Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1979 Aug;139(2):442–447. doi: 10.1128/jb.139.2.442-447.1979

Specific inactivator of flagellar reversal in Salmonella typhimurium.

J L Spudich, D E Koshland Jr
PMCID: PMC216888  PMID: 378971

Abstract

Specific inhibition of flagellar rotation reversal was observed after exposure of chemotactic Salmonella typhimurium to citrate autoclaved at neutral pH. The presence of a rotation reversal inactivator was established in autoclaved citrate-containing media and nutrient broth. Since modulation of flagellar rotation by attractants and repellents is the basis of chemotactic behavior, a specific inhibitor of rotation reversal, which is essential for tumble generation, provides a useful probe into the molecular mechanism of bacterial chemotaxis. The inactivator inhibits clockwise rotation without affecting counterclockwise rotation, speed of rotation, or the capacity of the cells to grow and divide. Inactivation of clockwise rotation is gradual and irreversible, differing from the transient inhibition of clockwise rotation by attractants, which is characterized by an immediate suppression followed by a return to normal rotation patterns. The rotation reversal inactivator is stable to acidification, rotary evaporation, lyophilization, and rehydration.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler J. Chemotaxis in bacteria. Annu Rev Biochem. 1975;44:341–356. doi: 10.1146/annurev.bi.44.070175.002013. [DOI] [PubMed] [Google Scholar]
  2. Berg H. C. Chemotaxis in bacteria. Annu Rev Biophys Bioeng. 1975;4(00):119–136. doi: 10.1146/annurev.bb.04.060175.001003. [DOI] [PubMed] [Google Scholar]
  3. Berg H. C., Tedesco P. M. Transient response to chemotactic stimuli in Escherichia coli. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3235–3239. doi: 10.1073/pnas.72.8.3235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Koshland D. E., Jr A response regulator model in a simple sensory system. Science. 1977 Jun 3;196(4294):1055–1063. doi: 10.1126/science.870969. [DOI] [PubMed] [Google Scholar]
  5. Larsen S. H., Reader R. W., Kort E. N., Tso W. W., Adler J. Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli. Nature. 1974 May 3;249(452):74–77. doi: 10.1038/249074a0. [DOI] [PubMed] [Google Scholar]
  6. Macnab R. M., Koshland D. E., Jr The gradient-sensing mechanism in bacterial chemotaxis. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2509–2512. doi: 10.1073/pnas.69.9.2509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. QUADLING C., STOCKER B. A. An environmentally-induced transition from the flagellated to the non-flagellated state in Salmonella typhimurium: the fate of parental flagella at cell division. J Gen Microbiol. 1962 Jun;28:257–270. doi: 10.1099/00221287-28-2-257. [DOI] [PubMed] [Google Scholar]
  8. Spudich J. L., Koshland D. E., Jr Non-genetic individuality: chance in the single cell. Nature. 1976 Aug 5;262(5568):467–471. doi: 10.1038/262467a0. [DOI] [PubMed] [Google Scholar]
  9. VOGEL H. J., BONNER D. M. Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem. 1956 Jan;218(1):97–106. [PubMed] [Google Scholar]
  10. Vary P. S., Stocker B. A. Nonsense motility mutants in Salmonella typhimurium. Genetics. 1973 Feb;73(2):229–245. doi: 10.1093/genetics/73.2.229. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES