Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 1998 Jan;64(1):61–66. doi: 10.1136/jnnp.64.1.61

Autosomal dominant pure spastic paraplegia: a clinical, paraclinical, and genetic study

J Nielsen 1, K Krabbe 1, P Jennum 1, P Koefoed 1, L Jensen 1, K Fenger 1, H Eiberg 1, L Hasholt 1, L Werdelin 1, S Sorensen 1
PMCID: PMC2169895  PMID: 9436729

Abstract

OBJECTIVES—At least three clinically indistinguishable but genetically different types of autosomal dominant pure spastic paraplegia (ADPSP) have been described. In this study the clinical, genetic, neurophysiological, and MRI characteristics of ADPSP were investigated.
METHODS—Sixty three at risk members from five families were clinically evaluated. A diagnostic index was constructed for the study. Microsatellite genotypes were determined for chromosomes 2p, 14q, and 15q markers and multipoint linkage analyses were performed. Central motor conduction time studies (CMCT), somatosensory evoked potential (SSEP) measurement, and MRI of the brain and the total spinal cord were carried out in 16 patients from four families.
RESULTS—The clinical core features of ADPSP were homogeneously expressed in all patients but some features were only found in some families and not in all the patients within the family. In two families non-progressive "congenital" ADPSP was seen in some affected members whereas adult onset progressive ADPSP was present in other affected family members. As a late symptom not previously described low backache was reported by 47%. Age at onset varied widely and there was a tendency for it to decline in successive generations in the families, suggesting anticipation. Genetic linkage analysis confined the ADPSP locus to chromosome 2p21-p24 in the five families. The lod scores obtained by multipoint linkage analysis were positive with a combined maximum lod score of Z=8.60. The neurophysiological studies only showed minor and insignificant prolongation of the central motor conduction time and further that peripheral conduction and integrity of the dorsal columns were mostly normal. Brain and the total spinal cord MRI did not disclose any significant abnormalities compared with controls.
CONCLUSIONS—ADPSP linked to chromosome 2p21-p24 is a phenotypic heterogeneous disorder characterised by both interfamilial and intrafamilial variation. In some families the disease may be "pure" but the existence of "pure plus" families is suggested in others. The neurophysiological and neuroimaging investigations did not show any major abnormalities.



Full Text

The Full Text of this article is available as a PDF (148.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Behan W. M., Maia M. Strümpell's familial spastic paraplegia: genetics and neuropathology. J Neurol Neurosurg Psychiatry. 1974 Jan;37(1):8–20. doi: 10.1136/jnnp.37.1.8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bruyn R. P. The neuropathology of hereditary spastic paraparesis. Clin Neurol Neurosurg. 1992;94 (Suppl):S16–S18. doi: 10.1016/0303-8467(92)90010-z. [DOI] [PubMed] [Google Scholar]
  3. Bruyn R. P., van Dijk J. G., Scheltens P., Boezeman E. H., Ongerboer de Visser B. W. Clinically silent dysfunction of dorsal columns and dorsal spinocerebellar tracts in hereditary spastic paraparesis. J Neurol Sci. 1994 Sep;125(2):206–211. doi: 10.1016/0022-510x(94)90037-x. [DOI] [PubMed] [Google Scholar]
  4. Bürger J., Metzke H., Paternotte C., Schilling F., Hazan J., Reis A. Autosomal dominant spastic paraplegia with anticipation maps to a 4-cM interval on chromosome 2p21-p24 in a large German family. Hum Genet. 1996 Sep;98(3):371–375. doi: 10.1007/s004390050223. [DOI] [PubMed] [Google Scholar]
  5. Cambi F., Tartaglino L., Lublin F., McCarren D. X-linked pure familial spastic paraparesis. Characterization of a large kindred with magnetic resonance imaging studies. Arch Neurol. 1995 Jul;52(7):665–669. doi: 10.1001/archneur.1995.00540310035013. [DOI] [PubMed] [Google Scholar]
  6. Christiansen P., Larsson H. B., Thomsen C., Wieslander S. B., Henriksen O. Age dependent white matter lesions and brain volume changes in healthy volunteers. Acta Radiol. 1994 Mar;35(2):117–122. [PubMed] [Google Scholar]
  7. Claus D., Waddy H. M., Harding A. E., Murray N. M., Thomas P. K. Hereditary motor and sensory neuropathies and hereditary spastic paraplegia: a magnetic stimulation study. Ann Neurol. 1990 Jul;28(1):43–49. doi: 10.1002/ana.410280109. [DOI] [PubMed] [Google Scholar]
  8. Dib C., Fauré S., Fizames C., Samson D., Drouot N., Vignal A., Millasseau P., Marc S., Hazan J., Seboun E. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature. 1996 Mar 14;380(6570):152–154. doi: 10.1038/380152a0. [DOI] [PubMed] [Google Scholar]
  9. Dürr A., Brice A., Serdaru M., Rancurel G., Derouesné C., Lyon-Caen O., Agid Y., Fontaine B. The phenotype of "pure" autosomal dominant spastic paraplegia. Neurology. 1994 Jul;44(7):1274–1277. doi: 10.1212/wnl.44.7.1274. [DOI] [PubMed] [Google Scholar]
  10. Fink J. K., Heiman-Patterson T., Bird T., Cambi F., Dubé M. P., Figlewicz D. A., Fink J. K., Haines J. L., Heiman-Patterson T., Hentati A. Hereditary spastic paraplegia: advances in genetic research. Hereditary Spastic Paraplegia Working group. Neurology. 1996 Jun;46(6):1507–1514. doi: 10.1212/wnl.46.6.1507. [DOI] [PubMed] [Google Scholar]
  11. Fink J. K., Wu C. T., Jones S. M., Sharp G. B., Lange B. M., Lesicki A., Reinglass T., Varvil T., Otterud B., Leppert M. Autosomal dominant familial spastic paraplegia: tight linkage to chromosome 15q. Am J Hum Genet. 1995 Jan;56(1):188–192. [PMC free article] [PubMed] [Google Scholar]
  12. Harding A. E. Classification of the hereditary ataxias and paraplegias. Lancet. 1983 May 21;1(8334):1151–1155. doi: 10.1016/s0140-6736(83)92879-9. [DOI] [PubMed] [Google Scholar]
  13. Harding A. E. Hereditary "pure" spastic paraplegia: a clinical and genetic study of 22 families. J Neurol Neurosurg Psychiatry. 1981 Oct;44(10):871–883. doi: 10.1136/jnnp.44.10.871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hazan J., Fontaine B., Bruyn R. P., Lamy C., van Deutekom J. C., Rime C. S., Dürr A., Melki J., Lyon-Caen O., Agid Y. Linkage of a new locus for autosomal dominant familial spastic paraplegia to chromosome 2p. Hum Mol Genet. 1994 Sep;3(9):1569–1573. doi: 10.1093/hmg/3.9.1569. [DOI] [PubMed] [Google Scholar]
  15. Hazan J., Lamy C., Melki J., Munnich A., de Recondo J., Weissenbach J. Autosomal dominant familial spastic paraplegia is genetically heterogeneous and one locus maps to chromosome 14q. Nat Genet. 1993 Oct;5(2):163–167. doi: 10.1038/ng1093-163. [DOI] [PubMed] [Google Scholar]
  16. Maciel P., Gaspar C., DeStefano A. L., Silveira I., Coutinho P., Radvany J., Dawson D. M., Sudarsky L., Guimarães J., Loureiro J. E. Correlation between CAG repeat length and clinical features in Machado-Joseph disease. Am J Hum Genet. 1995 Jul;57(1):54–61. [PMC free article] [PubMed] [Google Scholar]
  17. Monckton D. G., Caskey C. T. Unstable triplet repeat diseases. Circulation. 1995 Jan 15;91(2):513–520. doi: 10.1161/01.cir.91.2.513. [DOI] [PubMed] [Google Scholar]
  18. Nielsen J. E., Sørensen S. A., Hasholt L., Nørremølle A. Dentatorubral-pallidoluysian atrophy. Clinical features of a five-generation Danish family. Mov Disord. 1996 Sep;11(5):533–541. doi: 10.1002/mds.870110508. [DOI] [PubMed] [Google Scholar]
  19. Nørremølle A., Sørensen S. A., Fenger K., Hasholt L. Correlation between magnitude of CAG repeat length alterations and length of the paternal repeat in paternally inherited Huntington's disease. Clin Genet. 1995 Mar;47(3):113–117. doi: 10.1111/j.1399-0004.1995.tb03941.x. [DOI] [PubMed] [Google Scholar]
  20. Ormerod I. E., Harding A. E., Miller D. H., Johnson G., MacManus D., du Boulay E. P., Kendall B. E., Moseley I. F., McDonald W. I. Magnetic resonance imaging in degenerative ataxic disorders. J Neurol Neurosurg Psychiatry. 1994 Jan;57(1):51–57. doi: 10.1136/jnnp.57.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pedersen L., Trojaborg W. Visual, auditory and somatosensory pathway involvement in hereditary cerebellar ataxia, Friedreich's ataxia and familial spastic paraplegia. Electroencephalogr Clin Neurophysiol. 1981 Oct;52(4):283–297. doi: 10.1016/0013-4694(81)90057-2. [DOI] [PubMed] [Google Scholar]
  22. Pelosi L., Lanzillo B., Perretti A., Santoro L., Blumhardt L., Caruso G. Motor and somatosensory evoked potentials in hereditary spastic paraplegia. J Neurol Neurosurg Psychiatry. 1991 Dec;54(12):1099–1102. doi: 10.1136/jnnp.54.12.1099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Polo J. M., Calleja J., Combarros O., Berciano J. Hereditary "pure" spastic paraplegia: a study of nine families. J Neurol Neurosurg Psychiatry. 1993 Feb;56(2):175–181. doi: 10.1136/jnnp.56.2.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schady W., Dick J. P., Sheard A., Crampton S. Central motor conduction studies in hereditary spastic paraplegia. J Neurol Neurosurg Psychiatry. 1991 Sep;54(9):775–779. doi: 10.1136/jnnp.54.9.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schady W., Sheard A. A quantitative study of sensory function in hereditary spastic paraplegia. Brain. 1990 Jun;113(Pt 3):709–720. doi: 10.1093/brain/113.3.709. [DOI] [PubMed] [Google Scholar]
  26. Schäffer A. A., Gupta S. K., Shriram K., Cottingham R. W., Jr Avoiding recomputation in linkage analysis. Hum Hered. 1994 Jul-Aug;44(4):225–237. doi: 10.1159/000154222. [DOI] [PubMed] [Google Scholar]
  27. Tedeschi G., Allocca S., Di Costanzo A., Carlomagno S., Merla F., Petretta V., Toriello A., Tranchino G., Ambrosio G., Bonavita V. Multisystem involvement of the central nervous system in Strümpell's disease. A neurophysiological and neuropsychological study. J Neurol Sci. 1991 May;103(1):55–60. doi: 10.1016/0022-510x(91)90284-e. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES