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Abstract
This paper presents a probabilistic neural network based technique for unsupervised quantification
and segmentation of brain tissues from magnetic resonance images. It is shown that this problem can
be solved by distribution learning and relaxation labeling, resulting in an efficient method that may
be particularly useful in quantifying and segmenting abnormal brain tissues where the number of
tissue types is unknown and the distributions of tissue types heavily overlap. The new technique uses
suitable statistical models for both the pixel and context images and formulates the problem in terms
of model-histogram fitting and global consistency labeling. The quantification is achieved by
probabilistic self-organizing mixtures and the segmentation by a probabilistic constraint relaxation
network. The experimental results show the efficient and robust performance of the new algorithm
and that it outperforms the conventional classification based approaches.

Index Terms
Finite mixture models; image segmentation; information theoretic criteria; model estimation;
probabilistic neural networks; relaxation algorithm

I. Introduction
Quantitative analysis of brain tissues refers to the problem of estimating tissue quantities from
a given image, and segmentation of the image into contiguous regions of interest to describe
the anatomical structures. The problem has recently received much attention largely due to the
improved fidelity and resolution of medical imaging systems. Because of its ability to deliver
high resolution and contrast, magnetic resonance (MR) imaging has been the dominant
modality for research on this problem [1]–[5]. In clinical practice, MR images are typically
analyzed by qualitative, or semi-quantitative visualization and evaluation. The main focus of
most automatic MR image analysis schemes has been on image segmentation [2], [4], [6]–
[9]. Tissue quantification, on the other hand, alone or together with tissue segmentation, also
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provides valuable information for brain tissue analysis [1], [5]. Pathological studies show that
many neurological diseases are accompanied by subtle changes in brain tissue quantities and
volumes [3]. Because of the practical difficulty for clinicians to identify all pathological
changes directly from medical images, development of accurate and efficient image analysis
systems is of great importance.

Stochastic model-based methods have been by far the most popular approach for quantification
of brain tissues from MR images [1], [3], [5], [10]–[12]. The stochastic model-based approach
typically employs a finite mixture model that is shown to be a very suitable model for the task
[1], [3], [10]. Neural networks have also been employed for image segmentation [2], [6], [7],
[13], and recently, a cross fertilization of the stochastic model based and neural network
approaches, probabilistic neural networks have emerged as a powerful tool in MR image
analysis [7], [14]. Probabilistic neural networks provide valuable insight for designing and
learning in neural networks and offer efficient online computation of the quantities of interest,
a feature especially important for evaluation of studies in a clinical setting, such as MR image
sequence analysis [12]. Furthermore, probabilistic neural networks are particularly suitable for
application to quantitative analysis of MR images. In this paper, we present a probabilistic
neural network approach for efficient analysis of brain tissues by using single-valued MR brain
scans. The major differences of our work from the previous research described in [1], [3],
[5], [9] are as follows.

1. We present two theorems to show that the correct use of the standard finite normal
mixture (SFNM) model in MR brain tissue quantification does not require the pixel
images to be statistically independent.

2. We introduce and briefly describe a new information theoretic criterion formulation
following Jaynes’ principle: the minimum conditional bias and variance (MCBV)
criterion. We use three information theoretic criteria to determine the appropriate
number of tissue types in a particular MR brain scan.

3. We introduce an on-line algorithm for parameter estimation associated with tissue
quantification: the probabilistic self-organizing mixtures (PSOM) algorithm. We
present comparative results to show its superior performance in terms of faster rate
of convergence and lower floor of estimation error and introduce global relative
entropy (GRE) as the objective function for error measure.

4. We introduce an efficient procedure for pixel classification associated with tissue
segmentation that is realized by a probabilistic constraint relaxation network (PCRN).
PCRN might be considered as an extension of the inhomogeneous Markov random
field based approaches [15].

Experimental results demonstrate the efficient and reliable performance of the proposed
scheme, in terms of the quantification achieved by PSOM, consistent order determination using
three information criteria including MCBV, and the satisfactory segmentation results by
PCRN.

The paper is organized as follows. In Section II, we present the stochastic modeling
formulation, for both the tissue quantification and the segmentation stages. We present the
algorithms to solve these problems in Section in along with results using simulated data. Section
IV presents examples, with real MR data. These results demonstrate the accuracy and
reproducibility of the method and show the performance of efficient automatic quantification
and segmentation. We present discussion of the results in Section V.
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II. Problem Statement
In this section, we present the problem formulation and the probabilistic network models used
for tissue quantification and segmentation.

A. Stochastic Modeling
In order to validate the use of a suitable stochastic model for MR image analysis with a specified
objective, we have studied MR imaging statistics and observed several useful statistical
properties of MR images [16], [19]. These results are strongly supported by the analysis of
actual MR image data [20]. In particular, based on the statistical properties of MR pixel images,
where pixel image is defined as the observed gray level associated with the pixel, use of an
SFNM distribution is justified to model the image histogram, and it is shown that the SFNM
model converges to the true distribution when the pixel images are asymptotically independent
[21]. Furthermore, by incorporating statistical properties of context images, where context
image is defined as the membership of the pixel associated with different tissue types, a
localized SFNM formulation is proposed to impose local consistency constraints on context
images in terms of a stochastic regularization scheme [16].

Assume that each pixel in the MR image can be decomposed into pixel image x and context
image l. By ignoring information regarding the spatial ordering of pixels, we can treat context
images (i.e., pixel labels) as random variables and describe them using a multinomial
distribution with unknown parameters πk, k = 1 ···, K. Since it reflects the distribution of the
total number of pixels in each tissue type (or component), πk can be interpreted as a prior
probability of pixel labels determined by the global context information. Thus, the relevant
(sufficient) statistics are the pixel image statistics for each component and the number of pixels
of each component. The marginal probability measure for any pixel image, i.e., the SFNM
distribution, can be obtained by writing the joint probability density of x and l and then summing
the joint density over all possible outcomes of l, i.e., fr(x) = Σl f(x, l), resulting in a sum of the
following general form according to the Bayes law:

f r(x) = ∑
k=1

K
πkg(x ∣ μk, σk

2) (1)

with ∑k=1
K πk = 1, πk ≥ 0, and

g(x ∣ μk, σk
2) = 1

2πσk
exp ( − (x − μk)2

2σk
2 )

where μk and σk
2 are the mean and variance of the kth Gaussian kernel. We use K to denote the

number of Gaussian components and r ∈ ℛ3K−1 to denote the total parameter vector that
includes μk, σk

2, and πk for all K components. Several observations are worth reiterating.

1. All pixel images are identically distributed from a maximum-entropy mixture
distribution and treated as unclassified data [22]–[24].

2. The SFNM model uses the prior probabilities of pixel label in the formulation instead
of realizing its true value for each pixel image.

3. Since the calculation of the histogram of pixel images relies on the same mechanism
as SFNM modeling, it can be considered to be a sampled version of the true pixel
distribution [1].

Wang et al. Page 3

IEEE Trans Image Process. Author manuscript; available in PMC 2008 January 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Since the structure of the likelihood function in SFNM model follows an identical distribution
[25], the corresponding ML estimation will be unbiased [26]. However, the price to be paid
for the stationary structure is that we cannot represent local context explicitly, i.e., the pixel
labels are hidden. Because context information is of particular importance in tissue
segmentation, by assuming that the context images are random variables with Markovian
property [15], a localized SFNM model is formulated. It explicitly incorporates local context
regularities into a consistent network structure. For each pixel i, we define the spatial constraint
as a local set of all pairs (li,lj) such that the consistency between li and lj can be represented by
the indicator function I(li, lj) [2], [13], [27]. Under this configuration, all pairs of labels are
either compatible (produce an output “1”) or incompatible (produce an output “0”) [28]. We
define the neighborhood of pixel i denoted by δi, by opening a b × b window with pixel i being
the central pixel, where b is assumed to be an odd integer. Similar to the approach taken in
[2], [4], and [13], we compute the frequency of neighbors of pixel i with labels compatible to

a given label k, conditioning the labels of its neighbors l∂i ∈ ℛb2−1 by

πik = p(li = k ∣ l∂i) =
1

b2 − 1
∑

j∈∂i
I (k, l j∣∂i) (2)

and the localized SFNM distribution for xi directly follows by

q(xi ∣ l∂i) = ∑
k=1

K
πik

1
2πσk

exp ( − (xi − μk)2

2σk
2 ). (3)

The calculation of πik is same with that of πk, however, its scale is local and thus can be
interpreted as the conditional prior of the pixel label determined by the uncertainty contained
in lδi. The localized SFNM model hence provides a more evident meaning than the SFNM
model for tissue segmentation [15], while the SFNM model has a better structure for tissue
quantification [23].

B. Tissue Quantification

Tissue quantification addresses the combined estimation of tissue parameters (πk, μk, σk
2) and

the detection of the tissue structural parameter K in (1) given the pixel images x. The two main
approaches used to determine these parameters are classification-based estimation and distance
minimization approaches [25], [29]. In the classification-based approach, all pixels are first
classified into different components according to a specified distance measure, and then, the
model parameters are estimated using sample averages by the ergodic theorems [6], [9], [29].
In the distance minimization approach, the mixture density is fitted to the histogram of pixel
images by finding the optimal parameters with respect to a distance measure [1], [3], [21]. We
use relative entropy (the Kullback-Leibler distance) [26] for tissue quantification in MR images
such that it measures the information theoretic distance between the histogram of the pixel
images, denoted by fx, and the estimated SFNM distribution fr(x), and is given by [26]

D( f x ∥ f r) = ∑
x∈χ

f x(x) log
f x(x)

f r(x) . (4)

Note that the use of the relative entropy cost also overcomes problems such as convergence at
the wrong extreme faced by the squared error cost function as it weighs errors more heavily
when probabilities are near zero and one, and diverges in the case of convergence at the wrong
extreme [17], [30]. We have shown that, when relative entropy is used as the distance measure,
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distance minimization is equivalent to maximum likelihood (ML) estimation of SFNM
parameters. The conclusion is summarized by the following theorem [38].

Theorem 1—Consider a sequence of random variables x1, ···,xN in ℛN  Assume that the
sequence {xi} is independent and identically distributed (i.i.d.) by the distribution fr. Then, the
joint likelihood function ℒ(r) is determined only by the histogram of data and is given by

ℒ(r) = exp ( − N H ( f x) + D( f x ∥ f r) ) (5)

where H denotes the entropy with base e [26]. Hence, maximization of joint likelihood function
ℒ(r) is equivalent to the minimization of relative entropy D(fx||fr).

Thus, tissue quantification is formulated as a distribution learning problem and quantification
is achieved when the relative entropy (4) is minimized, or by Theorem 1, when the joint
likelihood function ℒ(r) is maximized. However, spatial statistical dependence among pixel
images is one of the fundamental issues in problem formulation since the calculation of the
image histogram treats all pixel images as independent random variables [1], [5]. In order to
validate the correct use of (4) in tissue quantification, we prove the following theorem in
[38] to show that the image histogram fx converges to the true distribution f* with probability
one as N → ∞.

Theorem 2—Consider a sequence of random variables x1, ···,xN in ℛN . Assume that the
sequence {xi}is asymptotically independent [26] and identically distributed by the SFNM
distribution f*. For a closed convex set E ⊂ ℱ and distribution fx ∉ E, let fr ∈ E be the
distribution that achieves the minimum distance to fx, i.e.,

f r = arg min
ℱ∈E

D( f x ∥ ℱ). (6)

Then, when N approaches infinity, we have

lim
N→∞

D( f r ∥ f ∗) = 0 (7)

with probability one, i.e., the estimated distribution of x, fr, given that it achieves the minimum
of D(fx||fr), is close to f* for large N.

Thus, when N is sufficiently large, minimization of the relative entropy between fr and f* can
be well approximated by the minimization of the relative entropy between fr and fx. This fitting
procedure can be practically implemented by maximizing the joint likelihood function under
the independence approximation of pixel images [18].

C. Tissue Segmentation
Anatomical structure, in addition to the results of tissue quantification that reveals different
tissue properties, provides very valuable information in medical applications. Tissue
segmentation is a technique for partitioning the image into meaningful regions corresponding
to different objects. It may be considered as a clustering process where the pixels are classified
into attributed tissue types according to their gray-level values and spatial correlation [6]. A
reasonable assumption that can be made is that spatially close pixels are likely to belong to the
same tissue type [22]. Accordingly, tissue segmentation addresses the realization of context
images li, i = 1, ···, N, given the observed pixel images x. Based on the localized SFNM model
(3), a deterministic relaxation labeling can be used to update the context images after global
tissue quantification. With a motivation similar to the one in [2] and [6], the technique seeks
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for a consistent labeling solution where the criterion is to maximize global consistency measure
by using a system of inequalities. The structure of relaxation labeling is motivated by two basic
considerations: i) decomposition of a global computation scheme into a network performing
simple local computations, and ii) use of suitable local context regularities in resolving
ambiguities.

