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ABSTRACT Computer simulations of random walk on the
Sierpiński gasket and percolation clusters demonstrate that
the short, initial condition-dependent stage of protein involv-
ing reactions can dominate the progress of the reaction over
the main stage described by the standard kinetics. This
phenomenon takes place if the intramolecular conformational
transition dynamics modeled by the stochastic process is slow
enough and the initial conformational substate of the protein
already belongs to the transition state of the reaction. Both
conditions are realized in two kinds of experiments: small
ligand rebinding to protein after laser f lash photolysis and
direct recording of single protein channel activity. The model
considered suggests simple analytical formulae that can ex-
plain the time behavior of the processes observed and its
variation with temperature. The initial condition-dependent
stage, and not the stage described by the standard kinetics, is
expected as responsible for the coupling of component reac-
tions in the complete catalytic cycles and more complex
processes of biological free energy transduction.

Formulation of an advanced statistical theory of biochemical
processes needs simple but realistic models of phenomena
underlying microscopic dynamics of proteins. Many experi-
ments performed since the mid-70s have indicated the exis-
tence of a slow activated dynamics of conformational transi-
tions in the protein native phase apart from the usual much
faster vibrations (1–6). The spectrum of relaxation times
characterizing the conformational transition dynamics spreads
over many orders of magnitude from 10211 s (local side chain
rotations or hydrogen bond rearrangements on the protein
surface) to hours or even years (the mean waiting time for
protein spontaneous unfolding in physiological conditions).
Because of the slow character of intramolecular dynamics, the
hitherto assumed description of most biochemical processes
involving proteins, based as a rule on the classical transition
state theory of reaction rates, needs radical changes (6–8).

Conformational transitions do not take place in the entire
bulk of native proteins but are limited to liquid-like regions
surrounding solid-like fragments of secondary structure. At
least in the range from 10211 to 1027 s the relaxation time
spectrum of conformational transition dynamics looks practi-
cally like a quasi-continuous one (6). There are two classes of
models provided hitherto by literature, which display this
property. In the first, ‘‘protein machine’’ class of models (9),
the dynamics of conformational transitions is represented by a
quasi-continuous diffusion in a certain effective potential
along a few ‘‘mechanical’’ coordinates, e.g., angles or distances
describing mutual orientation of approximately rigid frag-

ments of secondary structure or larger structural elements.
The spectrum of reciprocal relaxation times for dynamics of
such a type is more or less homogeneous (equidistant). Oth-
erwise, in the second class of models, referred to as ‘‘protein
glass’’ (10), the density of the spectrum is assumed to vary
according to a power law, which causes the dynamics to be
approximately alike in many time scales. The latter is consid-
ered a generic property of glassy materials, thus the name.

Two kinds of experiments give especially strong grounds for
the protein glass type models: studies of small ligand rebinding
to heme proteins in various conditions after a laser flash
photolysis (3–5, 11) and direct observations, with the help of
the patch clamp technique, of f luctuations of the ionic current
flowing through single protein channels (12–14). More de-
tailed references to the experimental work are given in the
review (6). Time scaling can originate either from a hierarchy
of barrier heights in the conformational potential energy
landscape (the ‘‘fractal time’’), or from a hierarchy of bottle-
necks (the entropy barrier heights) in the network joining
conformations between which direct transitions take place (the
‘‘fractal space’’) (15). A hierarchy of energy barrier heights was
proposed originally by Frauenfelder and coworkers (3–5) to
give a unitary interpretation of the results of a variety of
rebinding experiments and a particular mathematical realiza-
tion of such a hierarchy, especially predisposed for the appli-
cation to proteins, seem to offer various spin-glass models (16).
Most experimental observations supporting the protein glass
picture of dynamics can be, however, equally well interpreted
in terms of the hierary of both the energy and the entropy
barrier heights (6). Mathematical realizations of hierarchical
networks are lattices with the spectral dimension smaller than
2 (17–19). Except the one-dimensional chain, all of the re-
maining lattices with such a property are fractals (20). Fig. 1
shows two examples of fractal lattices: the planar Sierpiński
gasket of the spectral dimension d̃ 5 2log3ylog5 ' 1,365 and
the planar percolation cluster of the spectral dimension d̃ close
to 4y3. The notion of the spectral or fracton dimension should
not be confused with the notion of the fractal dimension; the
latter can be much larger than 2 in the case of hierarchical
lattices. A simple explanation of both concepts in the context
of protein dynamics is given in ref. 6.

