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Abstract
Emotions have been conceptualized as representations of bodily responses to a stimulus that critically
involves the autonomic nervous system (ANS). An association between amygdala activation and
ANS activity has been shown in adults. However, to date, no studies have demonstrated this
association in adolescents. Examining the interaction between the ANS and amygdala in healthy
adolescents may provide information about age-related changes in the association between amygdala
activation and ANS measures. Therefore, the aim of this study was to examine the relationship
between amygdala activation and heart rate in normal adolescents. Eighteen 12- to 17-year old
adolescents participated. Heart rate data was collected during functional magnetic resonance imaging
while subjects performed a facial expression matching task that reliably activates the amygdala.
Adolescents showed significant amygdala activation for all facial expressions relative to the shape-
matching, control task. Moreover, the degree of activation in the right amygdala for Fearful faces
was significantly correlated with heart rate (Spearman’s rho = 0.55, p = 0.018, two-tailed). This study
shows that amygdala activity is related to heart rate in healthy adolescents. Thus, similar to adults,
adolescents show a coupling between processing emotional events and adjusting the ANS
accordingly. Furthermore, this study confirms previous adolescent studies showing amygdala
activation to Fearful, Angry, and Happy faces. Finally, the results of the present study lay the
foundation for future research to investigate whether adolescents with mood or anxiety disorders
show an altered coupling between processing emotionally salient events and ANS activity.

INTRODUCTION
The James-Lange theory of emotion posits that an emotion is a perceived central representation
of bodily responses to a stimulus [13,17]. As part of this theory, emotional feelings are
dependent on physiological bodily responses that are generated automatically by the autonomic
nervous system (ANS). The amygdala is an important part of the limbic system that is well
positioned to control basic autonomic arousal processes. Through the hypothalamus and
brainstem circuits, the amygdala innervates the autonomic networks and produces visceral
signs of emotional arousal---e.g., changes in heart rate [18].
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Neuroimaging studies suggest that examination of the amygdala may be of particular
significance in psychiatric illnesses. Functional MRI studies in adults have shown abnormal
amygdala activity in depression [31], schizophrenia [29], bipolar disorder [40], posttraumatic
stress disorder [32], and autism [26]. In pediatric populations, fMRI studies have demonstrated
abnormal amygdala activity in depression [35], anxiety disorders [35], bipolar disorder [27],
autism [8], and conduct disorder [33]. Furthermore, structural MRI studies of the amygdala
have found abnormalities in patients with depression [28], dissociative identity disorder [36],
and autism [14].

The amygdala appears to play an especially important role in normal and abnormal adolescent
behavior. In the triadic model of adolescent development, the authors propose that
perturbations in the neural development of the components of this system (e.g., amygdala) may
contribute to the expression of adolescent psychopathology [5]. For example, the authors
suggest that abnormal maturation of the amygdala during adolescence may lead to greater
vulnerability to psychiatric disorders such as depression and anxiety. The authors cite both
functional [35] and structural [28] MRI studies of the amygdala in pediatric depression and
anxiety to support their theory.

Given the amygdala’s influence on the ANS and its role in emotion, a logical step would be to
pursue the simultaneous recording of physiological and functional neuroimaging data. To
examine concomitant changes in emotional arousal, skin conductance was recorded with fMRI
in a study of the amygdala’s response to facial signals of fear in normal adults [37]. The
researchers observed that mean skin conductance level was positively correlated with right
amygdala activity. By using different pressor challenges to elevate blood pressure, two fMRI
studies in normal adults found that the pressor challenges elicited significant regional fMRI
signal changes in the amygdala [11,12]. To address the question of central control of heart rate
in emotions, parallel measurement of heart rate changes and changes in activation as indexed
by fMRI was performed on normal adults [15]. This study found that the amygdala was an
integral part of the central circuit controlling heart rate in negative affect (e.g., fear).

Although rare, two published human depth electrode studies exist that are pertinent. In two
similar studies, the authors recorded electrocardiogram activity together with single cell
activity from the amygdala in epileptic patients undergoing chronic depth electrode monitoring
[6,7]. The authors discovered that changes in heart rate correlated with the firing of neurons
in the human amygdala.

Other fMRI studies in normal adults have found additional brain regions that are activated in
association with the ANS. In one study where brain activity and heart rate were simultaneously
measured, the authors found that the level of activity in the amygdala, insula, anterior cingulate,
and brainstem predicted subjects’ heart rate responses to the presentation of emotional facial
expressions [4]. By examining neural activity related to modulation of skin conductance level,
another fMRI study reported that activity within the insular cortices, anterior cingulate, striate
and extrastriate cortices, thalamus, and hypothalamus reflected the rate of change in
electrodermal activity [23]. Although studies combining fMRI and physiological
measurements have been done in adults, to our knowledge, no such studies have been published
in the pediatric population.

The purpose of this study was to use blood oxygenation level dependent fMRI (BOLD-fMRI)
in combination with the simultaneous acquisition of physiological data to examine the
relationship between amygdala activation and heart rate in normal adolescents. To this end,
we used an emotional face paradigm that has been shown in fMRI studies to robustly activate
the amygdala [25] and well-established methods of heart rate data analysis [9,34]. We
hypothesized that the adolescent amygdala would be activated in response to the perception of
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Fearful, Angry, and Happy faces relative to the control condition. Furthermore, based upon
the human depth electrode studies [6,7] and fMRI findings [4], we hypothesized that an
increased amygdala fMRI BOLD signal due to the perception of Fearful, Angry, and Happy
faces compared to the control condition would be correlated with an increased heart rate in
adolescent subjects.

METHODS
Subjects

This study was approved by the University of California at San Diego (UCSD)-Children’s
Hospital and Health Center (CHHC) Institutional Review Board and conforms to The Code of
Ethics of the World Medical Association (Declaration of Helsinki). All subjects provided
written assent, and their parent/legal guardians provided written informed consent to
participate.

Eighteen healthy, right-handed adolescent subjects (15 females and 3 males; ages 13 to 17
years; mean age 16.17 ± 1.20 years) were recruited from all regions of San Diego.

Each participant was administered: (1) Computerized Diagnostic Interview Schedule for
Children version 4.0 [30] and the Diagnostic Predictive Scale (DPS) [19] to assess for the
presence of any Axis I diagnoses, (2) Standard Snellen Eye Chart, (3) Ishihara Color Plates
Test (8 plate, 2005 edition), and (4) Edinburgh Handedness Inventory [24]. Furthermore, each
participant completed the following self-administered questionnaires: (1) demographics
questionnaire, and (2) medical and developmental history form. Exclusion criteria for this study
were: (1) any current or lifetime DSM-IV Axis I psychiatric disorder, (2) color blindness, (3)
less than 20/40 corrected vision, (4) history of a serious medical, developmental, or
neurological disorder, (5) history of loss of consciousness greater than 2 minutes, (6) left
handedness, (7) MRI contraindications (ferrometallic implants, braces, pregnancy or
claustrophobia), and (8) inability to fully comprehend and cooperate with study procedures.

Experimental Task
All participants were trained to perform the emotional face task prior to fMRI scanning. During
the scan, each participant was shown a modified [25] version of the task by Hariri et al. [10].
For each trial, a target face was presented at the top of the screen and two probe faces were
presented at the bottom. The participants were asked to match the target face with one of the
two probe faces that had the same emotional expression by pressing the left or right button on
a Current Designs box. Each block contained six consecutive, 5-second trials where the target
was a Fearful, Happy, or Angry face. The control task consisted of 5-second trials of either tall
or wide circles or ovals in a similar configuration to the facial expression task. Analogous to
the facial expression task, participants were told to match the shape of the target to one of the
two probes in the control task. There were a total of twelve blocks: three blocks for each of the
Fearful, Happy, and Angry faces, and three blocks of the control task. Blocks were separated
by a 10-second fixation cross and a two-second instruction period. In addition, a brief fixation
was added to the start and end of the task to make a total task time of 512 seconds.

Image Acquisition
Images were acquired on a 3-T GE scanner (General Electric, Milwaukee, WI) with Twin
Speed gradients using a GE 8-channel head coil. Each session consisted of a three-plane scout
scan (10 s), a high-resolution anatomical scan, a series of T2*-weighted echo-planar imaging
(EPI) scans to measure the blood oxygen-level dependent (BOLD) response, and EPI-based
field maps to correct for susceptibility induced geometric distortions. Functional scans
covering the entire brain were acquired parallel to the anterior and posterior commissure (T2*-
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weighted EPI, TR = 2000 ms, TE = 32 ms, FOV = 23 cm, 64 × 64 matrix, thirty 2.6 mm oblique
slices with a 1.4 mm gap, 256 repetitions). During the same experimental session, a T1-
weighted image with an inversion time of TI = 450 ms to null the CSF (FSPGR, TR = 8.0 ms,
TE = 3.1 ms, flip angle = 12°, FOV = 25 cm, matrix = 256 × 256, 0.98 × 0.98 × 1.0 mm3 voxels)
was collected in the sagittal plane for anatomical reference. These sequences were optimized
for the amygdala.

Statistical Analysis of Imaging Data
All functional and structural image processing and analyses were conducted with the Analysis
of Functional NeuroImages (AFNI) software [3]. To minimize motion artifact, an AFNI 3D-
coregistration algorithm (3DVolreg) was used to realign all echoplanar images to the scan
located closest to the 128th (middle) acquired scan that showed the least amount of head
movement. Based upon visual inspection of the data, time points with isolated head movements
not corrected by the coregistration algorithm were removed from statistical analysis. Three
motion parameters (roll, pitch, yaw) were used as nuisance regressors to account for motion
artifacts. The Angry, Fearful, Happy, and Shape (circle/oval) condition served as the four
orthogonal regressors of interest. A modified gamma variate function was convolved with these
four regressors to account for the dispersion brain response and delay of the BOLD-fMRI signal
due to hemodynamics. Other regressors modeled residual motion in the baseline and linear
trends as wells as in the roll, pitch, and yaw directions. The AFNI program, 3dDeconvolve,
determined the estimated voxel-wise response amplitude. To account for individual variations
in the anatomical landmarks, a Gaussian filter with a full-width-half-maximum of 4 mm was
applied to the voxel-wise percent signal change data.

After smoothing, imaging data for each subject was normalized to stereotaxic Talairach
coordinates. Using masks defined by the Talairach demon atlas [16], an a priori analysis of
regions of interest (ROIs) was performed on the bilateral amygdala [1]. For these ROIs, it was
found through computer simulations that a voxel-wise a-priori probability of 0.05 would result
in a corrected cluster-wise activation probability of 0.05 if a minimum volume of 128 μl and
two connected voxels was used for the amygdala. The ROIs were superimposed on each
subject’s voxel-wise percent signal change brain image. Activations located inside these ROIs
that met the voxel and volume connection criteria were then extracted and used for further
analysis.

Physiological Monitoring
Physiological data were acquired using an In Vivo Magnitude TM 3150 MRI patient monitor.
A pulse oximeter was placed on the subject’s left index finger to record heart rate (R-R interval)
data. Physiological data were sampled at 40 samples per second using a multi-channel data
acquisition board. Scanner TTL pulse data (10 ms duration, 5 V pulse per slice acquisition)
were recorded at 1 kHz. The TTL pulse data were used to synchronize the physiological data
to the acquired images. Artifacts were removed by editing out data points (beats) that deviated
by more than three standard deviations from the beats that immediately preceded or followed
the discrepant beat. Data were then interpolated from the surrounding beats. Subjects were
excluded if 5% or more of beats were edited. The review and calculation of heart rate variability
(HRV) was accomplished using a program developed at the University of Miami, Behavioral
Medicine Research Center [9]. Fast Fourier Transformations (FFT) were performed on the R-
R interval data to obtain power values for HRV in the high (0.4–0.15 Hz) frequency (HF) and
low (0.15–0.04 Hz) frequency (LF) spectra. These ranges are based on previously established
standards defined in the special report on HRV by the European Society of Cardiology and
North American Society of Pacing and Electrophysiology [34]. Following the FFT of the data,
the peak LF and HF power values were identified. The ratio of the peak LF divided by peak
HF values (LF/HF) were used as an index of heart rate and correlated with the percent signal
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change in the bilateral amygdala during performance of the modified Hariri task. The peak LF/
HF was selected due to the literature supporting its use as an accurate reflection of
sympathovagal balance [22]: a measure of the relative contributions of the sympathetic and
parasympathetic nervous system which is proportional to heart rate [2].

Statistical Analyses of Behavioral and Physiological Data
All behavioral and correlational statistical analyses were carried out with SPSS 14.0.
Correlational analyses examined the relationship between peak LF/HF data and the total
percent signal change for each of the different facial emotions (Fearful, Angry, Happy) in the
left and right amygdala. Furthermore, the same correlational analyses were performed using a
control region (the fusiform gyrus) to investigate whether any significant findings might be
due to overall blood flow changes rather than being specific to the amygdala.

RESULTS
Behavioral Data

All 18 subjects performed the task accurately matching the probe face to the target face with
great precision (mean ± SD, 97.6 % ± 0.04 %). The adolescents’ response time was significantly
affected by face type (F(2,16) = 57.8, p < 0.001, η2 = 0.88). Employing the Bonferroni post-hoc
test, significant differences were found between the Fearful and Happy faces (p < 0.001),
Fearful and Angry faces (p < 0.001), and Angry and Happy faces (p < 0.001). Mean response
time (ms) ± SD (ms): Fearful: 1681 ms ± 340 ms; Angry: 1471 ms ± 312 ms; Happy: 1301 ms
± 261 ms.

Amygdala Activation
Adolescents showed significant bilateral amygdala activation to Fearful, Angry, and Happy
faces relative to the shape-matching, control condition. For brain images and coordinates of
amygdala activation, see Figure 1 and Table 1 in Supplementary material.

Correlation of Heart Rate with Amygdala Activation
The correlation between the peak LF/HF and right amygdala percent signal change for the
Fearful faces condition in the 18 adolescents was statistically significant (Spearman’s rho =
0.55, p = 0.018, two-tailed). For scatterplot, see Figure 2. The correlations between the peak
LF/HF and percent signal change in the right amygdala for Angry (Spearman’s rho = 0.19, p
= 0.45) and Happy (Spearman’s rho = 0.24, p = 0.33) faces were not significant. The
correlations between peak LF/HF and percent signal change in the left amygdala for Fearful
(Spearman’s rho = 0.23, p = 0.36), Angry (Spearman’s rho = −0.61, p = 0.81), and Happy
(Spearman’s rho = −0.18, p = 0.47) faces were not significant. No significant correlations were
found for the control region: (1) right fusiform: Fearful (Spearman’s rho = 0.13, p = 0.62),
Angry (Spearman’s rho = −0.14, p = 0.57), Happy (Spearman’s rho = −0.27, p = 0.29); (2) left
fusiform: Fearful (Spearman’s rho = −0.16, p = 0.53), Angry (Spearman’s rho = −0.14, p =
0.58), Happy (Spearman’s rho = −0.29, p = 0.24).

DISCUSSION
The present study is the first one to investigate the relationship between amygdala activation
and heart rate in adolescents. There were two main results. First, we found significant increases
in amygdala activation in response to the perception of faces with happy, angry or fearful affect
relative to the control condition. These findings are consistent with other fMRI studies in adults
[38] and adolescents [20,21,39]. Second, using well-established methods of heart rate data
analysis [9,34], we found a significant positive correlation between the percent signal change
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in the right amygdala and peak LF/HF. Taken together, our results support the idea that, as
with adults, the adolescent amygdala processes emotionally salient events, and it is coupled to
the functional status of the ANS.

Our findings are consistent with those of previous depth electrode [6,7] and functional
neuroimaging studies in adults. The functional neuroimaging of adults have found concomitant
increases in amygdalar activation and measures of autonomic arousal such as skin conductance
[37], blood pressure [11,12] and heart rate [4,15].

Our finding of a positive correlation between amygdala activation and peak LF/HF supports
the notion that greater amygdala activation results in an increase in heart rate in normal
adolescents. The James-Lange theory states that emotional feelings (e.g., fear) are dependent
on bodily responses (e.g., quickening heartbeat) which are automatically generated by the ANS.
Thus, our finding of the coupling between the degree of amygdala activation and heart rate is
consistent with the James-Lange theory.

Within the framework of the triadic model of adolescent development [5], our finding of a
significant correlation between amygdala activation and peak LF/HF suggests that the
examination of the interaction between emotion and physiology may be interesting in depressed
or anxious adolescents. The amygdala, nucleus accumbens, and medial/ventral prefrontal
cortices are presented as the key neural systems in the triadic model. In their paper, the authors
suggest that developmental perturbations in any of these key neural systems may result in
psychopathology. At the time of publication of their model, only structural and functional MRI
studies of the amygdala in the pediatric population had been done. No studies examining the
correlation between amygdala activation and ANS activity in the pediatric population had been
published. Our study establishes a normative baseline in adolescents against which future
studies of different psychiatric populations (e.g., depressed or anxious adolescents) may be
compared.

In conclusion, our findings contribute to the field of neuroscience in at least three areas. First,
our results show that amygdala activity is related to heart rate in normal adolescents. Hence,
as with adults, healthy adolescents demonstrate a coupling between processing emotional
stimuli and adjusting the ANS accordingly. Our results are consistent with the James-Lange
theory of emotion. Second, our finding of significant increases in amygdala activation in
response to the perception of faces with happy, angry or fearful affect relative to the control
condition provides additional support for a broader role for the adolescent amygdala beyond
simply responding to Fearful faces. Of note, our results separately replicate the initial finding
of adolescent amygdalar activation to positive facial expressions [39]. Finally, our study
establishes a normative baseline in adolescents against which future studies of different
psychiatric populations (e.g., depressed or anxious adolescents) may be compared.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Axial and Coronal views showing significant amygdala activation to All Faces, Fearful, Angry,
and Happy vs. Shape conditions. The All Faces brain images and bar graphs represent the sum
total of the amygdala activation to Fearful + Angry + Happy Faces compared to the control
Shape condition. Bar graphs show percent signal changes in the left and right amygdala. Error
bars indicate Standard Erro Error.
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Figure 2.
Scatterplot of the percent signal change in the right amygdala and the peak LF/HF values for
Fearful faces compared to the control (shape matching) condition.
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