We can define the consistency of discrete relaxation labeling and formalize its relationship to
global optimization as follows: We first define the component in the localized SFNM
distribution (3) as a support function consisting of the compatibility function ∧(li,lδi) and local
likelihood p(xi|li):

Si(k) = Λ(li, l∂i)p(xi ∣ li)

= πik
1

2πσk
exp ( − (xi − μk)2

2σk
2 ). (8)

Note that the support function Si(k) is a function of the component (tissue type) k. Then, tissue
segmentation is interpreted as the satisfaction of a system of inequalities as follows:

Si(li) ≥ Si(k) (9)

for all k and for i = 1,···, N, where a consistent labeling is defined as the one having maximum
support at each pixel simultaneously. We further define the average local consistency measure

A(l) = ∑
i=1

N
∑
k

I (li, k)Si(k) (10)

to link consistent labeling to global optimization [28]. It is shown that when the spatial
compatibility measure is symmetric and A(l) attains a local maximum at l, then l is a consistent
labeling [2], [8], [13], [28]. Hence, a consistent labeling can be accomplished by locally
maximizing A(l).

We can view consistency as a “locking-in” property, i.e., since the support function defined
for a given pixel depends on the current labels of neighboring pixels, this neighborhood
influences the update of the given pixel through probabilistic compatibility constraints. With
constraint propagation, the relaxation process iteratively updates the label assignments to
increase the consistency, and ideally finds a more consistent labeling with the neighboring
labels, such that each pixel is designated a unique label [2], [16].

III. Theory and Algorithms
Over the years, several unsupervised approaches have been reported in the literature exploring
quantitative analysis of MR brain images [1], [5]. Currently, there are two main approaches to
the problem. In the first one, the maximum likelihood quantification scheme, tissue types are
first quantified using maximum likelihood principle, where only soft classification of the pixel
images is required [1]. Further classification of a sample is then performed by placing it into
the class for which the posterior probability or the support function is maximum, i.e., by
Bayesian consistent labeling [45], [46]. The quantities obtained by sample averages after
imperfect pixel classification may not be consistent with the previous quantification result
[23]. In the second approach, tissue quantification and segmentation are performed
simultaneously with back and forth iterations between the two. In this case, the prior and post
quantification results will be consistent, however the quantification and classification errors
do interfere with each other during the iterations. In this research, we deal with tissue
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quantification and segmentation as two separate objectives and use different optimality criteria.
However, it is worth reiterating the fact that the proposed method achieves an unbiased ML
tissue quantification, a step to be considered independent from the following tissue
segmentation step. In what follows, we present the theory and algorithms for the two stages:
i) quantification that involves network order selection and adaptive computation of the
parameters to achieve soft classification, and ii) segmentation that uses the order and the
parameters computed in the quantification stage to perform hard classification by incorporating
local context constraints.

A. Adaptive Model Selection
Since the prior knowledge of the true structure of a real image is generally not available, it is
most often desirable to have a neural network structure that is adaptive, in the sense that the
number of local components (i.e., hidden nodes) is not fixed beforehand. Both for PSOM and
PCRN, using a smaller or larger number of mixture components (local components in the
network) than the number of tissue types actually represented on a particular slice will result
in incorrect identification and quantification of the tissues in a particular slice. This situation
is particularly critical in a real clinical application where the structure of the individual slice
for a particular patient may be arbitrarily complex. The objective of adaptive model selection
is to propose a systematic strategy for the determination of the structure of the network, i.e.,
the number of hidden nodes (or mixture components) K in the two probabilistic neural
networks: the PSOM and the PCRN. One approach to determine the optimal number K0 is to
use information theoretic criteria, such as the Akaike information criterion (AIC) [31], [32],
and the minimum description length (MDL) [5], [33]. The major thrust of this approach has
been the formulation of a structural learning in which a model fitting procedure is utilized to
select a model from several competing candidates such that the selected model best fits the
observed data.

For example, AIC will select the model that gives the minimum of

AIC(Ka) = − 2 log (ℒ(r̂ML)) + 2Ka (11)

where ℒ(r̂ML) is the likelihood of r ̂ML, the ML parameter estimates, and Ka is the number of
free adjustable parameters in the model. The AIC tries to formulate the problem explicitly as
a problem of approximation of the true structure by the model. It implies that the correct number
of distinctive image regions K0 can be obtained by minimizing AIC. From a quite different
point of view, MDL reformulates the problem explicitly as an information coding problem in
which the best model fit is measured such that high probabilities are assigned to the observed
data while at the same time the model itself is not too complex to describe [33]. The model is
selected by minimizing the total description length defined by

MDL(Ka) = − log (ℒ(r̂ML)) + 0.5Ka log N . (12)

Note that, different from AIC, the second term in MDL takes into account the number of
observations. However, the justifications for the optimality of these two criteria with respect
to tissue quantification or classification are somewhat indirect and remain unresolved [5],
[21], [25], [31].

In this section, we present a new formulation of information theoretic criterion, the minimum
conditional bias and variance criterion, to address the model selection problem. Akaike and
Rissanen’s work on information theoretic criteria have certainly been the inspirational source
to this work, however, in our work, we present a new interpretation and justification by
information theoretic means [18]. Our approach has a simple optimal appeal in that it selects
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a minimum conditional bias and variance model, i.e., if two models are about equally likely,
MCBV selects the one whose parameters can be estimated with the smallest variance.

