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Processing of VEGF-A by matrix metalloproteinases
regulates bioavailability and vascular patterning
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ascular endothelial growth factor (VEGF) is a

critical mediator of blood vessel formation during

development and in pathological conditions. In
this study, we demonstrate that VEGF bioavailability is
regulated extracellularly by matrix metalloproteinases
(MMPs) through intramolecular processing. Specifically,
we show that a subset of MMPs can cleave matrix-bound
isoforms of VEGF, releasing soluble fragments. We have
mapped the region of MMP processing, have generated
recombinant forms that mimic MMP-cleaved and MMP-
resistant VEGF, and have explored their biological impact

Introduction

Vascular patterning during development is guided by precise
spatial cues, multiple and sequentially regulated growth factors,
and guidance signals (Darland and D’Amore, 2001; Rossant
and Hirashima, 2003). The result is a highly organized and
hierarchical vascular array that is typical of nonpathological
adult tissues. In contrast, vessel formation in tumors appears
much less programmed and is improvised from a limited array
of stimulatory factors (Carmeliet and Jain, 2000; McDonald
and Choyke, 2003). Key among these is VEGF (Ferrara, 2000,
2002; Dvorak, 2002).

VEGF signaling is essential for the specification, morpho-
genesis, differentiation, and homeostasis of vessels (Gerber et al.,
1999, 2002; Helmlinger et al., 2000; Damert et al., 2002; Ferrara
et al., 2003). Furthermore, this signaling pathway is an integral
component of pathological angiogenesis during tumor expansion
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in tumors. Although all forms induced similar VEGF receptor
2 phosphorylation levels, the angiogenic outcomes were
distinct. MMP-cleaved VEGF promoted the capillary dilation
of existent vessels but mediated a marginal neovascular
response within the tumor. In contrast, MMP-resistant
VEGF supported extensive growth of thin vessels with
multiple and frequent branch points. Our findings support
the view that matrix-bound VEGF and nontethered VEGF
provide different signaling outcomes. These findings reveal
a novel aspect in the regulation of extracellular VEGF that
holds significance for vascular patterning.

(Inoue et al., 2002). In fact, the blockade of VEGF production or
of VEGF receptor 2 (VEGFR2) phosphorylation results in the
suppression of vascular growth and in the concomitant reduction
of tumor mass and metastasis (Kim et al., 1993; Ferrara et al.,
2004). Unlike most mammalian genes, the inactivation of only
one allele results in embryonic lethality at mid-gestation from
severe cardiovascular defects (Carmeliet et al., 1996; Ferrara et
al., 1996). Interestingly, an organ-specific, twofold increase of
VEGEF can also lead to lethality (Miquerol et al., 2000). Thus,
alterations of VEGF levels translate into significant pathological
effects on the vasculature and on the organism as a whole.

Although much emphasis has been placed on under-
standing the production and stability of VEGF mRNA, rela-
tively little attention has been given to the study of the sta-
bility and processing of VEGF proteins themselves. Upon
secretion, VEGF becomes bound to the ECM (Park et al.,
1993) and is widely viewed to act in a paracrine fashion. The
interaction of VEGF with matrix proteins is mediated through
the carboxy-terminal region, also known as a heparin-binding
or ECM-binding domain (Houck et al., 1991, 1992). The regu-
lation of VEGEF in the extracellular environment has been impli-
cated in the angiogenic switch, facilitating the transition from
hyperplastic to malignant tumor formation (Bergers et al.,
2000).
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VEGF is encoded by a single gene that is located on chro-
mosome 6p (Vincenti et al., 1996). The coding region spans 14
kb and contains eight exons. Through alternative splicing, a
single pre-mRNA molecule can generate five isoforms (Robin-
son and Stringer, 2001). These vary in length from 121 to 206
aa(e.g., 121, 145, 165, 189, and 206) and differ by the presence
or absence of sequences located in exons 6 and 7. Exon 8 is
common to all isoforms (Tischer et al., 1991). Exons 6 and 7
have been shown to encode the ECM-binding domain of the
protein. This domain is able to bind heparin sulfate proteogly-
cans and other matrix proteins (Houck et al., 1992; Poltorak et
al., 1997) and is thought to be responsible for the sequestration
of VEGF within the matrix. Thus, the matrix constitutes a res-
ervoir for the growth factor, which becomes liberated by matrix
breakdown via extracellular enzymes such as heparinases and
plasmin (Houck et al., 1992; Plouet et al., 1997). Matrix metal-
loproteinases (MMPs) have also been implicated in the regula-
tion of VEGF bioavailability from extracellular stores. How-
ever, a direct mechanism for their effects has remained elusive
(Bergers et al., 2000; Rodriguez-Manzaneque et al., 2001). One
possibility is that the release of VEGF occurs through the deg-
radation of matrix proteins by MMPs, which is similar to the
effects of heparinases and plasmin.

An alternative view is that VEGF is released by direct, in-
tramolecular processing events. Here, we demonstrate that a
subset of MMPs can cleave VEGF, releasing the receptor-bind-
ing domain from the matrix-binding motif of the protein. Fur-
ther exploration into the biological significance of this process-
ing event revealed that matrix-bound and soluble VEGF have
alternative outcomes on vascular morphogenesis.

