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Abstract
The inherent ability of the host immune system to distinguish between self- and non-self forms the
basis of allorecognition. T lymphocytes constitute the most important effector arm of allorecognition.
Here we describe the fundamentals of direct and indirect pathways by which allopeptides are
presented to effector T cells. The nature of allopeptides presented along with tolerogenic strategies
like altered peptide ligands and intra- or extra-thymic allopeptide inoculation are discussed. In
addition, we speculate on the potential of regulatory T cells to modulate alloimmune responses.
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Introduction
Allorecognition refers to the phenomenon by which the recipient immune system reacts with
donor antigens that are considered to be “non-self”. T cells constitute the principal effector
arm of allorecognition. In contrast, there exists a “tolerogenic” arm of regulatory T cells that
suppresses the alloimmune response and facilitates tolerance. Nevertheless, the most common
natural consequence following transplantation is allograft rejection. This suggests that the
alloreactive T cells have a survival advantage following transplantation and are able to
predominate. In this review, we discuss the nature of allopeptides recognized by T cells along
with the different pathways of allorecognition. In addition, we speculate on the potential role
of regulatory T cells in suppressing alloreactive T cells and achieving allograft tolerance.

Cellular basis of allopeptide recognition
The main targets of the recipient immune response against the allograft are the donor major
(MHC) histocompatibility antigens present on the allogeneic tissue. The recognition of
mismatched donor histocompatibility antigens is the primary event that ultimately leads to
allograft rejection (1–3). Allorecognition occurs through two unique but not mutually exclusive
pathways: called direct and indirect pathways of antigen presentation. Direct pathway involves
recognition of intact donor MHC molecules on the donor cells, usually the antigen presenting
cells (APC). Both CD8+ and CD4+ T cells can directly recognize donor MHC class I and class
II, respectively. The indirect pathway, in contrast, involves presentation of processed donor
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antigens by recipient APC to recipient T cells (Figure 1). Again, both CD4+ and CD8+ T cells
can mediate indirect allorecognition.

Direct Allorecognition
Direct pathway involves presentation of intact donor antigens to the recipient T cells. This may
seem to contradict the classic self-MHC restriction property of T cells since the peptide being
recognized is presented in a non-self MHC. Two models have been proposed to explain this
discrepancy (2).

The first, called the “high determinant density” model, proposes that the direct alloreactive T
cells recognize amino acid polymorphisms on the MHC molecules of the donor cells and the
nature of peptide in the MHC groove is not important. Therefore, all the donor cells of any
given MHC act as ligands for the direct alloreactive T cells, thereby creating a very high ligand
density. Consequently, the affinity of the alloreactive T cell receptors required to generate an
optimal alloimmune response can be significantly lower compared to that required for self-
MHC peptide complex (4).

The “multiple binary complex” model proposes that the alloreactive T cells recognize specific
peptides in the donor MHC grooves. These peptides are derived from the same normal cellular
proteins that are present even in the recipient. However, the differences in the allo-MHC groove
causes different set of peptides to be presented from homologous proteins. These peptides can
be recognized by the recipient T cells. Therefore, even a single MHC mismatch between the
donor and the recipient would be able to stimulate a large number of alloreactive T cells by
providinga completely different set of peptides. It is now known that the TCR contact surfaces
of many MHC alleles may be similar, thereby providing a degeneracy effect with regards to
MHC-restriction and allowing the recipient T cells to cross-react with donor MHC. In another
version of this model, any particular cell surface MHC protein is complexed with a naturally
arising peptide from the intracellular proteolytic machinery, forming a heterogeneous
population of binary complexes. Such a multitude of MHC-peptide complexes could be
recognized by many different T cell clones in the recipient (5,6).

It is hypothesized that the allograft brings with it “passenger” APC that are able to stimulate
recipient T cells directly. There have been several classical studies to support the concept of
passenger APC. Lafferty et al demonstrated that cultured thyroid tissue has prolonged survival
due to the loss of passenger APC (7). Another important set of experiments revealed that
depleted passenger APC survive permanently in allogeneic recipients (8). Importantly, the
recipients of the re-transplanted kidneys rapidly rejected the allografts when injected with
donor APC (9). These reports also indicate that the allospecific T cells reactive through the
direct pathway need to be primed by the donor passenger APC. If this is not achieved while
the passenger APC are present, the direct alloreactive T cells cannot mediate rejection. More
conclusive evidence of the direct pathway in allograft rejection came from studies from Pietra
et al (10). They demonstrated that lymphocyte deficient, SCID or RAG1−/−, mice when
reconstituted with CD4+ T cells rejected MHC class I but not MHC class II deficient cardiac
allografts. Furthermore, RAG1−/− mice that were also MHC class II deficient rejected cardiac
allografts when reconstituted with CD4+ T cells. This indicated that CD4+ T cells alone,
directly activated by donor MHC class II bearing APC, could mediate rejection. Another
interesting observation that emerges from the above studies is that the direct pathway may be
of decreasing importance with time after transplantation as the passenger APC are lost.

Indirect allorecognition
The indirect pathway of allorecognition is more representative of how the immune system
typically recognizes an antigen. Here, the T cells recognize the donor antigens that have been
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processed and presented in the context of self-MHC on the recipient APC. Using monoclonal
antibodies directed against specific MHC-peptide complexes, it was demonstrated that MHC-
derived peptides could be presented in the context of other (recipient) MHC molecules. One
of the first such monoclonal antibodies developed was the Y-Ae (11,12). This antibody reacts
to a peptide derived from the H2-Eα chain presented in the context of H2-Ab. This antibody
brightly stained dendritic cells (DC) and B cells from murine strains co-expressing H2-Ab and
H2-E but not from those expressing either of these alone. When H2-E bearing DCs were
injected into the H2-Ab recipients, a significant proportion of recipient DCs in the draining
lymph nodes became reactive with the Y-Ae antibody. These studies clearly show that MHC
molecules can be processed and presented by self- or by allogeneic MHC.

Seminal studies done by Fangmann et al demonstrated that immunization with peptides
corresponding to the MHC class I molecules could accelerate rejection of renal allografts in
rats (13,14). Furthermore, CD4+ T cells from recipient mice could specifically proliferate in
presence of these peptides and recipient APC. Conclusive evidence for the indirect pathway
of allorecognition in organ rejection came from the reports of Auchincloss et al (15). They
demonstrated that MHC class I deficient mice could reject skin grafts from MHC class II
deficient donor mice. The recipient mice in this model lack CD8+ T cells capable of directly
recognizing MHC class I of the donors. Furthermore, since the donor lacks MHC class II, direct
allorecognition by recipient CD4+ T cells is excluded. Therefore, the rejection of the skin
allografts in this model is mediated by indirect allorecognition pathway, namely, recognition
of processed donor MHC class I antigens in the context of self-MHC class II molecules present
on recipient APC by the recipient CD4+ T cells. Recent evidence also demonstrates that
recipient DC can acquire and process intact donor MHC molecules from donor cell debris and
stimulate CD8+ T cells by cross-priming (16). Therefore, both CD4+ and CD8+ T cells mediate
indirect allorecognition.

While the direct pathway is more important for acute allograft rejection, the indirect pathway
is postulated to play a dominant role in chronic allograft rejection (17,18). This hypothesis
originates from experiments demonstrating that inhibition of acute rejection by depleting
passenger APC significantly delays but not prevent development of chronic rejection. The
frequency of direct alloreactive T cells exceeds indirect alloreactive T cells especially in the
early post-transplant period. Indeed, draining lymph node analysis demonstrated that more than
90% of allospecific T cells were of direct pathway while only 1–5% represented the indirect
pathway of alloreactive T cells (18–20). However, the frequency of direct alloreactive T cells
declines with time following transplantation while the continuous influx of the processed donor
antigens by the recipient APC through the indirect pathways increases the number of indirect
alloreactive T cells. It has also been shown that indirect alloreactive T cells are more resistant
to conventional immunosuppression (21). Indeed, we and others, have demonstrated that
indirect alloreactive T cells can be readily detected in the peripheral blood of human allograft
recipients years after transplantation and are associated with allograft rejection (22–27).

In addition to the above two pathways, transfer of intact MHC molecules between cells has
been observed (28–30). DC have been shown to acquire intact MHC class I and II molecules
from exosomes secreted by other DC and prime both naïve CD8+ and CD4+ T cells (31–33).
Reports from Knight and Lechler’s group observed (28–30,34) proposed that this represents a
third mode of allorecognition, which Lechler’s group has termed “semi-direct” pathway (34).
Briefly, through this pathway, DC could simultaneously present intact MHC molecules to
directly alloreactive CD8+ T cells as well as internalized and processed donor MHC peptides
to indirect alloreactive CD4+ T cells. Further studies are required to establish the clinical
significance of this pathway in rejection of organ allografts.
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Role of MHC bound peptides in allorecognition
When considering the phenomenon of allorecognition two main questions emerge. First, are
allopeptides truly required to elicit an alloimmune response? And secondly, what is the nature
of such allopeptides? Interestingly, there is evidence that allorecognition can occur independent
of MHC-bound peptides (35–37). Elliott et al denatured purified HLA-A2 protein, separated
its heavy (α) and light (β-2 microglobulin) chains and then mixed them in the absence of any
peptides. The reconstituted protein, deficient of any peptides, was indistinguishable from native
A2 in its reactivity to a monoclonal antibody and ability to activate HLA-A2 specific CD8+ T
cells (35). Smith et al isolated H2-Kb alloreactive CD8+ T cells clones from skin allograft
recipients and demonstrated that some of those clones could react with peptide deficient H2-
Kb molecules on T2 and RMA-S cell lines that have defective antigen processing and
presentation (37). Furthermore, the reactivity of these CD8+ T cells was not altered by either
eluting or adding the alloreactive peptides. However, empty MHC molecules may not have an
important role in vivo since they are rare and highly unstable under physiological conditions.
But recognition of peptide carrying intact MHC molecules on donor APC by recipient T cells,
regardless of the nature of peptide, does seem to exist and support the determinant-density
hypothesis. In a more recent study, Jankovic et al developed an engineered variant of the murine
MHC class I molecule H-2Kb, called KbW9 (36). The variant was devoid of the central anchor
pocket owing to a point mutation on the floor of the peptide binding site. This substitution
drastically altered selection of bound peptides and therefore, the peptide repertoires of Kb and
KbW9 were nonoverlapping. KbW9 readily served as a restriction element for a peptide-
specific syngeneic CTL response suggesting that the mutation did not result in gross distortions
of the TCR-interacting surface of class I. When KbW9 was used to stimulate allogeneic T cells,
some of the CTL lines induced cross-reacted against the original Kb molecule and demonstrated
peptide-independent MHC reactivity.

The peptide-dependent arm of allorecognition plays a role in both the direct and indirect
pathways. It also forms the basis for the multiple binary complex model of direct
allorecognition. While CD8+ T cells recognize MHC class I bound peptides, CD4+ T cells react
with MHC class II peptides. MHC class I molecules preferentially bind peptides from
intracellular cytoplasmic and nuclear proteins while class II molecules present peptides from
cell surface and extracellular proteins. Importantly both MHC class I and class II antigens can
also be presented in the context of self- and non-self MHC molecules. MHC derived peptides
are highly represented amongst the naturally processed peptides bound to class I and II
molecules, making them accessible to direct alloreative T cells (3). In addition, host APC can
process donor MHC molecules and activate alloreactive T cells through the indirect pathway.
We and others have previously demonstrated that development of indirect alloreactive T cells
specific to donor MHC class I as well as class II antigens correlates with human lung allograft
rejection (25–27,38–40). Alloreactive T cells specific to mismatched donor HLA class I and
class II were analyzed using limiting dilution or ELISPOT assay. As shown in Figure 2, patients
with chronic human lung allograft rejction (bronchiolitis obliterans syndrome, BOS) were
found to have a significantly higher frequency of alloreactive T cells (Figure 2). Moreover, the
predominant alloreactive T cells were characterized to be of Th1-phenotype (27).

Alloreactive T cell can also recognize peptides from other (non-MHC) polymorphic loci such
as HY-encoded proteins, known as minor histocompatibility antigens (MnHC). MnHC
antigens are peptides derived from allelically polymorphic host proteins, other than MHC
molecules. MnHC play an important role in the development of graft versus host disease after
MHC-matched allogeneic bone marrow transplantation (41). MnHC have also been shown to
mediate murine skin allograft (42,43) and rat cardiac allograft rejection in MHC-matched
recipients (44–46). We have previously cloned mismatched MnHC antigen specific cytotoxic
CD8+ T cells from human renal allograft infiltrating cells at the time of acute rejection (47).
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We further characterized the role of MnHC in chronic allograft rejection using two well
characterized heterotopic murine cardiac (vascularized) and tracheal (non-vascularized) allo-
transplantation models. C56BL/10SnJ (H13a) cardiac allografts were transplanted into
congenic B10.CE-H13b Aw(30NX)/Sn (H13b) mice (48). The H13a and H13b alleles encode
the SSVVGVWYL (SVL9) and SSVIGVWYL (SIL9) MnHC antigens bound to the H2Db

molecule, respectively. H13a cardiac allografts transplanted into H13b recipients were rejected
while isografts survived indefinitely. Pre-transplant sensitization with donor (H13a) antigens
accelerated the rejection process. Rejected cardiac allografts revealed histopathological signs
of chronic rejection with diffuse mononuclear cell infiltration, concentric intimal hyperplasia,
and fibrosis. While both CD4+ and CD8+ T cells were identified in the graft infiltrating cells,
CD8+ T cells revealed SVL9 specific cytotoxicity under H2Db restriction and, furthermore,
specifically bound to H2Db/SVL9 tetramers (Table 1). Murine heterotopic tracheal
transplantation has been used as a model to investigate the pathogenesis of obliterative airway
disease (OAD) following lung transplantation. H13a tracheal allografts were transplanted into
congenic H13b recipients. The allografts were harvested at different times post transplantation
and OAD lesions including epithelial damage, cellular infiltration, and luminal fibrosis were
analyzed. In parallel experiments, mice were immunized (subcutaneous injection) or tolerized
(intravenous injection) with the SVL9 or SIL9 peptide before transplantation. H13a tracheal
allografts developed OAD in the H13b recipients within 90 days (Table 2). SVL9 immunization
significantly accelerated the kinetics of OAD development. In contrast, tolerization using
SVL9 completely abrogated the OAD development. This correlated with significant inhibition
of H13a-specific CD8+ T cell cytotoxicity along with suppression of IFN-γ production (49).

Besides the histocompatibility antigens, studies have also demonstrated the role of self-
antigens in alloimmunity (50–54). Immunity against the self-antigens can again develop
through the direct or indirect pathway. Each MHC allele has a very extensive array of peptides
that it can present. These peptides are derived from a variety of intra- and extra-cellular protein
sources. The thymic selection eliminates a significant proportion of T cells that react to self-
peptides. However, different MHC alleles would present different peptide sequences from
homologous proteins. Hence, the host thymus would not eliminate T cells reactive to peptides
from self-proteins that are presented in the context of donor MHC. Therefore, donor passenger
APC may have the potential to induce an immune response against conserved self-proteins
through the direct pathway. In addition, physiological stresses (like hypoxia and ischemia-
reperfusion) can significantly alter the nature of peptides presented on the MHC surface and
promote the expression of rare peptides against which central tolerance may not have been
achieved (55,56). This also increases the probability of developing immunity against self-
proteins. Further studies demonstrating direct alloimmune responses against peptides derived
from conserved non-polymorphic proteins are required. Alternatively, the intense
inflammation associated with transplantation may activate indirect auto-reactive T cells
(discussed further in subsequent text). Autoreactive T cell responses to cardiac myosin (57),
vimentin (58), collagen V (59–61), heat shock protein (62) have all been shown to contribute
to allograft rejection. We analyzed the collagen type V (col-V) specific response longitudinally
in human lung transplant patients. Col-V reactive CD4+ T cells could be detected in the
peripheral blood of lung transplant recipients. Importantly, the CD4+ T recognized col-V
through the indirect pathway. There was a predominance of IL-10 producing T cells (TIL-10)
reactive to col-V with significantly lower levels of IFN-γ and IL-2 producing T cells (Th1-
cells). The col-V specific TIL-10 cells suppressed the proliferation and expansion of col-V
specific Th1-cells by IL-10 dependent but contact-independent pathways. Furthermore, during
chronic lung allograft rejection there was a significant decline of TIL-10 cells with concomitant
expansion of col-V-specific IFN-γ producing Th1-cells. We have also obtained evidence for
the role of de novo antibodies produced against non-MHC, tissue restricted antigens in the
pathogenesis of chronic allograft rejection (38,63–66). For example, sequence analysis of a
target antigen present on airway epithelial cells recognized by sera from patients with chronic
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lung allograft rejection identified Kα1-tubulin (manuscript under preparation) as an
immunogenic protein.

Recognition of antigens by alloreactive T cells
The interactions between the T cell receptor and donor MHC during allorecognition are similar
to the conventional recognition by self-MHC (67–75). The initial crystallographic studies were
performed using the BM3.3 TCR and peptide pBMI bound to allogeneic class I H2-Kb (68,
69,75). It was shown that the TCR interacted with MHC-peptide complexes in a conserved
diagonal orientation across the long axis of the peptide-binding site. The interactions between
the TCR and the MHC-peptide complex almost exclusively involved the β-chain CDR3. The
complimentarity-determining regions CDR1 and CDR2 predominantly interacted with the α-
helical portions of the MHC molecule and the contact with CDR3 segments lead to the exposure
of the peptide. There seems to be degeneracy between the TCR and MHC-peptide complex
interactions. This may be due to structural similarities between different MHC-peptide
complexes or, alternatively, the TCR may exhibit conformational flexibility. Crystallographic
studies prove that alloreactive T cells can demonstrate flexibility. For example, the 2C TCR
can engage the same peptide presented in the context of self-H2Kb or H2Kbm3 by rearranging
the peptide contacting CDR3 portion of TCR. Therefore, CDR3 seems to play a crucial in the
reorganization of the TCR. Interestingly, it was also demonstrated that water molecules fill the
empty gaps between the TCR, MHC and the peptide providing a form of “padding”. The shape
of this water padding also promoted the interactions of the TCR with different MHC-peptide
complexes (68,69,75). Allorecognition gets even more complex as conformational
determinants are applied to MHC-peptide complexes (76).

Initiation of alloimmune response
The alloimmune response is postulated to be initiated in the lymphoid tissue of the recipient
(77). Recipients that lacked secondary lymphoid organs were unable to reject cardiac allografts
(78). However, others have challenged this view and one recent study by Zhou et al suggests
that lymphoid organs may not be absolutely required for the development of alloimmunity
(79). Another interesting study from Kreisel et al demonstrates that non-hemopoietic cells,
vascular endothelial cells in their case, present on the allograft are sufficient to generate direct
alloimmune responses and mediate allograft rejection (80).

Allorecognition, however, in the absence of an inflammatory milieu and co-stimulation may
not be able to generate an alloimmune response. Following organ transplantation, activation
of the recipient immune response is initiated by the surgical stress and ischemia-reperfusion
injury. This is accompanied by the production of several chemokines and cytokines that leads
to the recruitment of recipient immune cells into the allograft (81,82). Several inflammatory
mediators including MCP-1, IP-10, and Th1-cytokines are induced following transplantation
(81,82). These can upregulate costimulatory molecules such as CD80 and CD86, and cell
adhesion molecules such as CD54 and CD58 on both donor and recipient cells including APC,
epithelial, and endothelial cells (83–85). We have recently demonstrated that the early cytokine
release plays a crucial role in the development of alloimmunity which may lead to allograft
rejection (27). Interestingly, reports by Sayegh’s group have challenged the traditional concept
of antigen presentation to T cells wherein both the MHC-peptide complex (signal 1) and co-
stimulation (signal 2) are present on the same APC (86). They used B7-1/B7-2 knockout mice
as donors for cardiac allografts for MHC class II knockout recipients. In this model system,
the donor APC would present the MHC-peptide complex directly to the recipient T cells
without any co-stimulation. In contrast, the recipient APC cannot indirectly present the donor
peptides but can provide the costimulation. The cardiac allografts in these recipients were
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rejected as rapidly as the wild-type recipients demonstrating that the antigen and co-stimulation
necessarily need not be on the same APC.

Tolerization strategies using allo-peptides
Allopeptides have been used to develop strategies to induce allograft tolerance. Some of these
widely investigated include intra- or extra- thymic inoculation of the allopeptides and altered
peptide ligands.

Intrathymic inoculation of allopeptides
The thymus plays a central role in the development of self-tolerance. T cells with high reactivity
to antigens presented in the thymus are eliminated. On this basis it was investigated whether
injection of donor antigens in the thymus would eliminate the donor alloreactive T cells. Several
investigators have shown that intrathymic administration of donor antigens in various forms,
including donor spleen cells, soluble MHC molecules, or allo-MHC peptides can induce
prolonged tolerance to allografts. Sayegh’s group demonstrated that pre-transplant intrathymic
administration of polymorphic peptides derived from the (Wistar- Furth) [WF]) RT1.Bu and
RT1.Du class II MHC molecules prevented acute rejection and induced long-term graft
survival in the WF-to–Lewis RT11 (LEW) kidney transplant model (87). They further
demonstrated that the onset of acute rejection of cardiac allograft can be prolonged by
intrathymic injection of unmodified donor splenocytes (88). Data from Hardy’s laboratory has
also provided compelling evidence about the efficacy of intrathymic inoculation strategy
(89–94). They demonstrated that intrathymic inoculation of donor soluble Ag (obtained from
resting donor T cells using alkali-extraction) seven days prior to transplantation combined with
anti-lymphocytic serum lead to indefinite and donor-specific cardiac allograft tolerance in
Lewis rat recipients. The peptide inoculation was also efficacious when combined with total
body radiation. The tolerized recipients specifically and permanently accepted donor-type,
second-set cardiac allografts. Interestingly, thymectomy performed 7 days after peptide
inoculation led to graft rejection suggesting that the early phase of induction of donor-specific
tolerance is dependent on the presence of donor alloantigens in the host thymus (89–94). Flye
and colleagues also demonstrated that intrathymic injection of donor antigens induces tolerance
to both allo- and xeno-transplantation (95–101). Furthermore, adoptive transfer of splenocytes
isolated from the tolerized recipients confers tolerance (102). Other investigators have
supported these findings (103). Shirwan’s group reported that tolerization using intrathymic
inoculation of donor antigens was mediated by an increased production of CD4+CD25+

regulatory T cells (104). The recipients that had received intrathymic injection of donor
antigens were found to develop increase in CD4+CD25+ regulatory T cells (Tregs) within the
lymphoid organs. These tolerized recipients also had significantly higher levels of IL-10.
Further, Tregs from the tolerized recipients were found to suppress donor–specific proliferative
responses. Importantly, depletion of Tregs from the tolerized recipients abrogated donor specific
tolerance to cardiac allografts after intrathymic modulation. Other mechanisms that have been
postulated to play a role in donor specific tolerance after intrathymic immunomodulation
include clonal anergy, T cells deletion, and active suppression (105,106).

Extra-thymic inoculation of allopeptides
HG Wells in 1911, made a remarkable observation that anaphylactic reactions to ovalbumin
in guinea pigs could be inhibited by prior oral administration of OVA (107,108). Subsequent
systemic immunizations failed to elicit a response to OVA. Furthermore, the unresponsiveness
was OVA specific. Sayegh et al tested whether oral tolerance could be achieved in the context
of allo-transplantation (109,110). They demonstrated that oral administration of MHC antigens
in the form of donor splenocytes significantly inhibited the MLR reaction of unsensitized allo-
recipients. Furthermore, this strategy prevented the accelerated rejection observed in cardiac
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allograft recipients pre-sensitized with donor skin allografts (109,110). Kahan and Streptowski
used an interesting strategy of inducing donor-specific tolerance by allochimeric MHC class I
proteins bearing donor-type amino acid epitope substitutions for the host-type sequences. For
example, they produced an allochimeric protein (α1H u70–77-RT1.Aa) by superimposing the
nucleotides encoding last four (His70, Val73, Asn74, and Asn77) of nine (Arg62, Glu63,
Gln65, Gly66, Gly69, His70, Val73, Asn74, and Asn77) polymorphic amino acids in the α1-
helical region of donor-type RT1.Au onto the host RT1.Aa backbone using gene splicing and
overlap extension. Intraportal injection of this allochimeric protein significantly prolonged the
survival of Wistar-Furth (WF, RT1u) cardiac allografts in ACI (RT1a) rats (111,112). They
have further used allochimeric proteins via the oral route to induce allo-specific tolerance
(113). More recently, Wilkes’ group reported that tolerance against fully-mismatched lung
allografts could be achieved using a self-protein, collagen type V (col-V) (114). Administration
of donor antigens has also been found to be effective using intragastric (115), intra-jejunal
(116), transrectal, and intratracheal routes (107). The tolerance induced using such
transmucosal routes has been shown to be T cell dependant as T cells, but not serum, from
tolerized recipients could transfer tolerance. The regulatory T cells induced have been classified
into TH3 and Tr1 that secrete TGF-β and IL-10, respectively. However, the success from using
these strategies in humans has been limited due to the genetic diversity, complex tolerogenic
mechanism, and differences in the pathogenesis of allograft rejection. Nevertheless, this
phenomenon appears real and may have some clinical utility in the future (107).

Altered peptide ligands
In general, a peptide has one MHC binding site and another that comes in contact with the
TCR. In 1991, Paul Allen’s laboratory reported a seminal observation that a cognate murine
hemoglobin peptide with a TCR site-specific single amino acid alteration caused a reversible
suppression of T cells (117). Subsequent studies from the same group provided compelling
evidence that such altered peptide analogues (or ligands) could result in partial or complete T
cells anergy (118,119). Altered peptide ligands contain alterations in the sites of the wild-type
peptide that comes in contact with the TCR. Therefore, there is no difference in the MHC
binding capacity of the peptide but the alterations significantly change the outcome of TCR
recognition. APL can be classified as antagonistic or partial agonistic depending upon the
response they elicit. Antagonistic APL fail to activate the T cells and rather suppress the T cells
response when presented with the wild-type peptide. However, the T cell response is fully
reversible after re-stimulation with the wild-type agonistic peptide in the absence of
antagonistic APL. In contrast, partial agonistic APL partially activate T cells, resulting in
induction of anergy.

Unlike the antagonistic peptides, T cells that have been stimulated with partial agonistic
peptides do not proliferate on re-stimulation with the wild-type agonistic peptide. Suciu-Foca’s
group substituted multiple amino acids in the TCR binding site of wild type peptides to test
the ability to generate APL (120). They examined whether analogues of the dominant
determinant of HLA-DRpl*0101 molecule (peptide DR1/22–35), recognized in the context of
HLA-DRj31*1101 protein, could modulate the T cell response against the wild-type peptide
Ag. Using this strategy they were able to generate both antagonistic and partial agonistic APL
that suppressed the T cell response to the wild-type agonistic peptide. The efficacy of APL in
suppressing T cells responses has been well documented in vitro and in some autoimmune
models in vivo (121). However, their efficacy in inducing transplantation tolerance in vivo
needs to be further examined.

A unified model of Treg mediated modulation of allorecognition
CD4+CD25+ regulatory T cells have been identified as a dominant subset of tolerogenic T cells
(122). Tregs are selected in the thymus in the context of self-peptides and predominantly
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recognize cognate antigens through the indirect pathway. Since natural Tregs are selected in
the thymus in the context of “self-proteins”, the natural presence of allo-specific Tregs in naïve
hosts is difficult to explain. Nevertheless, using animal models, allospecific Tregs have been
demonstrated in naïve recipients, although at low frequency. However, considering the
diversity of TCR expressed by Tregs cross-reactivity of Tregs with alloantigens cannot be
excluded. Other mechanisms that may be involved in the generation of allo-specific Tregs
following transplantation may include epitope-spreading from auto- to allo-antigens, TCR-
affinity maturation or expansion of cross-reactive Tregs (122). In addition, as shown in Figure
3, tolerogenic properties can be imparted by Tregs into conventional T-cells (59,60,123,124).
Tregs impart tolerance by working through the indirect pathway and have been shown to
contribute to indirect allospecific hyporesponsiveness, and more recently by us towards direct
allospecific hyporesponsiveness using anti-donor MLR (59,60,122). In addition, autospecific
Tregs were found to suppress anti-donor as well as mitogen induced proliferation of bystander
host T cells thereby providing a powerful tolerogenic mechanism (59).

It has always been intriguing why, despite the presence of such a dominant subset of regulatory
T cells, the most common natural consequence following transplantation is rejection. Multiple
hypotheses can be postulated to explain the natural rejection of allografts in the absence of
immunosuppression. Alloreactive T-cells may “overpower” Tregs in the absence of
immunosuppression probably due to rapid proliferation (125), as alloreactive Tregs are present
in low frequencies in the recipient compared to direct alloreactive T cells (126). Further, graft
infiltrating alloreactive T-cells may induce apoptosis via CD95 in freshly recruited Tregs
(127). This would mediate acute allograft rejection. However contemporary
immunosuppression is highly effective on the directly alloreactive T cells and therefore has
significantly reduced the incidence of acute rejection. It is interesting that immunosuppression
has had a much less impact on chronic allograft rejection. It is noteworthy here that indirect
alloreactive T cells are more resistant to immunosuppression. In fact, as previously discussed,
we have demonstrated that indirect alloreactive T cells can be detected in human lung allograft
recipients years after transplantation and correlate with the development of chronic lung
allograft rejection (Figure 2). At the same time there is a constant influx of new Tregs in the
recipients. However, Tregs are more sensitive to contemporary immunosuppression, specially
the calcineurin inhibitors like cyclosporine and tacrolimus, since the function and survival of
Tregs is dependent on interleukin-2 (128). Calcineurin inhibitors not only inhibit the
development of long-term allograft tolerance (129) but can actually induce autoimmunity
(130). Demirkiran et al (131) and Ciancio et al (132) demonstrated a decline in Tregs with
calcineurin inhibitors in human liver and renal allograft recipients, respectively. Furthermore,
we postulate that there may be additional mechanisms that favor the survival of effector T cells
over Tregs.

Using a unique orthotopic tracheal transplant model for investigating the pathogenesis of BOS,
we found that immediately following transplantation there was a significant loss of Tregs in the
draining lymph nodes due to apoptosis, most likely induced by proliferating alloreactive T
cells. However, as the recipient epithelium repopulated the tracheal allograft, there was a loss
of allogeneic stimuli and restoration in the frequency of Tregs. Interestingly, respiratory viral
infections were found to upregulate death receptors on airway epithelial cells in vitro that
induced rapid apoptosis of Tregs (Bharat A et al, manuscript under preparation). It is noteworthy
that respiratory viral infections predispose to chronic human lung allogaft rejection (133).
Therefore, there are events that can lead to Treg cell death and favor proliferation of alloreactive
T cells, thereby predisposing to chronic allograft rejection. Indeed, we recently found that
patients with chronic human lung allograft rejection developed a significant loss of Tregs that
was associated with concomitant expansion of both indirect alloreactive, and autoreactive, Th1-
cells (59). Chronic allograft rejection may therefore be the “function of predominance” between
(indirect) alloreactive effector T cells and Tregs (Figure 4).
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Pathogenesis of chronic human lung allograft rejection (BOS)
We have summarized these results into a unifying hypothesis towards the immunopathogenesis
of chronic rejection, ie, BOS following human lung transplantation. Following transplantation,
there is an inflammatory milieu within the allograft that promotes allo-antigen presentation
through both direct and indirect pathways. In addition, inflammation also leads to the release
of sequestered, but immunogenic, self-antigens. Furthermore, there is epitope spreading from
auto- to allo- antigens combined with activation of autoreactive “low-affinity” T cells that
escaped the thymic deletion. Activation of both allo- and auto- reactive T cells promotes
allograft rejection. However, inflammation also leads to the recruitment of Tregs that are
suppressive in nature (Figure 3). Autospecific Tregs can inhibit both autoreactive as well as
alloreactive effector T cells. In a naïve host, the combined frequency of allo- and auto-reactive
T cells far exceeds Tregs and therefore, the most common natural consequence following
transplantation is rejection. Immunosuppression depletes both T cells and Tregs maintaining
the allograft on neutral grounds between rejection and tolerance. Following transplantation
there is influx of new indirect alloreactive T cells as the recipient APC process and present the
allograft antigens. Simulataneously, new Tregs originate from the central (thymic) and
peripheral mechanisms. Modulating the factors that favor Treg survival would promote
tolerance (Figure 4). However, if the effector T cells predominate they activate other arms of
the immune system and initiate a cascade of cytokines and growth factors that ultimately lead
to the development of chronic (lung) allograft rejection (Figure 5).

Summary
Allorecognition leads to the generation of an extremely powerful anti-donor immune response
that ultimately leads to rejection of the transplanted organ. The peptides recognized by the
alloreactive T cells include the polymorphic major and minor histocompatibility antigens as
well as conserved self-antigens. Direct and indirect pathways form the fundamental basis of
allorecognition but are not mutually exclusive. Ongoing research to further characterize the
complexities within the pathways of allorecognition and the interactions between autoreactive
T cells, alloreactive T cells and Tregs is imperative to promote long term success following
transplantation.
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Figure 1.
Direct and Indirect Allorecognition
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Figure 2.
Chronic lung allograft rejection is association with an expansion of Th1-predominant
mismatched donor HLA class I and II allospecific T cells
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Figure 3.
Regulation of alloimmunity by Tregs following transplantation
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Figure 4. Balance between Alloreactive T cells and Tregs in transplant outcome
In the natural state, without any immunosuppression, there is a significantly greater frequency
of directly alloreactive T cells that overcome the tolerogenic potential of Tregs and lead to
allograft rejection. Administration of immunosuppression eliminates a significantly proportion
of directly alloreactive T cells as well as Tregs. Nevertheless, there is influx of donor
alloantigens through the indirect pathway that maintains alloreactive T cells. Since indirectly
alloreactive T cells are more resistant to immunosuppression, the long-term sequelae of this
influx is chronic rejection. Some important factors that can favor Tregs or alloreactive T cells
following transplantation are represented.
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Figure 5.
Pathogenesis of BOS
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Table 1
Development of H13a cardiac allograft rejection in H13b recipients

Group Donor Recipient H13a immunization Mean graft survival (days ± SD)
1 H13b H13b − >100
2 H13a H13b − 37.0 ± 14.5
3 H13a H13b + 27.6 ± 15.9
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