to PIs. These clusters are highlighted by colored polygons (determined by the convex hulls). The
x axis corresponds to diversifying selection among patients quantified by the difference in nonsynonymous and synonymous rates of substitution
(dN � dS). Similarly, the y axis corresponds to directional selection within patients quantified by the difference in the frequencies of nonsynony-
mous and synonymous mixtures (mN � mS). The left plot displays estimates of substitution rates and mixture frequencies for patients undergoing
PI regimens, whereas the right plot displays estimates for patients whom were PI naive upon isolation of HIV-1 sequences. Both plots were clipped
to the same range along each axis to better resolve the central distribution of points, i.e., omitting position Q2 (coordinates �7.3, and �0.04) from
the PI-active plots and positions Q2, E65, and I93 (�9.7 and �0.04, �8.1 and �0.05, and �8.0 and �0.03, respectively) from the PI-naive plots.
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itive” interactions (odds ratio [OR] of �1), such that nonsyn-
onymous mixtures at one position tended to be either accom-
panied by mixtures at other positions or associated with a
specific PI. Negative interactions were restricted to edges be-
tween drug nodes. For example, there were no patients on
regimens combining saquinavir with tipranavir in our sample
(OR of 0). The lack of edges between mixture nodes that
represented negative interactions (OR of �1) was most likely
caused by relatively low frequencies of nonsynonymous mix-
tures per codon site. Hence, our power to detect mutually
exclusive mixtures was limited by our sample size.

The consensus network was comprised of seven components,
including a large component that contained all eight drug
nodes, which we henceforth refer to as the “resistance” com-
ponent of the network. Drug nodes were highly interconnected
in a distinct cluster within the “resistance” component, reflect-
ing the predominant use of multiple PIs in combination ther-
apy, e.g., the use of ritonavir as a pharmacologic booster of
other PIs (79). Edges between drug nodes tended to have high
levels of bootstrap support, with the exception of edges con-
necting ATV (Fig. 2). Only 23 sequences in our sample corre-
sponded to patients on drug regimens that included ATV; as a
result, very few networks inferred from bootstrap samples con-
tained edges between ATV and other drug nodes.

The resistance component also contained 13 directed edges

originating from a drug node and terminating at a mixture
node (Fig. 2). Such edges implied that the use of a specific PI
directly favored the emergence of nonsynonymous mixtures at
the corresponding codon site, i.e., primary resistance muta-
tions. For instance, the edges NFV3D30 and SQV3L90 cor-
responded to well-characterized associations between PIs and
primary mutations. Other directed edges with robust bootstrap
support (e.g., NFV3K20 and IDV3I85) represented novel
associations between PIs and codon sites. Among the drug
nodes, SQV and NFV were assigned the largest number of
directed edges to mixture nodes (four), whereas ATV and
lopinavir were assigned none. To evaluate the robustness of
these edges to relaxing our assumption that drug nodes could
not be conditionally dependent on codon nodes, we carried out
a replicate analysis without this constraint. The unconstrained
Bayesian network consensus structure recovered 10 out of
the 13 directed edges from drug nodes to codon nodes
(IDV3positions 85 and 95, NFV3positions 20 and 74,
SQV3positions 73, 74, and 90, ritonavir3position 34,
tipranavir3position 53, and APV3position 54) with high mar-
ginal posterior probabilities (�0.9) (data not shown). Only one
edge between drug and codon nodes in the unconstrained
network was oriented in the opposite direction (position
453ATV). This reversed edge was likely a spurious associa-
tion due to the low frequency of ATV (n � 24) among patient

FIG. 2. Consensus Bayesian network for the joint distribution of mixtures and PIs. A consensus Bayesian network was assembled from edges
with a marginal posterior probability exceeding 0.9. Each circular “mixture” node encodes the presence or absence of a nonsynonymous mixture
at the codon site identified by the node label. Mixture nodes are color coded violet if major resistance mutations to one or more PIs have been
described at that position and are color coded orange for minor mutations, according to an expert panel (35). Each square “drug” node encodes
the presence or absence of a protease inhibitor upon isolation of the sequence, where the node label is the abbreviation of the inhibitor name.
Undirected edges indicate the occurrence of either directed edge in the MCMC sample. Directed edges from mixture nodes to drug nodes were
banned from the network. Each edge is labeled with the support value from a nonparametric bootstrap analysis of 100 samples. Edges connecting
the drug node ATV are dashed to indicate that these edges were not observed in bootstrap networks. Filled rectangles enclose edges that were
also recovered in a Bayesian network of mixtures from only PI-naive sequences. LPV, lopinavir; TPV, tipranavir; RTV, ritonavir.
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drug regimens. All other features of the original network struc-
ture were also recovered intact, including all clusters of codon
nodes. Consequently, we will continue to refer to the original
consensus network structure in this section.

The majority of mixture nodes in the resistance component
fell into one of two clusters separated by drug nodes. The
larger cluster was comprised predominantly of a hub centered
around the mixture node V82, which was connected by eight
different edges to the mixture nodes L10, V32, M46, G48, I54,
I84, L90, and I93. Eight out of 12 mixture nodes in the V82
cluster corresponded to positions where primary resistance
mutations have been documented (35), including all three of
the mixture nodes connected to drug nodes (NFV3N88,
SQV3L90, and APV3I54). In addition, many of the mixture
nodes in this cluster have previously been implicated in con-
ferring cross-resistance to multiple PIs. However, several these
mixture nodes (e.g., L10 and I84) were blocked from drug
nodes by one or more intervening mixture nodes, suggesting
that many ostensible associations between mutations and
cross-resistance could be explained by residue-residue interac-
tions with broadly compensating mutations at other sites,
e.g., V82.

A smaller cluster within the resistance component was com-
prised of six mixture nodes (T12, I13, K14, I15, K20, and L33)
connected to the hub of drug nodes by a single edge
(NFV3K20). Several edges in this cluster formed a causal
chain across the mixture nodes T12, I13, K14, and I15. These
edges were also recovered in another Bayesian network that
was trained exclusively on mixtures from PI-naive sequences,
indicating that the edges represented residue-residue interac-
tions within the native structure of PR irrespective of PIs.

The remaining network components were comprised of res-
idue-residue interactions that were not influenced by the pres-
ence of PIs; 8 out of 11 edges in these components were also
recovered by the PI-naive network (Fig. 2). Furthermore, mix-
ture nodes in the “PI-independent” components were dispro-
portionately represented in the set of codon sites under statis-
tically significant diversifying selection among PI-naive
patients (i.e., dN � dS � 0) (see above). This result implied
that diversification at these sites was being driven by factors
other than selection for resistance, such as the immune re-
sponse mediated by cytotoxic T lymphocytes (CTLs) (51).

Structural context of PI resistance. We mapped the resis-
tance component of the Bayesian network to a structural
model of an HIV-1 subtype B protease molecular dimer com-
plexed with the inhibitor nelfinavir (Protein Data Bank acces-
sion number 1OHR) (36). From the resistance component,
mixture nodes forming a hub with V82 at its center corre-
sponded to residues that were located within a distinct layer
spanning the flap and the substrate cleft (Fig. 3). This cluster
included several residues near the active site (i.e., V82 and I84)
that can potentially form direct contacts with either protease
inhibitors or substrate molecules. However, residues that were
identified as being sites of primary resistance mutations by
directed edges in the network (I54, N88, and L90) were gen-
erally located further away from the substrate cleft. A second
cluster of mixture nodes from the resistance component
mapped to residues that were all localized in the “hinge” re-
gion of the PR molecule, located distally from the inhibitor
binding site (Fig. 3). Residues within this cluster were either

adjacent in the primary structure or separated by no more than
4 Å (i.e., minimum distance between atoms in the respective
side chains). In sum, the two clusters of mixture nodes from the
resistance component of our network mapped to distinct re-
gions in the structural model of PR, suggesting that the genetic
basis of resistance to PIs could be partitioned into at least two
distinct functional modules.

DISCUSSION

We have taken a new approach to unraveling PI resistance in
HIV-1 using nonsynonymous mixtures in PR to quantify the
evolutionary response within patients to the onset of drug
therapy. First, we screened population-based sequences of
HIV-1 protease for mixtures, which can represent nucleotide
polymorphisms in the virus population. Second, we determined
the validity of using mixtures as a signature of viral evolution
within hosts by comparing variation in mixture frequencies to
nonsynonymous and synonymous substitution rates at each site
in the protease gene. The substitution rates were estimated by
reconstructing the substitution history of the sequences ac-
cording to their relationships within a hypothetical phylogeny.
We found that site-specific selection for different variants
across the patient population was recapitulated by an excess of
nonsynonymous mixtures within hosts at those sites. This out-
come was unique to patients under PI therapy, which implies
that the distribution of nonsynonymous mixtures is being
shaped by selection for PI resistance. Third, we analyzed this
entire distribution at once using a Bayesian network to evalu-
ate the effect of different PIs on the evolution of HIV-1 within
hosts.

Using sequence and drug regimen data obtained from the
Stanford HIV Drug Resistance Database, we were able to

FIG. 3. Visualization of a structural model of HIV-1 protease. This
image depicts a structural model of the HIV-1 protease dimer com-
plexed with a molecule of the inhibitor nelfinavir (Protein Data Bank
accession number 1OHR). The model is oriented such that the binding
cavity containing the inhibitor molecule (emphasized as a dark gray
ball-and-stick model) is visible. Residues corresponding to the V82-
containing cluster of mixture nodes in the “resistance” component of
the Bayesian network are orange or yellow, where the latter indicates
residues under the direct influence of PIs. Residues corresponding to
the K20-containing cluster of mixture nodes are green.

VOL. 81, 2007 HIV-1 RESISTANCE AND MIXTURES 13603



recover well-documented features of this response, such as the
cluster of residues associated with cross-resistance (33) and the
specific association between nelfinavir and mutations at site 30,
and uncover several novel features as well. However, our use of
mixtures to dissect the genetic basis of PI resistance in HIV-1
is subject to some unique caveats. First, the frequency of non-
synonymous mixtures at a given codon site is sensitive to the
strength of directional selection (59). Although nonsynony-
mous mixtures are enriched by weak selection, they can also be
removed by the rapid fixation of favorable variants in the
population. Because we omitted codon sites at which nonsyn-
onymous mixtures occurred in fewer than 3 out of 5,651 se-
quences, we may have inadvertently excluded sites under
strong selection. However, none of the sites affected by this
criterion (P1, G27, A28, D29, G40, W42, P44, G52, V56, Q59,
G78, T80, P81, G94, T96, and F99) has previously been impli-
cated in resistance to PIs (35). Furthermore, we found a strong
correlation between the quantities mN � mS and dN � dS,
indicating that sites deficient in nonsynonymous mixtures were
conserved, i.e., under strong purifying selection.

Second, we encoded the presence of any nonsynonymous
mixture within a codon site as a single observation without
making a distinction between mixtures that could be resolved
into different amino acids. The mixture-containing codons
GYA and GSA can both be resolved to alanine, for example,
but the alternate resolution of GYA is valine, whereas GSA
resolves to glycine. This omission may confound residue-spe-
cific associations between codon sites or between a codon site
and a specific PI. For instance, residue-residue interactions
between codon sites 46, 54, and 88 in HIV-1 PR are condi-
tional based on the actual residues involved (61). Although it
is possible to encode different types of nonsynonymous mix-
tures for each codon site, doing so greatly inflates the com-
plexity of the Bayesian network. It is also impossible to distin-
guish the ancestral and derived nucleotides for a given mixture.
A mixture does not inform us about the direction of evolution,
and the occurrence of multiple mixtures in a sequence does not
reveal the linkage relationship between the mutations, i.e.,
whether the mutations reside on the same nucleic acid. Be-
cause the rate of recombination exceeds the mutation rate in
HIV-1 (62), the linkage disequilibrium between mutations can
be rapidly broken down. However, recombination may be sup-
pressed by the bottleneck in genetic variation caused by selec-
tion for resistance to PIs (53).

Third, sequencing mixtures are a considerably error-prone
measure of within-host polymorphism. This error affects the
interpretation of absolute numbers of mixtures, such as mean
differences between treated and untreated patient groups, but
not the detection of covariation among sites or associations
with drug regimens. Nevertheless, it is important to diagnose
this source of uncertainty. The probability of observing a mix-
ture is dependent on the frequency of the minority variant in
the population (32, 43, 46, 67, 70). It is also sensitive to differ-
ences in experimental conditions and protocols (e.g., location
of primers), sequence quality, and base-calling criteria among
laboratories. Shafer et al. (69) previously showed that most
discordances between two laboratories were due to inherent
sampling variation in sequencing a heterogeneous population
rather than exogenous differences in the sequencing process.
However, Sayer et al. (66) found that nine laboratories pro-

cessing the same set of HIV-1 protease and RT samples varied
consistently in their rates of reporting mixtures. They were
unable to resolve whether differences in reporting mixtures
were due to experimental procedures or subsequent sequence
editing. Their assessment also found that a laboratory’s rate of
reporting mixtures correlated with its success at reporting sub-
stitutions associated with resistance, highlighting the need for
a standardization of laboratory protocols. Establishing stan-
dards will require that we understand which aspects of the
sequencing protocol contribute the most variability in detect-
ing mixtures. For instance, Galli et al. (28) previously noted
that most discordances were due to the extraction and reverse
transcription steps of processing patient samples.

Moreover, within-host polymorphisms do not necessarily
represent the effect of selection on emerging advantageous
mutations. For instance, many patients become superinfected
or coinfected with multiple variants of HIV-1 (31, 72), which
may be manifested by an excess of mixtures in population-
based sequences. However, the overall incidence of superin-
fection or coinfection appears to remain low in patient popu-
lations, with estimates ranging from 0.5 to 5% (16, 72).
Infection by multiple variants of HIV-1 may also occur by
transmission of a multiply infected cell (63), but these variants
immediately undergo a severe selective bottleneck (44) and are
unlikely to contribute to the frequency of mixtures. Drug-naive
patients may also become infected by resistant variants of
HIV-1 transmitted from individuals undergoing drug therapy
(47) such that mixtures may reflect the reversion of drug re-
sistance mutations. On the other hand, we note several lines of
evidence showing that this process does not significantly influ-
ence the evolution of HIV-1 within hosts. First, the reversion
of drug-resistant variants would be manifested as a surplus of
nonsynonymous mixtures at resistance-associated sites in se-
quences from PI-naive patients, but we find no such trend in
our data (Fig. 1). Second, the reversion of resistant variants
transmitted to a drug-naive host is relatively slow and unlikely
to be observed as mixtures (4, 9, 56), and the removal of the 21
putatively PI-resistant sequences from the PI-naive data set
had no effect on the outcome of our analysis. Third, patients
that have received successful drug treatments should not be
infectious. Although several processes can influence the fre-
quency of mixtures, we were nevertheless able to recover a
strong signature of within-host evolution shaped by selection
for resistance.

Despite these caveats, our analysis of mixtures provides a
number of significant improvements on previous attempts to
map the genetic basis of PI resistance. First, mixtures are
phylogenetically independent observations. Previous studies
(7, 18, 78) invariably focused on the variation in amino acid
sequences at the level of the patient population, i.e., fixed
substitutions in divergent HIV-1 populations. However, sub-
stitutions found within sequences in the presence of PI therapy
may have occurred before the onset of PI therapy or may have
been transmitted from a previous host, thereby producing spu-
rious associations with resistance in a comparative study. In
contrast, sequence mixtures directly manifest the evolution of
HIV-1 within each patient. Second, our application of Bayes-
ian networks to analyze the joint distribution of mixtures and
PIs enables us to distinguish between the direct influence of a
PI from an indirect association mediated by residue-residue
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interactions in PR (18). For instance, a mutation may appear
to be associated with a specific PI because it compensates for
a resistance mutation. Hence, our methods can also be used to
detect covariation among sites. Third, all eight PIs were en-
coded by nodes in the Bayesian network explicitly recognizing
the prevalence of combination therapy. Thus, associations be-
tween specific PIs and codon sites in PR are evaluated in the
context of other PIs. Previous studies have either analyzed PIs
on a case-by-case basis (7, 18) or grouped patients by the
number of PIs in their regimens (78). As a result, associations
between mutations and specific PIs were confounded by the
effects of other PIs (e.g., the use of ritonavir as a pharmaco-
logic booster). Fourth, our use of mixture data reveals trends in
the evolution of resistance within patients and is therefore less
susceptible to becoming confounded by trends in the evolution
of HIV-1 at the level of the patient population. For example,
the immune response mediated by CTLs can influence the
frequency of mutations within CTL epitopes (50) that often
coincide with sites where resistance mutations occur (51).