Results

VEGF is processed by a subset of MMPs
To test the hypothesis that VEGF could be a substrate of
MMPs, we biotinylated the growth factor and performed a se-
ries of in vitro incubations with purified enzymes (Fig. 1 A).
VEGF,¢4 was cleaved by MMP3, 7, 9, and 19, releasing a 16-
kD fragment. Two additional MMPs (1 and 16) also released
the fragment, but less effectively. The presence of heparin
aided processing by MMP3, but hindered the cleavage of
VEGF by MMP9 (Fig. 1 A). Glycosylation was not required
for proteolysis because nonglycosylated VEGF,¢4 was cleaved
in a similar manner (Fig. 1 B). Fragments could be detected 5
min after exposure to MMP?3, as indicated by time course anal-
ysis. The cleavage product was stable, and it accumulated over
time with concomitant reduction in the levels of intact growth
factor (Fig. 1 B). Dose-response analysis also indicated that
the cleavage event occurred in at least two stages. An interme-
diate species of a higher molecular mass was produced first,
and a 13-kD stable fragment (equivalent to the 16-kD fragment
from glycosylated growth factor) was subsequently generated,
suggesting the presence of at least two proximal cleavage sites
(Fig. 1 O). Interestingly, digestion was found to be optimal at
slightly acidic pH (6.9-7.2; Fig. S1 A, available at http://
www.jcb.org/cgi/content/full/jcb.200409115/DC1). In addi-
tion, we showed that both matrix-bound isoforms (VEGF,¢,

JCB « VOLUME 189 « NUMBER 4 « 2005

— < o [+>)
A g . £ 8
== cg = =
e + MMP =8 g5 3 3
w 1 < < ) T 1T 1
> 3 81416 7 91319 26 + + -+ -
- -

i

I
12

2akDe— 0 ot T (5 G0 T 55 g e o

22kDe—| .

16kDE=

5min 30min 1h 2h 4h 10h

VVMM VVM M V VMM VVWMM VVMM V VMM

r 1 1 1 | m— N e— —
19kD>-.-..---\ 19KDE G e T g s R e
1akDe- - - 10~ B [ o=

6kDE— e .. L ekDe-  ER— - = |

Cc D

v
(V:M) only 32:116:1 8:1 41 21 1:1

MG
19kDE= 0 3.1")("3)@%@@ VEGFies + MMP3 VEGF1ss + MMP3
13kDE-y SV lles 2o 26kD=- N e
W 16kDE= ** 16kDE=
6kDB— | L_L_IRL }

Bl

Figure 1. VEGF-A is cleaved by a subset of MMPs. (A) Biotinylated
mVEGF ¢4 was incubated with the indicated MMPs. The digestion products
were resolved in fricine gels and were defected by avidin-HRP. (right) The
presence of heparin was tested to evaluate its effect in VEGF processing by
MMP3 and MMP9. (B and C) mVEGF¢4 was incubated with MMP3 at
different time points (B) and molar ratios (C) as indicated. VEGF cleavage
was visualized by SDS-PAGE followed by silver staining. In these experi-
ments, nonglycosylated mVEGF ¢4 was used, hence the smaller size. (D)
Both mVEGF;44 and mVEGF, g5 were incubated with MMP3. VEGF cleavage
was examined with immunoblots probed with an amino-terminal antibody
(463; see Fig. 3 A). Glycosylated mVEGF ¢, was used for A and D, and
nonglycosylated mVEGF;4, was used for B and C. Note the faster mobility
in B and C. 44 kD, glycosylated mVEGF,¢4 dimer; 22 kD, glycosylated
mVEGF ¢4 monomer; 19 kD, nonglycosylated mVEGF;44 monomer; 16 kD,
glycosylated mVEGF s4-cleaved monomer fragment; 13 kD, nonglycosylated
mVEGF ¢s-cleaved monomer fragment; 6 kD, mVEGF, ¢-cleaved monomer
fragment. V, VEGF; M, MMP3; VM, VEGF + MMP3; ADAMTS, a disintegrin
and metalloproteinase domain with thrombospondin repeats.

and VEGFgs) were targeted by MMPs, which generated identi-
cal molecular mass fragments (Fig. 1 D).

Proteolytic cleavage was inhibited by purified tissue in-
hibitors of MPs (TIMP)1 and TIMP2 (both of which are endog-
enous inhibitors of MMP3), but was not inhibited by aprotinin,
a serine protease inhibitor (Fig. 2 A). Similarly, digestion by
MMP9 was blocked by TIMP3 (Fig. 2 B). Plasmin was previ-
ously shown to cleave VEGF,g and release this isoform from
the matrix in a dose-dependent manner (Park et al., 1993; Keck
et al., 1997). Fig. 2 A shows that cleavage by plasmin was dif-
ferent from that generated by MMPs. Plasmin produced a
smaller and less stable fragment than the one resulting from
MMP exposure (Fig. 2 A). Furthermore, cleavage of VEGF by
MMP3 also occurred when the growth factor was anchored by
heparin. Bound growth factor that was exposed to MMP3 re-
sulted in the release of a soluble 16-kD species (supernatant),
whereas the 6-kD polypeptide remained bound (Fig. 2 C).

To ascertain whether this proteolytic event occurred in
vivo, we used human ascites fluid from patients with ovarian
cancer (collected without patient identifiers, under Institutional
Review Board guidelines). Ascites fluid was collected in the
presence of a cocktail of proteinase inhibitors to block cleavage
events originating after isolation. Initial fractionation of VEGF
was performed by affinity chromatography on a polyclonal anti-
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VEGF antibody column. The antibody interacted with multiple
epitopes that were distributed throughout the entire VEGF pro-
tein, maximizing the retention of all isoforms and fragments.
Eluted fractions were combined and were further evaluated with
epitope-specific antibodies. A carboxy-terminal antibody (gen-
erated against residues coded by exon 8; see Fig. 3 A) recog-
nized VEGFg, VEGF,45, and VEGF,,; on immunoblots but
could not detect any cleaved fragments (Fig. 2 D). This result is
consistent with the fact that the residues coded by exon 8 are re-
moved after VEGF digestion by MMPs (see Fig. 3, A and B). In
contrast, the amino-terminal antibody (see Fig. 3 A) was able to
detect the intact isoforms (VEGF,¢; and VEGF,,;) in addition to
a group of fragments ranging from 13 to 16 kD in molecular
mass (Fig. 2 D). The fact that only the amino-terminal antibody
was able to detect the smaller fragments is consistent with the
occurrence of proteolysis in the carboxy-terminal region of
VEGF. Both plasmin and MMP3 were also detected in the un-
fractionated ascites fluid (unpublished data).