Our study clearly indicates the importance of the initial
condition-dependent stage of biochemical reactions. It is this
stage that is observed in the two kinds of experiments men-
tioned above. Unfortunately, the initial stage of the reaction is
indescribable in terms of the usual rate constants. A more
abstract notion of the first-passage time distribution density is
necessary, and this notion is the main topic of the first,
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Reaction Rate and the First-Passage Time Problem. In
formal terms, the stochastic dynamics of conformational tran-
sitions within a given chemical state R of a protein macro-
molecule is described by a system of differential master
equations (21)

d
dt

plul0~t! 5 O
l9

@wll9pl9ul0~t! 2 wl9l plul0~t!#. [1]

The quantity plul0
(t) denotes the probability of the macromol-

ecule being in a conformational substate l at time t if initially
it was in the conformational substate l0 and the coefficients wll9

are transition probabilities per unit time from l9 to l. A set of
points is called a ‘lattice’ if one can identify in it pairs of nearest
neighbors. A stochastic process described by Eq. 1 is referred
to as a random walk or diffusion if the only nonvanishing
transition probabilities are those between the nearest neigh-
bors.

If no reaction is in progress the sum of probabilities of all the
conformational substates composing the chemical state R

Cl0 ; O
l

plul0~t! [2]

is constant and equals to unity for each l0. The progress of an
irreversible reaction

R3 P

means that there is a subset R‡ distinguished in R, referred to
as the transition state of the reaction, composed of confor-
mational substates for which Eq. 1 is to be replaced by

d
dt

plul0~t! 5 O
l9

@wll9pl9ul0~t! 2 wl9l plul0~t!# 2 vlplul0~t!, [3]

with additional coefficients vl describing the probabilities per
unit time of leaving the set R. Any reversible reaction can be
formally decomposed into two independent irreversible reac-
tions (6).

In the presence of the reaction the quantity Cl0
, Eq. 2, is no

longer constant and decreases in time. It has the meaning of
survival probability in R through time t (probability that at
time t the molecule which started from the conformational
substate l0 is still in R). The quantity 1 2 Cl0

(t) is the
cumulative probability of the first-passage time to P being
shorter than t, thus its derivative

fl0~t! 5 2
d
dt

Cl0~t! 5 O
l

vlplul0~t! [4]

has the meaning of the first-passage time distribution density.
The mole fraction C(t) of protein molecules being at time t

in the chemical state R, proportional to the concentration [R],
is the survival probability pl0

(t) averaged over the initial
distribution of conformational substates pl0

(0):

C~t! ; O
l0

pl0~0!Cl0~t!. [5]

Following Eq. 4, the most general equation determining the
time course of C(t) is of the form

d
dt

C~t! 5 2f~t!, [6]

with f being a given function of time determined by the
particular initial distribution of conformational substates. If
the reaction is an activated process, i.e., if the events of a
molecule leaving the state R are very rare, when compared
with the time of interconformational equilibration, than, after
a short initial period Eq. 6 is simplified to the usual kinetic
equation

d
dt

C~t! 5 2kC~t! [7]

of the solution tending exponentially to zero with the relax-
ation time equal to the reciprocal reaction rate constant k21.
The question is whether or not the initial period of the reaction
can be neglected.

In standard kinetic experiments with an ensemble of mol-
ecules, the initial distribution of microstates is not especially
prepared and usually not much different from the local
equilibrium distribution, which results practically in the ab-
sence of the pre-exponential stage of the reaction, even if the
reaction rate is controlled by the intramolecular dynamics.
However, in the experiments using the patch clamp technique
mentioned at the beginning of this paper, a single protein
molecule can be observed changing stochastically its state
between R and P. As a result, the experiments with single
molecules bring the first-passage time distribution densities,
separately for the forward and backward reaction, each treated
formally as irreversible. Each time after a transition the
molecule starts its microscopic evolution from a conforma-
tional substate within the transition state of the return reac-
tion. The initial distribution of conformational substates con-
fined only to the transition state R‡ is realized also in the
second group of experiments mentioned at the beginning,
where an ensemble of molecules being initially in the thermo-

FIG. 1. Two examples of fractal lattices that can be considered a
reasonable model of the network joining conformational substates of
a protein macromolecule between which direct transitions take place.
(a) Sierpiński gasket. Three small equilateral triangles are combined
into a larger triangle, three larger triangles into an even larger one, and
so on ad infinitum. (b) Percolation cluster. Bonds on a square lattice
are realized stochastically with the probability 1y2 and then clusters
that are not connected to the largest one are removed. Note the
hierarchical structure of bottlenecks in both lattices resulting in time
scaling: the equilibration completes first within subclusters of a lower
order and only then, in a longer time-scale, within the subclusters of
a higher order. Finite number of conformational substates in real
proteins makes the hierarchy restricted both from below and from
above. Of course, in the figure only finite clusters are shown: the one
of the 6th order in the case of the Sierpiński gasket and the one of the
3rd order in the case of the percolation lattice. Limiting the hierarchy
from above can be realized by imposing the periodic or the reflecting
boundary conditions on the outgoing bonds marked with broken lines.
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dynamically stable state P is nonthermally excited to the
unstable state R.

Special preparation of the initial conditions can make the
initial stage of a reaction the most important one, despite the
fact that the reaction is an activated process and this initial
stage is short when compared with the forthcoming exponen-
tial stage. Consequently, it is not the reaction rate constant k
occurring in Eq. 7, that is important in description of such
reactions, but the whole first-passage time distribution density
f(t) occurring in Eq. 6.

The dynamical model described by Eqs. 1 and 3 is quite
general and in practical applications has to be complemented
by additional, seriously simplifying assumptions. Those pro-
vided by the so far available literature seem to develop toward
two opposite limits. In the one extreme, all the microscopic
dynamics of the molecule is assumed to take place within the
transition state (R‡ 5 R). This enables one to apply the kinetic
Eq. 7 in the whole time domain on identifying the rate
parameter k with the transition probability v in Eq. 3 consid-
ered, because of the dependence on l, a random function of
time [the picture of ‘‘f luctuating barrier’’ (3–5) or ‘‘dynamical
disorder’’ (22)]. The opposite extreme is based on the assump-
tion that the transition state R‡ is reduced to a single confor-
mational substate l 5 0 being a ‘‘gate’’ for the reaction, which
is thus referred to as the ‘‘gated reaction’’ (1, 9). For gated
reactions with the initial conformational substate confined to
the transition state (coinciding with the gate), Eq. 6 is specified
to

d
dt

C~t! 5 2v0p0u0~t!. [8]

Only the models that assume gating, when applied in descrip-
tion of the complete enzymatic cycles proceeding under the
steady-state conditions, lead to the reconstruction of the
commonly observed Michaelis–Menten kinetics (9, 23). This is
a strong argument for a supposition that just the models with
gating and not those of fluctuating barriers are usually much
better approximation of the actual situation. The literature
devoted to the former models is much more modest, however.
We hope to complement somewhat this scarceness, consider-
ing in the second, detailed part of the paper the time course
of reactions gated by intramolecular dynamics represented by
a random walk on fractal lattices.

Random Walk on Fractal Lattices in the Presence of a Gate.
Following Eq. 8, the central problem of the theory of gated
reactions is a calculation of the probability p0u0(t) of returning
to the initial point during time t. It should be stressed that, in
the presence of a gate, the time dependence of this quantity
differs essentially from that in the case of the free diffusion
(17–19, 24). Also, it should be noted that the problem of
reactions gated by intramolecular dynamics has to be distin-
guished from the much more extensively studied target and
trapping problems (19, 25). Only the models of random walk
on a one-dimensional chain (26–28), random one-dimensional
chains (29, 30), and integer-dimensional lattices (31) or spaces
(32, 33) have been considered until now in the context of gated
reactions. The model of diffusion on a percolation cluster,
considered in the application to proteins by Doster and
coworkers (34), concerns the trapping problem rather than
that of the gated reaction.

It is a difficult task to find a reasonably approximated
solution to the system of coupled master Eqs. 1 and 3 in the
case of diffusion on lattices of actually fractional dimension.
An alternative to solving equations is a direct computer
simulation of the corresponding stochastic process for a suf-
ficiently large statistical sample. We performed computer
simulations of the random walk both on the percolating cluster
and the Sierpiński gasket, assuming the initial site for this walk
to be simultaneously the gate for the reaction. The studied

lattices were made finite due to additionally imposed periodic
boundary conditions (Fig. 1). Samples of 104 to 106 walkers
were considered. Preliminary results of computer simulations
of the reactions gated by diffusion on the percolation cluster
are given in Ref. 35. Here, we present more complete analysis
for diffusion on the Sierpiński gasket.

There are two parameters of the model: the ratio

q 5 vyw [9]

of the probability of leaving the lattice to the probability of
transition between the neighboring sites (cf. Eqs. 1 and 3), and
the order r of the cluster, which we impose the boundary
conditions on, determining the number N of sites in the lattice:

N 5 ~3r 1 3!y2. [10]

Fig. 2 shows the lin–log plots of the survival probability C vs.
time t obtained for rather small cluster of the 6th order (N 5
366) in a wide range of values of the ratio q. The exactly
exponential long-time decays are apparent with the rate
constant k varying from the value close to qN21 for q 5 0.01
(such a value is provided, for the model considered, by the
transition state theory assuming the gate to be in the local
equilibrium with the rest of the lattice; ref. 6) to the limit value
independent of q, reached practically for q 5 10 (the regime
of rection controlled by the process of restoring the equilib-
rium occupation of the gate; ref. 6). Also, it is seen clearly that
the slower the intersite diffusion compared with the very
crossing the gate, the more dominant the initial, nonexponen-
tial stage of the reaction. These stages are better exposed in the
log–log plots shown in Fig. 3. The results of simulations for
larger clusters of the 9th and 12th order are given there as well.
Study of clusters of different size allowed us to determine a
relation k } L22.27 between the rate constant k in the regime
controlled by the intramolecular dynamics and the linear size
L 5 2r21 of the cluster.

The pre-exponential stages of the simulated reactions
turned out to be well described by a formula

Cini~t! 5 exp~ht!2a erfc~ht!a, [11]

FIG. 2. Lin–log plot of the time courses of the survival probability
obtained in computer simulations of a random walk on the Sierpiński
gasket with all walkers starting at the same site which simultaneously
is the only gate to exit the lattice. Time is measured by the number of
steps in which transitions were randomly generated. The lattice has
been limited to the cluster of the 6th order, and the ratio q of the
probability of leaving the lattice to the probability of transition
between the neighboring sites was assumed to vary from 0.01 (prac-
tically no initial, pre-exponential stage of the reaction) to 100 (more
than 99% of the reaction progress proceeds in the pre-exponential
stage).
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where the symbol erfc denotes the complementary error
function, h21 is a certain unit of time and a is an exponent of
a value a ' 0.32. Eq. 11 with the exponent a 5 1y2 is the exact
solution of the continuous one-dimensional counterpart of the
problem considered (10, 33) (cf. also the exact results for
discrete one-dimensional chains; refs. 26 and 27). In the limit
of short times, Eq. 11 represents the stretched-exponential law
and in the limit of long times, the algebraic power law (6, 10):

Cini~t! < H exp@22~ht!ayÎp#

~ht!2ayÎp

for t ,, h21

for t .. h21. [12]

The simulations clearly indicate that, contrary to the suppo-
sition stated in refs. 32 and 34, the exponent a does not have
to assume a universal value 1y2. In fact, approximate renor-
malization of Eqs. 1 and 3, similar to that performed exactly
for the case of the free diffusion in ref. 36, strongly suggests a
relation between the value of the exponent a and the spectral
dimension of the lattice d̃:

a 5 1 2 d̃y2, [13]

for d̃,2 (following the Polya theorem (24), for d̃ $ 2 the walker
can escape to infinity from the point gate). The value a ' 0.32,
found in our simulations of the random walk on the Sierpiński
gasket (with d̃ ' 1,365), is in the very good agreement with Eq.
13 and also the fits of the power-law decays observed in
simulations of the random walk on the percolating cluster (35)
give the values of a, which do not contradict this relation.

The crossover from the nonexponential decay, Eqs. 11 or 12,
to the exponential decay with the ‘‘chemical’’ relaxation time
k21 can be described with the help of a simple formula

C~t! 5 @~1 2 a! Cini~t! 1 a#e2kt, [14]

with a denoting the level (concentration) from which the
exponential decay begins. The approximation of the results of
simulations with the help of the combined analytical Eqs. 11
and 14 is very good. Its quality is directly evident from Fig. 4.

Also the results of the simulations performed on the
percolation cluster (35) can be fitted to an equation like Eq.
14. In this case, however, both the time constant and the

exponent in the introductory stretched-exponential stage of
the reaction differ from those characterizing the power-law
decay stage and Eq. 11 is not sufficiently general to fit the
simulation data (6, 10). The reason for this is that the
percolation cluster is a random lattice and the choice of the
initial site is crucial—it can have from one up to four nearest
neighbor sites (cf. Fig. 1b). It is the local properties of the
initial site that inf luence the initial stretched-exponential
stage of the reaction and not the global properties of the
whole lattice.

A similar effect is to be obtained for diffusion on the
Sierpiński gasket on introducing a somewhat extended gate
comprising a certain number of sites. Fig. 5 shows the results
of simulations for a cluster of the 9th order and a gate
composed of 33 5 27 sites, each at the beginning occupied with
the same probability 1y27. If the set of 33 sites composing the
gate is chosen in such a way that the threefold rescaling of the
lattice replaces it exactly by a single supersite, the long-time
result of the simulation for a cluster of the 9th order in the
presence of such an extended gate is, as it should be after an
appropriate change of the time scale, identical to that obtained
for a cluster of the 6th order and in the presence of the single
point gate (curve a in Fig. 5). The short-time course of the
reaction is, however, quite different. It also can be approxi-
mated by the stretched exponential but with a larger value of
the exponent a and a much shorter time unit h21. It should be
noted that the long-time rescaling does not apply for the
extended gate of a geometry that breaks the self-similarity
symmetry of the lattice. For instance, if the chosen gate of 33

sites is extended to the maximum (colinearly), also the power-
law stage of the reaction is characterized by a larger value of
the exponent a (curve b in Fig. 5). The opposite effect takes
place in the case of the gate of 33 points chosen in the most
compact way (not shown in Fig. 5).

Of course, like the models of fluctuating barriers on the one
hand, also the models with the point gates, on the other hand,
are only approximations of the reality. The models with
extended gates are somewhere in between, and thus the
allowance for certain variations in the exponent a and the

FIG. 3. Log–log plot of the time courses of the survival probability
obtained in computer simulations of a random walk on the Sierpiński
gasket with all walkers starting at the same site which simultaneously
is the only gate to exit the lattice. Time is measured by the number of
steps in which transitions were randomly generated. Three different
sizes of the lattice (clusters of the order r 5 6, 9, and 12) and three
different values of the ratio q 5 0.1, 1, and 10, were studied. The
stretched-exponential andyor the power-law, and the exponential
stages of the reaction are clearly distinguished.

FIG. 4. Fit of the computer simulation results obtained for the
cluster of the 12th order and various values of the ratio q (cf. Fig. 3)
to the combined analytical Eqs. 11 and 14. The fitted curves are plotted
as continuous lines, and the simulation data, intentionally diluted for
clarity, are represented by points. Not involved in the fitting procedure
the fixed values of a 5 0.317 and of logk21 5 7.60 were assumed. The
former follows from the relation 13, and the latter were estimated in
independent simulations. The fit resulted in the values of a 5 0.196,
0.00778, and 0.00102 for q 5 0.1, 1, and 10, respectively, and the values
of logh21 that are quoted directly in the figure. Here, unlike in Fig. 3,
time is measured in units of h21.
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parameter h in Eq. 11 with time seems to be physically quite
reasonable.

CONCLUSIONS

The computer simulations of random walk on the Sierpiński
gasket and the percolation cluster clearly demonstrate that the
short, initial condition-dependent stage of protein involving
reactions can dominate the progress of the reaction over the
main stage described by the standard kinetics. In general, the
moment of crossing over to the exponential stage of the
reaction depends both on the size of the lattice and the
probability of leaving it relative to the probability of transition
between the neighboring sites. The larger the lattice and the
higher the probability of leaving it, the later the exponential
stage of the reaction begins.

The results of the simulations fit very well the combined
analytical Eqs. 11 and 14. Depending on the value of the time
constant h21, the initial stage of the reaction, described by Eq.
11, can proceed either following the stretched-exponential law
or the algebraic power law, or both. All three types of behavior
were observed in small ligand-rebinding experiments after the
laser flash photolysis (3–5, 11) as well as in the patch clamp
experiments (14).

Apart from the exponent a, Eqs. 11 and 14 comprise two
dimensionless parameters, the level (concentration) a and the
ratio b [ kyh, both depending on temperature in the Arrhe-
nius manner, so that there should be no problem to describe
in these terms a time course of any experimentally observed
reaction including its variation with temperature, especially
when taking into account certain time variations of a and b
allowed by the model of extended gate. We refrain here from
discussing any particular experimental data as reaching the
really valuable conclusions needs, in any case, much more
careful and detailed analysis.

The necessary condition for the presence of a certain initial
condition-dependent stage of protein involving reaction is not
only the slow character of the conformational transition dy-
namics but also the confinement of the initial conformational
substates of the protein to the transition state of the reaction.
The latter condition is realized, however, only in the special
kinds of experiments. Usually, the initial distribution of con-
formational substates is not very different from the local
equilibrium. It is thus not a surprise that no initial condition-
dependent stages have been observed in the time course of the
majority of biochemical reactions proceeding in standard
conditions.

Nevertheless, the initial condition-dependent stages of re-
actions can be dominant also in standard conditions, provided
that a steady-state is realized. These stages, and not the
following ones described by the standard kinetics, appear to be
responsible for the coupling of component reactions in com-
plete catalytic cycles, which was proven specifically for the
particular protein machine model of intramolecular dynamics
(9). The same also is expected for more complex processes of
biological free energy transduction (6). Importance of the
latter statement, if it is actually true, hardly can be overesti-
mated.
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6. Kurzyński, M. (1998) Prog. Biophys. Mol. Biol. 69, 23–82.
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for the effective value of q ' 102.05 3 0.1 ' 11.2. Curve b is for the
gate colinearly extended to the maximum. Note a larger value of the
exponent a also in the power-law stage of the reaction.
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