The structure of the Bayesian network inferred in this study
indicates that residue-residue interactions are more likely to be
responsible for the statistical associations of these sites with a
cross-resistant phenotype. For instance, codon site V82 ap-
pears to be a site for “global” compensatory mutations;
through its interactions with other sites, V82 becomes indi-
rectly associated with resistance to multiple PIs. Although this
distinction between correlation and causation does not neces-
sarily lessen the predictive value of mutations at V82, it pro-
vides insight into the mechanistic basis of cross-resistance. The
V82 side chain can directly contact the PI molecule, but its
mutation can also cause considerable structural rearrange-
ments in PR (3). The lack of edges between drug nodes and
V82 in the network suggests that the emergence of a mutation
at V82 within a patient is not itself sufficient to confer resis-
tance, which implies that the conformational effect of the mu-
tant residue is more important than its contact with the inhib-
itor. Additional mixture nodes that correspond to sites
customarily associated with primary resistance (e.g., V32, G48,
and I84) (35) are similarly “blocked” from drug nodes in the
network and also occur in the substrate cleft of the PR struc-
ture, suggesting a common mechanism of resistance based on
mutational effects on the structural conformation of protease.

We also found several codon sites at which variation within
patients is independent of PI therapy. This result appears to
contradict previous work because seven of the codon sites
represented by nodes in the PI-independent network compo-
nents were previously associated with minor resistance to PIs
(35). In addition, these sites tend to be under strong diversi-
fying selection in the patient population (i.e., dN � dS � 0),
and they overlap remarkably with those reported to be associ-
ated with HLA variation in the patient population (10, 51). For
example, Brumme et al. (10) recently identified significant
associations between HLA types and sites L10, T12, K14, I15,
E35, N37, P63, I64, and I93. Although E35, P63, and I64 have
been characterized as being sites of minor resistance muta-
tions, our network indicates that they are PI independent.
Consequently, we propose that these associations with resis-
tance are false positives caused by founder effects driven by
population level selection for CTL escape variants (39). We
also find extensive diversifying selection at sites N37 and I93

(12, 38); N37 is independent of PIs, and the edge joining I93 to
V82 in the resistance network is supported in only a minority
of bootstrap samples. Similarly, we found that site V77 was
under significant diversifying selection (dN � dS � 0) in both
patient groups but was not associated with any PIs in our
network. Mutations at this site have been associated with mi-
nor resistance to PIs (35), but it is also a potential anchor
position within an HLA B57-restricted epitope (25). Contribu-
tions to resistance and CTL escape are not necessarily mutu-
ally exclusive effects of site-specific variation (51). However,
failure to account for the phylogeny exposes population-level
resistance association studies to misinterpreting the genetic
divergence driven by the patient-specific immune response.

Sequencing mixtures are a poorly understood phenomenon.
Although they are an inherently noisy sort of observation, they
can nevertheless retain useful information about the evolution
of HIV-1 within hosts. In previous work, we demonstrated that
mixtures in population-based HIV-1 and hepatitis C virus se-
quences recapitulate the adaptation of the circulating virus
population to immune variation in the host population owing
to the similar time scales of transmission and selection in these
viruses (59). The accurate interpretation of mixtures will ulti-
mately require a comprehensive model that addresses the rel-
ative contributions of both population genetic (59) and exper-
imental (28) processes. This model may be further complicated
by the infrequent occurrence of coinfection or superinfection.
Such a model remains outside the scope of this paper. Never-
theless, we show here that the evolution of resistance to PI in
HIV-1 can be gainfully investigated using mixtures. Our anal-
ysis identifies many potential genetic interactions within HIV-1
protease from covariation in the site-specific frequencies of
nonsynonymous mixtures. Put simply, the coincidence of non-
synonymous mixtures at pairs of sites across sequences implies
that the corresponding residues are structurally or functionally
related. We find that M46 and V82 participate in interactions
with several other sites, for instance, and may play an impor-
tant role in conditioning which genetic pathway the virus pop-
ulation will traverse to evolve resistance to PIs. For example,
codon node I93 is conditionally dependent on both V82 and
IDV (indinavir), so a preceding mutation at V82 may deter-
mine whether the population will use I93 or an alternative
pathway such as I85 to acquire resistance (data not shown).
This finding corroborates similar conclusions derived from
structural studies of HIV-1 protease (3). Similarly, clinical
studies of HIV-1 protease reported that multiple resistance
mutations may need be accumulated in a specific order (49).
Using our current model and data set, however, it is difficult to
identify mutational orders from the distribution of mixtures.
This important objective will require extensive longitudinal
sequence data as well as an extension of these methods into
dynamic Bayesian networks (27), which would be better suited
for detecting trends in the distribution of mixtures or substi-
tutions over time.
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