To further explore whether VEGF was cleaved in vivo,
we devised a dual ELISA system that allowed the distinction
between cleaved and intact VEGF based on the selective re-
moval of amino acids that are coded by exon 8. Using this sys-
tem, we determined that, in fact, 82-90% of circulating VEGF
had been processed, as it lacked the carboxy-terminal domain
(Fig. 2 E).

Processing of VEGF severs the receptor-
binding domain from the extracellular,
matrix-binding motif

Next, we mapped the cleavage sites in VEGF using matrix-
assisted laser desorption time-of-flight (MALDI-TOF) mass
spectrometry (MS), capillary and microcapillary nano-liquid
chromatography MS (WLC/MS"), and microcapillary reverse-
phase HPLC nano-electrospray tandem MS (WLC/MS/MS).
Consistent with electrophoretic mobility evaluations, we found
that proteolytic processing takes place in sequential steps. Ini-
tial cleavage occurs at residues 135, 120, and finally at residue
113 (Fig. 3 A). The events result in the dissociation of the recep-
tor-binding motif from the ECM-binding domain. This pro-
teolytic processing is different from the one mediated by plas-

min (Fig. 3 B). Plasmin has been reported to cleave VEGF at
position 110 (Park et al., 1993). Indeed, this fragment exhibits
a faster mobility (13 kD) than the MMP3 fragment (16 kD; Fig.
3 B). Furthermore, plasmin proteolyses the small carboxy-ter-
minal, 9-kD fragment to completion (as we have been unable to
detect this fragment with carboxy-terminal antibodies), in con-
trast to its presence in samples that are exposed to MMP3 (6
kD; Fig. 3 B). Unlike digestion with MMP3, plasmin-produced
fragments did not accumulate over time, and levels of the full-
length growth factor became reduced, which is an indication of
progressive degradation (Fig. S1 B).

MMP-cleaved VEGF fragments are able
to phosphorylate VEGFR2 and induce
angiogenesis

To ascertain whether the fragments were able to elicit receptor
activation and angiogenesis, we generated a construct that mim-
icked the MMP-cleaved VEGF protein (VEGF,;3) and also de-
veloped an MMP-resistant VEGF form (VEGFxg_115; Fig. 3
C). The latter consisted of an 11-aa deletion between residues
108-118 (Fig. 3 C). These constructs were used to generate re-
combinant protein in human embryonic kidney (HEK) 293T
cells and were tested for their susceptibility to MMP3 (Fig. S2,
available at http://www.jcb.org/cgi/content/full/jcb.200409115/
DC1). Even though the MMP-resistant VEGF contains aa 120
and 135, which are known to participate in the digestion of
VEGF g, it appears that the removal of 108118 alters the con-
formation of the growth factor so that aa 120 and 135 are no
longer accessible sites for digestion.

Subsequently, porcine aortic endothelial (PAE) cells ex-
pressing VEGFR2 (PAE-VEGFR2) were exposed to various
purified VEGF forms to evaluate receptor phosphorylation.
MMP-cleaved and MMP-resistant VEGF forms were simi-
larly capable of phosphorylating VEGFR2 (Fig. 3 D). Fur-
thermore, dose—response analysis indicated that the kinetics
of phosphorylation were similar to those displayed by wild-
type VEGF ¢, (when isolated in an identical manner). Phos-
phorylation was detected at 50 ng and peaked at 1 wg when
each one of the three protein forms was used (Fig. 3 D). More
importantly, all forms were able to stimulate angiogenesis in
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Figure 3. Localization of cleavage sites. (A) Structure of mVEGF; 4, and localization of cleavage sites. Cleavage sites were determined by Edman sequencing,
MALDI-TOF MS, pLC/MS", and ulC/MS/MS of 16 kD and 6 kD. 463 denotes antibody specific to the amino terminus (N-ter) of VEGF; 375 to the
carboxy terminus (C-ter) of VEGF. (B) Glycosylated mVEGF;44 was incubated with MMP3 or with plasmin at the following molar ratios: 8:1, 4:1, 2:1, and
1:1 (VEGF/proteinase). VEGF cleavage was examined by immunoblotting with antibodies 463 and 375. V, VEGF; 22 kD, glycosylated mVEGF;44 monomer.
(C, top) Schematic structure of mVEGF;44, mVEGF 13, and mVEGF4108.115 are shown. (bottom, left) Conditioned media from HEK 293T stable clones were
examined by immunoblotting with antibody 463. (bottom, right) VEGFR2 phosphorylation was induced in PAE-VEGFR2 cells by 100 ng/ml VEGF.
Antibodies against phosphotyrosine (PTyr) and VEGFR2 were used to examine phosphorylation of VEGFR2. (D) VEGFR2 phosphorylation was induced
by different concentrations of VEGF as indicated. (E) Mesh-CAM assays were used for the evaluation of VEGF activity on ET10 chicken embryos. The
first panel illustrates the assay: polymerized, vitrogen-containing growth factor is placed onto CAM, and the angiogenic response (neovessels) is assessed
independently of the preexisting CAM vessels. Each pellet contained 1 pg/mesh VEGF. Evaluation was determined 24 h after the application of pellets to
CAM surface. Numbers below are the vessel mean/mm? (+SD) obtained from the evaluation of four independent experiments. Bar, 100 um. (F) Qualitative
representation of angiogenesis in mice in response to a Matrigel plug containing different VEGF forms. (E and F) VEGF,3 showed large, dilated vessels
(brackets). In contrast, VEGF,10s-115 showed significant sprouting of thin vessels (arrows). Indicated below is the average vascular density/mm? (+=SD) from

four independent experiments. Vessel diameters shown in brackets are as follows: mVEGF s, = 15 um; mVEGF;13 = 109 pm (large) and 16 pm (small).
Bar, 100 wm.

the chorioallantoic membrane (CAM) assay (Fig. 3 E). In this
assay, the neovessels are distinguished from the existent vas-
cular network of CAM. Angiogenic growth is stimulated
against gravity by growth factors that are embedded in a poly-
merized matrix (vitrogen), which is supported by a nylon
mesh and placed onto CAM. The angiogenic response is
noted when new vessels invade this acellular matrix, which is
subsequently removed from CAM for visualization and quan-
titation. As seen in Fig. 3 E, a vitrogen plug with equivalent
levels of the growth factor was placed onto the vascularized
CAM. After 24 h, CAM was perfused, stained with rhoda-
mine lectin, and the collagen plug was removed for evalua-
tion under confocal microscopy. Interestingly, although all
forms elicited an angiogenic response, VEGF, ;3 showed fused,
enlarged channels (Fig. 3 E, brackets); in contrast, MMP-resis-

tant VEGF induced significant sprouting, resulting in thin, in-
terconnected vessels (Fig. 3 E, arrows).

The isoforms were also tested in the Matrigel plug assay
in mice. Each form was mixed with Matrigel and was injected
subcutaneously; evaluation was performed after 7 d. Once
again, all forms elicited an angiogenic response; however, the
morphology of the vessels was significantly different (Fig. 3 F).
Although VEGF ¢, displayed tortuous vessels of similar size to
the adjacent vessels in the mouse, VEGF, 3 showed remarkably
enlarged vessels (Fig. 3 F, brackets). In contrast, Matrigel that
contained MMP-resistant VEGF demonstrated thin vessels
with multiple branch points (Fig. 3 F, arrows).

Further exploration of biological effects that are mediated
by the different VEGF forms was performed in tumor xenograft
assays. T47D human carcinoma cell lines were transfected with
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Figure 4. Induction of tumor growth in the presence of mVEGFs,

mVEGF;,3, and mVEGF,10s-115. (A) Tumor lysates were immunoblotted with
antibody 463. VEGF is indicated by a bracket. A nonspecific band (arrow)
illustrates relative loading levels. Above this band, high molecular mass
proteins were also immunoreactive. (B) Serum levels of VEGF in the different
groups of mice bearing xenografts. (C) Tumor growth kinetics. Estimated
volume was calculated using the following formula: volume (mm®) =
4/3w(0.5 X w)? X (0.5 X |), where w is the width and | is the length. Re-
sults are mean = SD. n = 8 for control, 164, and A108-118; n = 13 for
113. (D) Effect of treatment with MMP inhibitor BB94 on circulating serum
levels of VEGF (n = 5). Each line corresponds to one mouse. VEGF mea-
surements were performed 5 d before treatment (Day —5), immediately
before treatment (Day O), 5 d after treatment (Day 5), and 5 d after BB94
withdrawal (Day 10). (E) Percent change in VEGF levels from day 1 (1 d
before the treatment with BB94). (F) VEGF levels in conditioned media of
MMP3-treated and nontreated tumor explant cultures. Explants were incu-
bated in the presence of vehicle, MMP3, and MMP3 + BB94. Levels of
VEGF were determined by ELISA. (G) Microscopic analyses of tumor
sections by hematoxylin and eosin (H&E) and platelet/endothelial cell ad-
hesion molecule 1 (PECAM) staining. A representative tumor section of
each mouse group is shown. Arrows point o vessels in b-h. Arrows in e-h
indicate PECAM-positive vessels. Bar, 100 um. (H) Quantitation of vascular
density and size. (C, F, and H) Error bars are =SD.

expression vectors that coded for wild-type, MMP-cleaved,
and MMP-resistant VEGF. Clones expressing similar levels of
VEGF among the different constructs were selected for initial
comparison (Fig. 4 A). Interestingly, we noted high molecular
mass bands in the immunoblots from tumor lysates, a finding
that was reproducible with several antibodies and was sugges-

tive of macromolecular aggregates that included the growth
factor. Transfected cells did not show differences in growth
(Fig. S3 A, available at http://www.jcb.org/cgi/content/full/
jcb.200409115/DC1). We also evaluated VEGF serum levels
in animals bearing the four tumor types. In spite of simi-
lar VEGEF levels within the tumor, the MMP-cleaved form
(VEGF,3) showed a 10-12-fold increase in the concentration
of circulating growth factor (Fig. 4 B). Interestingly, tumors
expressing VEGF, ;3 grew poorly, were macroscopically pale,
and demonstrated slow growth kinetics. In contrast, tumors ex-
pressing MMP-resistant VEGF displayed faster growth kinet-
ics in comparison with control and with tumors expressing
VEGF¢ (Fig. 4 C). Together, these findings indicate that ma-
trix-bound VEGF is more efficient in supporting a more func-
tional angiogenic response than soluble VEGF. The results also
revealed that circulating levels of VEGF are not necessarily di-
rect indicators of tumor progression, as they did not correlate
with tumor size or with vascular density. Similar findings were
obtained with other clones and with a different human tumor
cell line (HT1080).

The relevance of MMPs to the levels of circulating VEGF
was explored by treating mice carrying VEGF,¢4-expressing tu-
mors (size range 50-500 mm?®) with the broad spectrum MMP
inhibitor (BB94). Circulating VEGF levels were determined at
four time points: (a) 5 d before treatment; (b) immediately be-
fore injection with BB94; (c) on the last day of the treatment;
and (d) 5 d after BB94 withdrawal. VEGF levels decreased sig-
nificantly at the end of 5 d of BB94 treatment in all mice (Fig.
4 D). The withdrawal of treatment was associated with a re-
markable increase in serum VEGF levels (Fig. 4, D and E). We
also isolated VEGF,¢4 tumor explants and determined if expo-
sure to MMP3 in the culture altered the concentration of VEGF
in the conditioned media. The results shown in Fig. 4 F indicate
that a relatively short exposure to active MMP3 results in the
selective release of VEGF from tumor explants.

Vascular sprouting and branching is
favored by matrix-bound VEGF, whereas
vascular hyperplasia is induced by
soluble VEGF

A detailed analysis of the tumor vessels revealed contrast-
ing differences between the various VEGF forms. VEGF;3-
expressing tumors exhibited low vascular density and large size
vessels. In contrast, MMP-resistant VEGF tumors were signifi-
cantly more vascularized. Vessels from these tumors were gen-
erally thinner and displayed multiple branched points (Fig. 4, G
and H). These findings were surprising, yet consistent amongst
different clones and tumor cells that were used for transfections
(T47D and HT1080). Vascular density, but not vascular vol-
ume, correlated with tumor size.

Vessels from areas adjacent to the tumor were also
affected. In particular, vessels near the tumor-expressing
VEGF,; displayed engorged and fragile vessels (Fig. 5).
Vessels in the proximity of MMP-resistant VEGF tumors
were also altered, but did not show significant hyperplasia.
Instead, we noted that vessels from MMP-resistant tumors
consisted of tortuous, thin capillaries, higher vascular den-
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Figure 5. Effect of VEGF in vessels adjacent to tumors. Macroscopic

appearance of tumor and tumor-surrounding skin is shown. Arrows point to
large vessels. Arrowhead in VEGFy3 denotes bleeding/fragility. Asterisk in
VEGF 3 shows the pale aspect of those tumors. Skin sections were stained
with PECAM, and the vessel patterns from similar areas were traced and
shown. These computer-generated images were used for quantitation of
vessel diameter, as represented in the histograms (n = 8). Bars, 300 pm.

sity, and groups of capillary tufts that were reminiscent of the
glomeruli bodies (Pettersson et al., 2000). Fig. 5 shows a de-
tailed evaluation of vessel size that was observed in regions
immediately adjacent (0.5 cm) and more peripheral (1 cm) to
the tumor. Quantitations of the vessel diameter showed that
vessels from VEGF,; were dilated and were more heteroge-
neous in size than vessels from tumors expressing other
VEGEF forms.

To further dissect the effect of these VEGF forms in cap-
illary formation, we evaluated their effects in vitro. Purified
growth factors at identical concentrations were included in fi-
brinogen/fibronectin gels before polymerization. Sepharose
beads coated with PAE-VEGFR2 cells were mixed with the
matrix as it polymerized and were observed consecutively for
3 d (Fig. 6 A). Wild-type VEGFg, elicited the growth of en-
dothelial cells as sheets (Fig. 6 A, arrowheads) and induced
capillary morphogenesis (Fig. 6 A, arrows). Interestingly,
VEGF,,; only induced the proliferation of endothelial cells as
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Figure 6. Morphogenic effects of different VEGF forms in vitro. In vitro
angiogenesis assays were performed using Sepharose beads coated with
PAE cells expressing VEGFR2 (PAE-VEGFR2). Endothelial-coated beads
were embedded in fibrin/fibronectin gels containing different growth factors.
(A) PAE-VEGFR2 cells formed cordlike structures in response to
mVEGF,10s-115 (arrows) and formed sheetlike structures when exposed
to mVEGF;,3 (arrowheads). A mixture of both is seen in the presence
of VEGFi44. In the last column, simultaneous staining of cells with
AlexaFluor546-conjugated phalloidin and with the antibody to phospho-
histone H3 showed proliferation elicited by the different VEGF forms.
Numbers below each panel correspond to the mean (+SD) of sprouts per
bead. A total of five individual experiments were used for quantification.
(B, top) In the absence of VEGFR2, PAE cells did not respond to VEGF; 13
or to mVEGF,10g_11s. (bottom) PAE-VEGFR2—coated beads were incubated
with DME containing serum alone or in the presence of VEGF;44. (C) Incor-
poration of increasing levels of BB94 showed a correlation between cord
formation and MMP activity. Bars, 150 pum.

sheets. This contrasted with the strong morphogenic events
that were mediated by MMP-resistant VEGF (A108-118). In
the presence of this mutated growth factor, endothelial cells
organized into cords, and phalloidin staining of the actin cy-
toskeleton demonstrated protrusion of multiple filopodia. Al-
though visual inspection suggested that VEGF;;; mediated a
stronger proliferative response, a detailed quantitation of en-
dothelial cell proliferation in all three cases did not reveal dif-
ferences that were statistically significant (Fig. S3 B). These
responses were mediated by VEGFR2. PAE cells that were
not expressing VEGFR2 did not respond to the growth factor
(Fig. 6 B). The effects were dependent on the presence of
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Figure 7. Visudlization of VEGF cleavage in vitro. (A) Coumarin-conjugated
VEGF peptide and mutant control. Graph on the right shows proteinase-
dependent emission of fluorescence. (B) When embedded in the fibrin/
fibronectin gels, fluorescence is detected in areas adjacent to migrating
endothelial cells (arrows). The inhibitor BB94 blocked the effect, and
the mutant peptide did not emit fluorescence under similar conditions.
Bar, 150 pum.
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VEGEF, as PAE-VEGFR2 cells did not respond in a similar
manner when serum was used instead of VEGF (Fig. 6 B).

Together, the results indicate that in the case of VEGF g4,
the local, discrete digestion of VEGEF is likely to occur as endo-
thelial cells migrate and grow as sheets, whereas in the absence
of such digestion, VEGF would mediate the organization of
cords. To test this more directly, we included the broad-spectrum
MMP inhibitor BB94 in the matrix assays and in the culture me-
dia. As predicted, we found that the number of cords was in-
creased depending on the concentration of the MMP inhibitor
(Fig. 6 C).

We next sought to determine whether VEGF was cleaved
as cells invaded the matrix. For these experiments, we gener-
ated a peptide comprising the MMP cleavage sites that were
identified in VEGF,¢s and a mutant peptide that was not
cleaved by MMP3 (Fig. 7 A). Both peptides were conjugated to
coumarin (fluorescence) at the amino terminus and to a 2,4-
dinitrofluorobenzene (DNP; quencher) at the carboxy terminus
to create a fluorescent peptide indicator of MMP activity. When
intact, the peptide indicator did not emit a signal. Upon cleav-
age by MMP3, a strong fluorescence signal was recorded (Fig.
7 A). Inclusion of the wild-type peptide in fibrinogen gel assays
revealed discrete areas of fluorescence in proximity to, or on
the surface of, cells that invaded the gel, indicating that cleav-
age of the peptide had occurred (Fig. 7 B). No cleavage was de-
tected when BB94 was included in the gel. Similarly, the mu-
tant peptide lacking the cleavage site did not show a signal.
Together, these results suggest that MMP cleavage of VEGF
occurs in discrete, extracellular microdomains and results in
distinct signaling outcomes. These in vitro findings are consis-
tent with the effect of the different VEGF forms in tumors. Hy-
perplasia would be analogous to proliferation of cells as sheets
(cleaved VEGF), whereas the invasion and morphogenesis of
cords is analogous to active sprouting angiogenesis (uncleaved,
matrix-tethered VEGF).

VEGF 164188

VEGF 164/188
- MMPs

Figure 8. Model for the effect of MMPs in matrix-bound VEGF. (top) In
the presence of a specific subset of MMPs, VEGF is cleaved (yellow) and
is released from the matrix. This soluble VEGF induces vascular dilation in
the existent vessels. (bottom) In the absence of MMPs, matrix-bound VEGF
isoforms remain bound and induce sprouting angiogenesis events with little
vascular dilation. The model implies that regulation of VEGF availability
can be regulated by splicing events and/or extracellularly by the relative
levels of MMPs.

We investigated the potential role of MMPs in the generation
of bioactive VEGF from extracellular stores. In the process, we
found that VEGF can be cleaved intramolecularly by a subset
of MMPs. Processing results in the release of the receptor-
binding domain from the ECM-binding motif that is present in
the majority of VEGF-A isoforms. Furthermore, we noted that
the state of free versus bound VEGF dictates whether a vascu-
lar network will undergo dilation/increased vessel size or will
initiate active sprouting events, thus promoting two different
modes of vascular expansion. The first requires the prolifera-
tion of cells as sheets, whereas the second entails the initial
sensing of the environment by active filopodia extension, mi-
gration/invasion, and subsequent proliferation (Fig. 8). Overall,
our findings support the view that matrix-bound and nonteth-
ered VEGF provide different signaling outcomes even though
they act through the same cell surface receptor (VEGFR?2).
The role of multiple VEGF-A isoforms, which modu-
lates the interaction of VEGF with the matrix, has remained
elusive. Using tumor cells with low levels of endogenous
VEGF, Grunstein et al. (2000) introduced VEGF120, 164, and
188 isoforms individually and tested their effects in tumor an-
giogenesis. Although the approach did not eliminate endoge-
nous VEGF from the invading stroma, the authors noted sub-
stantial differences in the vascularization of the tumors. In
particular, VEGF g displayed an extensive hypervascular re-
sponse in comparison with the other isoforms (Grunstein et
al., 2000). Subsequently, in a series of experiments, Ruhrberg
et al. (2002) developed isoform-specific VEGF mice, reveal-
ing that VEGF-A isoforms play a critical role in the guid-
ance of vascular patterning and in vessel diameter during de-
velopment (Ruhrberg et al., 2002). Thus, mice expressing
VEGF,, displayed lower vascular density, poor sprouting,
and poor filopodia extension. In contrast, the sole expression of
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VEGF g3 leads to increased multidirectional filopodia exten-
sion, higher vascular density, and disorganized patterning. In-
terestingly, mice that were heterozygous for both isoforms
showed a “normalized” vasculature, suggesting that matrix as-
sociation plays a role in vascular density and patterning.

Overall, the findings presented in this study confirm and
extend the results observed with isoform-specific, VEGF-A
transgenic animals. The introduction of a soluble VEGF-A iso-
form (VEGF,3) resulted in poor vascular density and vessels
that were larger than their wild-type counterparts. In contrast, the
expression of MMP-resistant VEGF led to excessive and rather
disorganized branching. Together, these studies indicate the ex-
istence of two modes for the regulation of VEGF interaction with
ECM: (a) alternative splicing or (b) proteolytic processing. The
second mode would directly depend on microenvironmental lev-
els of specific MMPs/plasmins. Given the preponderance of
MMPs during pathological conditions, we would predict that ex-
tracellular processing is likely to be a frequent regulatory event
during tissue repair, inflammation, and in cancer (Coussens and
Werb, 2002). In fact, the relative levels and availability of MMPs
can offer an explanation for the heterogeneous nature of vessels
in different tumors. Thus, discrete levels of MMPs could have an
impact on VEGF signaling, resulting in alterations in vascular
density, vessel diameter, and patterning through the direct alter-
ation in the status of bound versus soluble VEGF. The concept
that MMPs regulate the local distribution of VEGF has also been
noted in a model of retinopathy in mice (Gerhardt, H., and C.
Betsholtz, personal communication). Their findings provide evi-
dence that MMP activity is linked to a cascade of events that reg-
ulate VEGF and vascular patterning.

Our results do not negate the possibility that the proteoly-
sis of matrix molecules might also lead to the release of VEGF
from extracellular stores. However, these events deserve a
more detailed investigation, as does the nature of the interac-
tions between VEGF and specific matrix molecules. Also, it is
important to stress that several MMPs were found to mediate
VEGF processing. 4 out of 13 MMPs tested were effective in
severing VEGF from the matrix via specific intramolecular
cleavage. Thus, it is likely that these effects are highly redun-
dant in vivo.

MMPs play a significant role in matrix remodeling, en-
abling migration, and the establishment of new capillary beds
(Heissig et al., 2003). Understanding the interplay between
these molecules and the reciprocal effects on the tumor vascu-
lature has been a major effort in the field. Recent findings that
the inactivation of some MMPs by homologous recombination
facilitates tumor expansion has propelled a reinterpretation of
the initial protumorigenic view of MMPs in cancer (Overall
and Lopez-Otin, 2002; Balbin et al., 2003). Similarly, the as-
sumptions that MMPs were, in general, proangiogenic has
been challenged by findings that some MMPs could also sup-
press neovascularization (Pozzi et al., 2000) by the production
of angiogenesis inhibitors via proteolysis and other mecha-
nisms (O’Reilly et al., 1999; Hamano et al., 2003). Our data
also supports the view that MMPs act as sophisticated modu-
lators rather than as simple inducers or suppressors. Under-
standing the discrete temporal control of MMPs and their
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spectrum of substrates and modulators will be essential to
make strides toward novel therapeutic strategies that target
MMPs in tumors.

The intramolecular cleavage of growth factors has been
implicated in activation, in the alteration of biological proper-
ties, and in growth factor degradation (Fuentes-Prior et al., 2000;
Junttila et al., 2000; McQuibban et al., 2000, 2002; Bergsten et
al., 2001; Borrell-Pages et al., 2003; Nanba et al., 2003). In the
case of the VEGF family, both VEGF-C and -D require extra-
cellular cleavage for activation (McColl et al., 2003). Although
VEGEF-A ;s is not proteolytically activated, it has been proposed
that the longer isoforms (189 and 206) are hindered from induc-
ing the activation of VEGF receptors and that cleavage events
are required for the induction of mitogenic activities in endothe-
lial cells (Houck et al., 1991).

In the process of elucidating the contribution of protein-
ases to the release of VEGF, we also confirm earlier reports
that matrix-bound VEGF is active (Park et al., 1993; Poltorak
et al., 1997; Hutchings et al., 2003). However, we note that the
outcome of receptor activation mediated by soluble and bound
VEGF was different. Although both forms were similarly capa-
ble of phosphorylating VEGFR2, they elicited different cellular
responses by this same receptor. MMP-resistant/matrix-bound
VEGF induced filopodia extension, discrete invasion of the
stroma, and facilitated cell-cell associations that were consis-
tent with tube formation; i.e., sprouting angiogenesis. In con-
trast, cleaved VEGF resulted in the proliferation of cells as
sheets and in the broad invasion of the stroma, which is consis-
tent with vascular hyperplasia. These findings could offer a
handle on how to dissect the wealth of signaling pathways that
are activated by VEGF. This growth factor has been implicated
in the induction of permeability, proliferation, migration, dif-
ferentiation, and morphogenesis. Although it is clear that all
these signaling outcomes do not occur simultaneously, it has
been difficult to ascertain the hierarchy of the effects and
when/how one response prevails over others.

Angiogenesis is a complex, multifactorial phenomenon
involving signals from endothelial cells and from the host tis-
sue. Although the key players in this process have been identi-
fied, and their specific roles are being elucidated individually, a
concrete understanding of the process will only come from the
comprehensive acknowledgment that they act as a whole in a
series of dynamically reciprocal interactions that modulate sig-
naling outcomes.

Materials and methods

Cells and reagents

HEK 293T cells, breast tumor-derived T47D cells, and HT1080 cells were
purchased from American Type Culture Collection and were grown in
DME supplemented with 10% FCS. PAE and PAE-VEGFR2 (provided by
Gera Neufeld, Technicon, Israel) were grown in Ham's F12 medium. Cat-
alytically active forms of MMP2, 3, 7, 8, 9, MT1-MMP (MMP14), MT3-
MMP (MMP16), ADAMTS4, and plasmin were purchased from Calbio-
chem. The activity of MMPs was fested against known substrates before
use. Catalytically active forms of MMP13, 19, and 26 were provided by
Carlos Lopez-Otin (University of Oviedo, Oviedo, Spain). Human VEGF s
was provided by the National Cancer Institute’s Biological Resources
Branch (Rockville, MD). mVEGF ¢4 was purchased from R&D Systems, and
nonglycosylated mVEGFs4 was purchased from Chemicon. mVEGF-A



cDNA isoforms 164, 188, and 120 were gifts from Patricia A. D'Amore
(The Schepens Eye Research Institute, Boston, MA). Human VEGF4s ex-
pression vector was provided by Kevin Claffey (University of Connecticut,
Storrs, CT). Antibodies to phosphotyrosine and VEGFR2 were previously
described (Luque et al., 2003). Epitope-specific VEGF antibodies were
provided by Donald Senger (Beth Israel Deaconess Medical Center, Bos-
ton, MA; Sioussat et al., 1993). Matrigel matrix was purchased from BD
Biosciences. BB94 was provided by Gerry Weinmaster (University of Cal-
ifornia, Los Angeles, [UCLA], Los Angeles, CA).

Digestion of VEGF

Unless specified, VEGF was incubated with proteinases in incubation buffer
(50 mM Tris-Cl, pH 7.45, 150 mM NaCl, 10 mM CaCly, and 1 pm ZnCl,)
at a 4:1 molar ratio (VEGF/proteinases) at 37°C for 4 h. To biotinylate
mVEGFi44, 5 ug VEGF was incubated with 1 mg/ml sulfo-N-hydroxy suc-
cinimido-biotin-long chain (Pierce Chemical Co.) overnight at 4°C, and
the reaction mixture was dialyzed in 1X PBS to eliminate free biotin. For
heparin-bound VEGF assays, plates were coated with 5 pg/ml heparin,
washed, and incubated with biotinylated VEGF. Plates were then exposed
to MMP3 or to buffer alone. Biotinylated VEGF reaction mixtures were ana-
lyzed by using 20% tricine-Tris gel, followed by avidin D coupled with HRP
(Vector Laboratories), and were visualized by chemiluminescence. When-
ever nonbiotinylated VEGF was used, products were either analyzed on sil-
ver-stained gel or were immunoblotted using anti-VEGF antibodies.