New formulation is based on the fundamental argument that the value of the structural
parameter can not be arbitrary or infinite, because such an estimate might be said to have low
“bias” but the price to be paid is high “variance” [34]. We can obtain a formulation by using
Jaynes’ principle, which states that “the parameters in a model which determine the value of
the maximum entropy should be assigned values which minimize the maximum
entropy” [35]. Let joint entropy of x and r ̂ be H(x, r ̂) = H(x|r ̂) + H(r ̂). It is shown that the
maximum of conditional entropy H(x|r ̂) is precisely the negative of the logarithm of the
likelihood function ℒ(x ∣ r̂) corresponding to the entropy-maximizing distribution for x [33].
We have

max
Px

H (x ∣ r̂) = − log (ℒ(x ∣ r̂)) ∣

Px=∏i=1
N f r(xi)

(13)

where uniform randomization in the SFNM modeling corresponds to the maximum uncertainty
[22], [23]. Furthermore, maximizing the entropy of the parameter estimates H(r ̂) results in

max
Pr̂

H (r̂) = ∑
k=1

Ka
H (r̂k) (14)

where we have used the result that, given the variance of parameter estimate determined by
the corresponding sample average, the normal and independent distribution Pr ̂. gives the
maximum entropy [24], [26], [36].

Since the joint maximum entropy is a function of Ka and r ̂, by taking the advantage of the fact
that model estimation is separable in components and structure, we define the MCBV criterion
as

MCBV (K ) = − log (ℒ(x ∣ r̂ML)) + ∑
k=1

Ka
H (r̂kML) (15)

where − log (ℒ(x ∣ r̂ML)) is the conditional bias (a form of information theoretic distance)

[24], [26], and ∑k=1
Ka H (r̂kML) is the conditional variance (a measure of model uncertainty)

[24], [36], of the model. As both of these two terms represent natural estimation errors about
the true models, we treat them on an equal basis. A minimization of the expression in (15) leads
to the following characterization of the optimum estimation:

K0 = arg { min
1≤K≤KMAX

MCBV (K )}. (16)

That is, if the cost of model variance is defined as the entropy of parameter estimates, the cost
of adding new parameters to the model must be balanced by the reduction they permit in the
ideal code length for the reconstruction error. A practical MCBV formulation with code-length
expression is further given by [18], [26]

MCBV(K ) = − log (ℒ(x ∣ r̂ML)) + ∑
k=1

Ka 1
2 log 2π · e Var(r̂kML) (17)
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where the calculation of H(r ̂KML) requires the estimation of the true ML model parameter
values. It is shown that, for sufficiently large number of observations, the accuracy of the ML
estimation tends quickly to the best possible accuracy determined by the Cramér-Rao lower
bounds (CRLB’s) [36]. Thus, the CRLB’s of the parameter estimates are used in the actual
calculation to represent the “conditional” bias and variance [37]. We have found that,
experimentally, the MCBV formulation for determining the value of K0 exhibits very good
performance consistent with both the AIC and the MDL criteria. It should be noted, however,
that it is not the only plausible one; other criteria such as cross validation techniques may also
be useful in this case [46], [48], [50], [52], [53].

We present a simulation study to test the performance of model selection with the proposed
criterion (MCBV) and the two frequently used methods, AIC and MDL. We generate a test
data with four overlapping normal components. Each component represents one local cluster.
The value for each component is set to a constant value and normally distributed noise is then
added to this simulation phantom with a signal-to-noise ratio (SNR) of 10 dB [38]. The phantom
is shown in Fig. 1(a). The AIC, MDL, and MCBV curves, as functions of the number of local
clusters K, are plotted in the same figure, Fig. 1(b). According to the information theoretic
criteria, the minima of these curves indicate the correct number of the image components. From
this experimental figure, it is clear that the number of local clusters suggested by these criteria
are all correct. More application of the MCBV to the identification of real data structures will
be presented in Section IV.

B. Probabilistic Self-Organizing Mixtures
There are many numerical techniques to perform the ML estimation of finite mixture
distributions [25]. The most popular method is the expectation-maximization (EM) algorithm
[44]. EM algorithm first calculates the posterior Bayesian probabilities of the data through the
observations and the current parameter estimates (E-step) and then updates parameter estimates
using generalized mean ergodic theorems (M-step). The procedure cycles back and forth
between these two steps. The successive iterations increase the likelihood of the model
parameters. A neural network interpretation of this procedure is given in [39]. However, EM
algorithm has the reputation of being slow, since it has a first order convergence in which new
information acquired in the expectation step is not used immediately [40]. Recently, on-line
versions of the EM algorithm are proposed for large scale sequential learning. Such a procedure
obviates the need to store all the incoming observations, changes the parameters immediately
after each data point allowing for high data rates. Titterington [25] has developed a stochastic
approximation procedure which is closely related to our approach, and shows that the solution
can be made consistent. Other similar formulations are due to Marroquin et al. [29] and
Weinstein et al. [41].

The PSOM we present here is a fully unsupervised and incremental stochastic learning
algorithm, and is a generalized adaptive structure version of the SOFM algorithm we presented
in [21]. The scheme provides winner-takes-in probability (Bayesian “soft”) splits of the data,
hence allowing the data to contribute simultaneously to multiple tissues. By differentiating D
(fx||fr) given in (4) with respect to the unconstrained parameters, μk and σk

2, we obtain the
following standard gradient descent learning rule for the mean and variance parameter vectors:

μk
(t+1) = μk

(t) + λ
N ∑

i=1

N
(xi − μk

(t))
zik
(t)

σk
2(t) (18)

Wang et al. Page 9

IEEE Trans Image Process. Author manuscript; available in PMC 2008 January 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



σk
2(t+1) = σk

2(t) + λ
N ∑

i=1

N
(xi − μk

(t))2 − σk
2(t) zik

(t)

2σk
4(t)

k = 1, … , K

(19)

where λ is the learning rate and zik
(t) is the posterior Bayesian probability, defined by

zik
(t) =

πk
(t)g(xi ∣ μk

(t), σk
2(t))

f (xi ∣ r (t))
. (20)

By adopting a stochastic gradient descent scheme for minimizing D(fx||fr) [29], the
corresponding on-line formulation is obtained by simply dropping the summation in (18) and
(19) which results in

μk
(t+1) = μk

(t) + a(t)(xt+1 − μk
(t))z(t+1)k

(t) (21)

σk
2(t+1) = σk

2(t) + b(t) (xt+1 − μk
(t))2 − σk

2(t) z(t+1)k
(t)

k = 1, … , K
(22)

where the variance factors are incorporated into the learning rates while the posterior Bayesian
probabilities are kept, and a(t) and b(t) are introduced as the learning rates, two sequences
converging to zero, ensuring unbiased estimates after convergence. This modified version of
the parameter updates is motivated by the principle that assigning different learning rates to
different parameters of a network and allowing those to vary over time increases the rate of
convergence [42]. Based on generalized mean ergodic theorem [26], updates can also be
obtained for the constrained regularization parameters, πk, in the SFNM model. For simplicity,
given an asymptotically convergent sequence, the corresponding mean ergodic theorem, i.e.,
the recursive version of the sample mean calculation, should hold asymptotically. Thus, we
define the interim estimate of πk [43] by

πk
(t+1) = t

t + 1 πk
(t) + 1

t + 1 z(t+1)k
(t) . (23)

Hence, the updates given by (21)–(23) provide the incremental procedure for computing the
SFNM component parameters. Their practical use however requires strongly mixing condition
and a decaying annealing procedure (learning rate decay) [26], [27], [36]. These two steps are
currently controlled by user-defined parameters which may not be optimized for a specific
problem. In addition, algorithm initialization must be chosen carefully and appropriately. In
[43], we introduce an adaptive Lloyd-Max histogram quantization (ALMHQ) algorithm for
threshold selection which is also well suited to initialization in ML estimation. In this work,
we employ ALMHQ for initializing the network parameters μk, σk

2, and πk.

We tested the proposed technique using the same simulated image shown in Fig. 1(a). After
the algorithm initialization by ALMHQ [43], network parameters are finalized by the PSOM
algorithm. The GRE value is used as an objective measure to evaluate the accuracy of
quantification. The results of the distribution learning are shown in Fig. 1(c) and (d). The GRE
in the initial stage achieves a value of 0.0399 nats, and after the final quantification by PSOM,
is down to 0.008 nats. The numerical results are given in Table I where the unit of μ and σ2

simply represents the observed gray levels of the pixel images while π is the probability
measure. To simplify the representation, we omit their units as in [1], [5].
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We also present a comparison of the performance of PSOM with that of the EM [23], [40],
[44] and the competitive learning (CL) [29] algorithms in MR brain tissue quantification (see
Section IV). We evaluate the computational accuracy and efficiency of the algorithm in
standard finite normal mixture (SFNM) distribution learning, based on an objective criterion
and its learning curve characteristics. For comparison, we applied all methods to the same
example and used the GRE value between the image histogram and the estimated SFNM
distribution as the goodness criterion to evaluate the quantification error. Fig. 2(a) shows
learning curves of the PSOM and competitive learning (CL) algorithms, averaged over five
independent runs. As observed in the figure, PSOM outperforms CL learning by faster
convergence and lower quantification error, and reaches a final GRE value of about 0.04 nats.
Fig. 2(b) presents the comparison of the performance of the PSOM algorithm with that of the
EM algorithm for 25 epochs. As seen in the learning curves, PSOM algorithm again shows
superior estimation performance. Note that since the EM algorithm uses intrinsically a batch
learning mode, the learning curve appears very smooth when each point on the curve
corresponds to a completed learning cycle in this case. The final quantification error is about
0.02 nats for PSOM with a faster convergence rate.

To conclude the discussion on PSOM, we address two issues regarding the nature of PSOM
as it relates to neural computation. These are, the adjustment of structures in the feature space
by the algorithm and the temporal dynamics of the learning process at the single neuron and
the modular levels. Mapping the self-organizing operation to the PSOM, we design a network
where both the structure and weights are updated according to an unsupervised learning
procedure. Information theoretic criteria are shown to provide a reasonable approach for the
solution of the problem. Another issue relating to the neural computational aspect of the PSOM
procedure is the temporal dynamics of the learning process. As given by (21)–(23), learning
in PSOM is a dynamic feedback competitive learning procedure in a self-organizing map
(SOM) [27]. In particular, both the structure and the weights of the PSOM “compete” for the
assignment order of each model and assignment probability of each observation. Overall
convergence dynamics of the PSOM are similar to SOM in that a solution is obtained by
“resonating” between input data and an internal representation. Such a mechanism can be
considered as a more realistic learning than the batch EM procedure. In addition, temporal
dynamics of the learning process for PSOM on the structure level, suggest the adjustment of
the internal structure of a neural network as more information is acquired, i.e., the addition of
new clusters.

C. Probabilistic Constraint Relaxation Networks
Given the SFNM parameters, i.e., the image components computed by the ML principle, there
are several approaches to perform pixel classification. When the true pixel labels li

∗ are
considered to be functionally independent and nonrandom constants, competitive learning
approaches can be used for the segmentation of different tissue types [6], [8]. ML classification
directly maximizes the individual likelihood function of pixel images by placing pixel i into
the Kth region, if

li
∗ = arg {min

k
( log (σk

2) + (xi − μk)2σk
−2)} (24)

where the term in parentheses is the modified Mahalanobis distance. On the other hand, when
pixel labels are considered to be random variables, and the global context is taken as the prior
information, probabilistic neural networks are most commonly used for tissue segmentation
[4], [7]. By minimizing the expected value of the total Bayes classification error, pixel i will
be classified into the Kth region if
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li = arg {min
k

( log (σk
2) − 2 log (πk) + (xi − μk)2σk

−2)} (25)

where the term in parentheses, since it incorporates the global prior information πk, is called
the Bayesian distance.

The major problem with these approaches is that the classification error will be high when the
observed images are noisy, and possibly, there will be a high bias in the model parameters
computed with sample averages after classification. We propose a probabilistic constraint
relaxation network (PCRN) to perform tissue segmentation by imposing neighborhood context
regularities to alleviate the two problems mentioned above. It operates on an initial segmented
image, preferably one with uniformly distributed classification errors, such as the one
segmented by the classification-maximization (CM) algorithm [29]. PCRN uses stochastic
discrete gradient descent procedure where each pixel is randomly visited and its label is updated
[16], [45], i.e., pixel i is classified into the kth region if

li = arg {min
k

( log (σk
2) − 2 log (πik) + (xi − μk)2σk

−2)} (26)

where πik is defined in (2) and the decision follows a probabilistic compatibility constraint
given by

p(li ∣ xi, l∂i) = ∑
k

I (li, k)
p(li ∣ l∂i)p(xi ∣ li)

p(xi ∣ l∂i)
.

As discussed in Section II-C, by employing local maximization, relaxation labeling searches
for a consistent labeling such that the average total consistency measure given by (10) is
maximized for the given support function (8) [2]. It has been shown that relaxation labeling
based on the stochastic discrete gradient descent principle converges to a steady point such
that no label needs to be updated and the solution corresponds to at least one local maximum
of A(l) (10), [2], [16], [28], [29]. Iterations are needed to search for a consistent labeling, i.e.,
to maximize (10) for the given support function (8). During this relaxation process, our
numerical experiments show that classification error decreases at every iteration and converges
to a local maximum. Although a complete consistent labeling may not be reached in a practical
implementation, the relaxation labeling algorithm, can provide a quite reasonable and accurate
segmentation usually within few iterations [28]. The procedure can be summarized as follows.

PCRN Algorithm—Given l(0), m = 0

1. randomly visit each pixel for i = 1, …, N (by random permutation of pixel ordering),
and update its label li according to (26);

2. when the percentage of label changing less that ∈%, stop. Otherwise, m = m + 1 and
repeat step 2.

As mentioned before, it is desirable to start with an initial labeling l(0) which has classification
errors that have spatial uniform distribution on the initial segmented image. Our experience
has shown ML classification described by (24) to be a very good candidate to perform the
initialization, i.e., to compute l(0) since it results in uniformly distributed classification errors.
Also, a reasonable stopping criterion, suggested by our experimental results is 1%, i.e.,
choosing ∈ = 1 in step 2.

As shown in Fig. 3(a), PCRN is composed of an N dimensional input array (the pixel images),
a K dimensional hidden layer, and an N dimensional output array of pixel labels, such that each
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takes a value li = k, where k = 1, …, K. The number of the hidden units K, corresponding to
the number of tissue types, is determined by information theoretic criteria as explained in
Section II-A during tissue quantification. The estimates of the model parameters also determine
the parameters μk and σk

2 for each of the K units g(u ∣ μk, σk
2). Each of these K hidden units

combines the local probabilistic constraint with the global intensity distribution information
to produce an output which competes with the outputs of other hidden units to produce the
labeling for the ith pixel, i.e., to determine the output li. The incorporation of the local context
information is achieved by a gating function between the hidden units and the output, realizing
πik given in (2), providing feedback from the output units to determine the activation of the
hidden unit. Hence, the network, rather than minimizing an energy function as in [6], [8],
[29], looks for a possible local maximum of a global consistency measure by operating on local
probabilistic constraints. It is derived directly from probabilistic constraints and can be
classified as a recurrent noncausal competitive network with gating functions that incorporate
context constraints. This approach demonstrates how a network of discrete units can be used
to search an optimal solution to a problem that benefits the incorporation of context constraints.

Given the configuration of PCRN that is partially determined in model selection and estimation,
the input layer of the PCRN has neurons corresponding to each pixel image and the output
layer has neurons each corresponding to the labels of the original image. Competition within
hidden layer ensures that only one neuron becomes active at any pixel location. This is
accomplished by a winner-takes-all scheme among neurons, i.e., by a competitive learning
procedure [29]. Gating between output and the hidden layer incorporates the local labeling
information to provide locally consistent labeling and hence to remove the ambiguities. This
is performed by the use of consistent measures between neighborhood neurons. Reciprocal
feedback from output to gating unit allows each hidden neuron to control its activation. Another
important difference between the PCRN and the conventional competitive learning network is
that the recurrent gating provides a mechanism to incorporate the local Bayesian prior in the
decision-making process through a consistency constraint. Without a similar mechanism, the
conventional methods can only achieve, at best, a ML or a global Bayesian classification.

For validation of image segmentation using PCRN, we apply the algorithm first to the simulated
images shown in Fig. 1(a). We use ML classifier to initialize the image segmentation, i.e., to
initialize the quantified image by selecting the pixel label with the largest likelihood at each
node by (24). Our experience suggested this to be a very suitable starting point for relaxation
labeling [16]. PCRN is then used to fine tune the image segmentation. Since the true scene is
known in this experiment, the percentage of total classification error is used as the criterion
for evaluating the performance of the segmentation technique. In Fig. 3(b), the initial
segmentation by the ML classification and the step-wise results of three iterations in PCRN
are presented. In this experiment, algorithm initialization results in an average misclassification
of 30%. It can be clearly seen that a dramatic improvement is obtained after several iterations
of the PCRN by using local constraints determined by the context information. Also, note that
the convergence is fast, as after the first iteration, most misclassifications are removed. The
final percentage of classification errors for Fig. 3 is about 0.7935%.

IV. Experiments and Results
In this section, we present results from real MR brain images using the probabilistic neural
network based approach we introduced to quantify and segment tissue types. In Section III,
after introducing the algorithms, we presented results using a simulated tone image for which
the number and structure of regions were known beforehand. The results presented showed the
success of the scheme in determining the correct number of regions and the reliable definition
of the boundaries of regions. In this section, we concentrate on application of the method to
real MR images, which presents a great challenge to any computerized unsupervised analysis
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technique because of its complex structure. Furthermore, in addition to the assessment of
radiologists, we also introduce application of an objective measure, GRE, to assess the
performance of the scheme after quantification and segmentation, i.e., the soft and hard
classification stages.

Fig. 4 shows the original data consisting of three adjacent, T1-weighted images parallel to the
AC-PC line. The data are acquired with a GE Sigma 1.5 Tesla system. The imaging parameters
are TR 35, TE 5, flip angle 45°, 1.5 mm effective slice thickness, 0 gap, 124 slices with in-
plane 192 × 256 matrix, and 24 cm field of view. Since the skull, scalp, and fat in the original
brain images do not contribute to the brain tissue, we edit the MR images to exclude nonbrain
structures prior to tissue quantification and segmentation as explained in [16]. This also helps
us to achieve better quantification and segmentation of brain tissues by delineation of other
tissue types that are not clinically significant [1], [2], [5]. The extracted brain tissues are shown
in Fig. 5. For each slice in the test sequence, the corresponding histograms are given in Fig. 6.
As seen in the figure, the histogram has a considerably different characteristics from slice to
slice and the tissue types are all highly overlapping making the problem quite complex. Our
main objective is to assess the accuracy and repeatability of the results obtained with the method
on real MR images. Evaluation of different image analysis techniques is a particularly difficult
task, and dependability of evaluations by simple mathematical measures such as squared error
performance is questionable. Therefore, most of the time, the quality assessment of the
quantified and segmented image usually depends heavily on the subjective and qualitative
judgements. As mentioned before, in this work, besides the evaluation performed by
radiologists, we use the GRE value to reflect the quality of tissue quantification and also present
results using EM and CL for image quantification to compare the results of our scheme in terms
of both the accuracy and the efficiency of the procedure. For assessment of tissue segmentation,
we use post-segmentation sample averages as an indirect but objective criterion, and again use
GRE values and visual inspection.

Based on the pre-edited MR brain image, the procedure for analysis of tissue types in a slice
is summarized as follows.

1. For each value of K (number of tissue types), K = Kmin, ···, Kmax, ML tissue
quantification is performed by the PSOM algorithm [(20)–(23)].

2. Scan the values of K = Kmin, ···, Kmax, use MCBV (16) to determine the suitable
number of tissue types.

3. Select the result of tissue quantification corresponding to the value of K0 determined
in step 2.

4. Initialize tissue segmentation by ML classification (23).

5. Finalize tissue segmentation by PCRN (by implementing (25) as explained in Section
III-C).

The performance of tissue quantification and segmentation is then evaluated in terms of the
GRE value, convergence rate, computational complexity, and visual judgement.

As discussed in the literature, the brain is generally composed of three principal tissue types,
i.e., white matter (WM), gray matter (GM), cerebrospinal fluid (CSF), and their pair-wise
combinations, called the partial volume effect. Santago and Gage [1] have proposed a six-tissue
model representing the primary tissue types and the mixture tissue types which were defined
as CSF-White (CW), CSF-Gray (CG), and Gray-White (GW). In this work, we also consider
the triple mixture tissue, defined as CSF-White-Gray (CWG). More importantly, since the MR
image scans clearly show the distinctive intensities at local brain areas, the functional areas
within a tissue type need to be considered. In particular, the caudate nucleus and putamen are
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two important local brain functional areas. In our experiment, as we have noted before, we
allow the number of tissue types to vary from slice to slice, i.e., consider adaptability to different
MR images. We let Kmin = 2 and Kmax = 9 and calculate AIC(K) (11), MDL(K) (12), and
MCBV(K) (15) for K = Kmin, ···, Kmax. The results with these three criteria are shown in Fig.
7, which suggest that the brain images contain six, eight, and six tissue types, respectively.
According to the model fitting procedure using information theoretic criteria as explained
before, the minima of these criteria indicate the most appropriate number of the tissue types,
which is also the number of hidden nodes in the corresponding PSOM (mixture components
in SFNM). In the calculation of MCBV using (16), we used the CRLB’s to represent the
conditional variances of the parameter estimates, given by [37]

Var(π̂kML) =
πk(1 − πk)

N (27)

Var(μ̂kML) =
σk
2

Nπk
, and (28)

Var(σ̂kML
2 ) =

2σk
4(Nπk − 1)

N 2πk
2 . (29)

Note that since the true parameter values in above equations are not available, their ML
estimates are used to obtain the approximate CRLB’s. From Fig. 7, it is clear that, with real
MR brain images, the overall performance of the three information theoretic criteria is fairly
consistent. Our experience suggests that, however, AIC tends to overestimate while MDL tends
to underestimate the number of tissue types [38], and MCBV provides a solution between those
of AIC and MDL, which we believe to be more reasonable especially in terms of providing a
balance between the bias and variance of the parameter estimates.

When performing the computation of the information theoretic criteria, we used PSOM to
iteratively quantify different tissue types for each fixed K. The PSOM algorithm is initialized
by a fully automatic thresholding technique, i.e., the adaptive ALMHQ procedure that we have
introduced in [43]. For slice 2, the results of final tissue quantification with K0 = 7, 8, 9 are
shown in Fig. 8. Table II gives the numerical result of final tissue quantification for slice 2
corresponding to K0 = 8, where a GRE value of 0.02–0.04 nats is achieved. It was found that
most of the variance parameters are different, which suggests that assuming same variance for
each tissue type with distinct image-intensity distribution is not very realistic. These quantified
tissue types agree with those of physician’s qualitative analysis results [54], [55].

The PCRN tissue segmentation for slice 2 is performed with K0 = 7, 8, 9, and the algorithm is
initialized by ML classification [see (24)]. PCRN updates are terminated after five to ten
iterations, since further iterations produced almost identical results. The segmentation results
are shown in Fig. 9. Although the segmentation result contains some small isolated spots (less
than four-pixel size), the PCRN approach is quite encouraging. It is seen that the boundaries
of WM, GM, and CSF are delineated very well and successfully. To see the benefit of using
information theoretic criteria in determining the number of tissue types, the decomposed tissue
type segments are given in Fig. 10 with K0 = 8. As can be observed in Figs. 9 and 10, the
segmentation with eight tissue types provides a very meaningful result. The regions with
different gray levels are satisfactorily segmented, especially, the major brain tissues are clearly
identified. If the number of tissue types were “underestimated” by one, tissue mixtures located
within putamen and caudate areas would be lumped into one component, though the results
are still meaningful. When the number of tissue type was “overestimated” by one, there is no
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significant difference in the quantification result, but white matter has been divided into two
components. For K0 = 8, the segmented regions represent eight types of brain tissues: (a) CSF,
(b) CG, (c) CGW, (d) GW, (e) GM, (f) putamen area, (g) caudate area, and (h) WM as shown
in Fig. 10. These segmented tissue types also agree with the results of radiologists’ evaluation
[54], [55].

We then test the hypotheses that: i) tissue segmentation using the prior constraint that the MR
image has a locally piecewise continuous structure provides better results than those of using
global regularization together with local intensity values [called global Bayesian classification
(GBC)]; and ii) tissue quantification using soft classification (i.e., without realizing the value
of li, by ML quantification) is more accurate than the quantification results obtained by using
sample averages computed after hard pixel classification, (i.e., by a winner-takes-all scheme),
or than those obtained in conjunction with such a scheme. For this task, slice 2 is segmented
and postquantified, using the Bayesian approach [i.e., global Bayesian classification based on
(25)] and the sample averages. The global Bayesian approach is not iterative and does not
require a stopping point. In this work, the performance is evaluated by the post-GRE values
for all schemes, which is consistent with model-based ergodic principle and allows for uniform
comparison among various techniques. Table III gives the classification errors by these two
methods in terms of postquantification errors. It can be seen that quantification by PSOM
results in lower error than GBC and PCRN, with PCRN resulting in lower GRE value. This
result implies that the intrinsic misclassification in tissue segmentation creates a biased
parameter estimate that contributes to the higher quantification error, as also noted in [23]. It
is very interesting to note that, since ergodic theorem is the most fundamental one behind any
statistical model-based image analysis approach, postquantification may be a suitable objective
criterion for evaluating the quality of image segmentation in a fully unsupervised situation.

V. Discussions and Conclusions
We have presented a complete procedure for quantifying and segmenting major brain tissue
types from MR images, in which two kinds of probabilistic neural networks: soft and hard
classifiers, are employed. The MR brain image is modeled by a standard finite normal mixture
model and an extended localized formulation. Information theoretic criteria are applied to
detect the number of tissue types thus allowing the corresponding network to adapt its structure
for the best representation of the data. The PSOM algorithm is used to quantify the parameters
of tissue types leading to a ML estimation. Segmentation of identified tissue components is
then implemented by PCRN through Bayesian decision. The results obtained by using the
simulated image and real MR brain images demonstrate the promise and effectiveness of the
proposed technique. In particular, the number of tissue types and the associated parameters
were consistently estimated. The tissue types were satisfactorily segmented. Although the
current algorithms were tested for 2-D images, their application to 3-D situations is
straightforward by appropriate neighborhood function in PCRN.

Our main contribution is the complete proposal of a three-step learning strategy for
determination of both the modular structure and the components of the network. In this
approach, the network structure (in terms of suitability of the statistical model) is justified in
the first step. It is followed by soft segmentation of data such that each data point supports all
local components simultaneously. The associated probabilistic labels are then realized in the
third step by competitive learning of this induced hard classification task.

We introduced a model selection scheme that explicitly incorporates the bias and variance
dilemma in finite data training. When tested with synthetic and actual data, the results show
that the number of hidden nodes in PSOM should be adjusted to match the data, and hence
order selection may be important to consider. Theory is developed showing that ML
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quantification and Bayesian classification have distinct objectives, and both soft and hard
classification problems are studied which describe performance differences. The quantification
results from the presegmentation and the postsegmentation stages generated the evidence.
However, the results of tissue segmentation that includes probabilistic constraints, indicate that
the use of local context information can provide better results that is often consistent with the
recurrent network structure.

The main limitations of the current approach are that i) it requires the testing of all possible
network structure candidates during the model fitting procedure, hence is not efficient
especially for processing MR sequence images where an online learning might be preferred,
and ii) applications to real MR data indicates the possibility of being trapped in a local
maximum in ML estimation by the PSOM since there is no guarantee of attaining the global
maximum.

There are possible ways to mitigate these problems: Since one possible contribution to the local
minima problem is imperfect initialization, we use a simple automated threshold selection,
based on Lloyd-Max histogram quantization [43], to systematically initialize the algorithm
during model selection and quantification. Experimental results suggested that the method is
quite effective in a variety of situations with different data structures [16], [21], [43]. To address
the first limitation mentioned above, we tested an adaptive model selection procedure by
incorporating the correlation between slices in a given MR sequence. More precisely, model
selection starts from a slice in the middle of the sequence and moves in each direction, such
that for slice i + 1, we set Kmax

i+1 = K0
i + 2 and Kmin

i+1 = K0
i − 2 where K0

i is the optimal number
of tissue types for slice i given by the information theoretic criteria. It should be addressed,
however, that they are by no means the only, or the best, possible solutions; in fact, it will be
interesting to compare the effect of random and systematic algorithm initialization on the final
performance, and further study is needed for interpretation of the results of these information
theoretic criteria: AIC, MDL, and MCBV.

To summarize, the results of the experiments we have performed indicate the plausibility of
our approach for brain tissue analysis from MRI scans, and show that it can be applied to
clinical problems such as those encountered in tissue segmentation and quantitative diagnosis.
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Fig. 1.
Experimental results of model selection, algorithm initialization, and final quantification on
the simulated image, (a) Original image with four components, (b) Curves of the AIC/MDL/
MCBV criteria where the minimum corresponds to K0 = 4. (c) Initial histogram learning by
the ALMHQ algorithm, (d) Final histogram learning by the PSOM algorithm.
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Fig. 2.
Comparison of the learning curves of PSOM and CL (left) and EM (right).
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Fig. 3.
(a) PCRN structure, (b) Image segmentation by PCRN on simulated image (with initialization
by ML classification).
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Fig. 4.
Test sequence of MR image brain scans (original images).
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Fig. 5.
Pure brain tissues extracted from original images.
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Fig. 6.
Histograms of the brain tissue images.
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Fig. 7.
Results of model selection for slice 1–3 (K0 = 6, 8, 6, left to right).
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Fig. 8.
Histogram learning for slice 2 (K = 7, 8, 9 from top to bottom).

Wang et al. Page 29

IEEE Trans Image Process. Author manuscript; available in PMC 2008 January 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 9.
Results of tissue segmentation for slice 2 with k0 = 7,8,9 (from left to right).
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Fig. 10.
Result of tissue type decomposition for slice 2 which represent eight types of brain tissues:
CSF, CG, CGW, GW, GM, putamen area, caudate area, and WM (left to right, top to bottom).
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TABLE I
True Parameter Values and the Estimates for the Simulated Image of Fig. 1

True Initial Final
k 1 2 3 4 1 2 3 4 1 2 3 1
π 0.25 0.125 0.5 0.125 0.234 0.234 0.364 0.185 0.23 0.135 0.48 0.157
μ 86 126 166 206 81 131 167 205 84 121 164 201
σ2 400 400 100 100 235 158 157 177 354 365 373 463
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TABLE II
Result of Parameter Estimation for Slice 2

tissue type 1 2 3 4 5 6 7 8
π 0.0251 0.0373 0.0512 0.071 0.1046 0.1257 0.2098 0.3752
μ 38.848 58.718 74.400 88.500 97.864 105.706 116.642 140.294
σ2 78.5747 42.282 56.5608 34.362 24.1167 23.8848 49.7323 96.7227
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TABLE III
Comparison of Segmentation Error Resulting from Noncontextual and Contextual Methods for Slice 2

Method PSOM GBC PCRN
(soft) (hard-GBC) (hard-PCRN)

GRE value (nats) 0.0067 0.4406 0.1578
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