VEGF purification from ascites fluid

Ascites fluid was collected from ovarian cancer patients with the approval
of the Institutional Review Board (a gift of Joseph Mortola and Michael
Graubert, Beth Israel Deaconess Medical Center). No patient identifiers
were retained. VEGF immunoaffinity column was prepared with poly-
clonal VEGF antibody (provided by Donald Senger). Ascites samples were
loaded onto the column, were washed in binding buffer, and were eluted
with NaCl,. The presence of VEGF in eluted fractions was assessed by im-
munoblotting with VEGF antibodies.

Amino-terminal amino acid sequencing and MS analysis

MMP3-cleaved mVEGF, ¢4 was separated by 20% tricine-Tris gel electro-
phoresis and was transferred onto polyvinylidene difluoride membranes
by using 3-[cyclohexylamino]-1-propanesulfonic acid buffer. The resulting
16- and 6-kD VEGF fragments were amino-terminally sequenced using a
microsequenator (model 477A; Applied Biosystems), which was a service
provided by William Lane (Harvard Microchemistry Facility, Cambridge,
MA). For MS and microsequencing analyses, nonglycosylated mVEGF; ¢4
was incubated with catalytically active MMP3, and 13D fragments were
analyzed by using MALDITOF MS, plC/MS", and plC/MS/MS on a
quadrupole ion trap mass spectrometer (model Finnigan LCQ DECA; Har-
vard Microchemistry Facility).

Construction of stable cell lines and purification of proteins

mVEGF-A c¢DNA isoforms 120, 164, and 188 were cloned into
pcDNA3.1 expression vectors (Invitrogen). For the construction of
mVEGF3, PCR was performed by using primer P1 (5"-CAAGCGCGCAA-
GAGAGCGGG-3') and primer P2 (5'-TCACCGCCTTGGCTTGTCACATC-
3’). Reverse primer P3 (5"-TCTCCGCCTTGGCTTGTCACATC-3’) was used
for the construction of mVEGF3y;,. The resulting product was subcloned
info pCR-Blunt II-TOPO vectors (Invitrogen), and the insert was substituted
info the analogous site in pcDNA3.1 plasmids. For the construction of
mVEGF,105.118, sequential PCR was performed. Primer sets P1 and P4 (5'
GCTCTGAACATTTCTITGGTCTGCATTC-3'), P5 (5-GACCAAAGAAAT-
GTTCAGAGCGGAGAAAGC-3’), and P2 were used for the initial PCR.
The resulting fragments were then amplified in a second PCR step by using
primers P1 and P2. The final product was subcloned into pcDNA3.1 plas-
mids as described above.

HEK 293T, T47D, and HT1080 cells were transfected with 1 pg
p-cytomegalo viruspuro and 10 pg pcDNA3. 1 or with expression vectors
using calcium phosphate. Selection was performed 48 h after transfection
with 1.5 ug/ml puromycin. All stable clones were evaluated for prolifera-
tion rates (Fig. $2). Recombinant mVEGF 4, and mVEGF,10s_115 Were puri-
fied from the conditioned media of stable clones by heparin affinity
chromatography using fast protein liquid chromatography (Bio-Rad Lab-
oratories). Recombinant mVEGF 3y, was purified by Co?* chelate affinity
chromatography.

Phosphorylation assays
VEGFR2 phosphorylation was determined by immunoblotting as described
previously (Luque et al., 2003).

CAM assay

The effect of mMVEGF 44, mVEGF;13, and mVEGFa4108-11s on angiogenesis
was evaluated as previously described (Vazquez et al., 1999). The col-
lagen gel was supplemented with 1 pg VEGF, and the extent of angio-
genic response was measured by the use of rhodamine-conjugated Lens
culinaris (Vector Laboratories) injected info the circulation of CAM. Evalua-
tion was performed on a confocal system (model MRC-1024Es; Bio-Rad
Laboratories) equipped with a microscope (model E800; Nikon) and a
krypton/argon laser (model 60-WL-DZ; Bio-Rad Laboratories).

In vivo Matrigel plug assay

6-wk-old female nude mice (Charles River Laboratories) were anesthesized
with avertin, were subcutaneously injected with 250 pl of growth factor—
reduced Matrigel (BD Biosciences), and were supplemented with either se-
rum-free DME or with 1 png VEGF. After 7 d, the mice were killed, and the
angiogenic response was evaluated. Matrigel plugs were fixed in 1%
paraformaldehyde, and vessels were defected with a rat anti-mouse
CD31 antibody followed by Cy3-labeled goat anti-rat IgG antibody (both
purchased from Jackson ImmunoResearch Laboratories). Evaluation was
performed on a confocal microscope (model MRC-1024; Bio-Rad Labora-
tories).

Xenograft tumor assays

T47D and HT1080 cell lines were injected subcutaneously (5 x 10° cells)
in 6-wk-old female nude mice (Charles River Laboratories). Tumor growth
was monitored every other day. When tumors reached 1,500 mm?®, mice
were killed, and dissected tumors were solubilized in lysis buffer as de-
scribed previously (Rodriguez-Manzaneque et al., 2001). A total of 42
mice were injected with T47D, 42 mice were injected with T47D-express-
ing mVEGF ¢4, 47 mice were injected with T47D-expressing mVEGF 3,
and 45 mice were injected with T47D-expressing mVEGF4108_115. A total
of 60 mice were injected with HT1080, HT1080-expressing mVEGF44,
mVEGF; 3, and mVEGF, 0s-118 (15 mice each). Nude mice that were in-
jected with T47D-expressing mVEGF ¢, were used for BB94 treatment.
BB94 was homogenized in PBS, pH 7.0, containing 0.02% Triton X-100
and was administered as an emulsion by intraperitoneal injection. Mice
(cohort of five animals per group) were treated daily with 30 mg/kg for a
total of 5 d.

ELISA

To quantify levels of VEGF in the serum, blood samples were collected and
allowed to clot overnight at 4°C. Samples were centrifuged at 2,000 g for
20 min. The serum was assayed by using a “sandwich” mouse VEGF-
ELISA kit (Calbiochem) according to the manufacturer’s instructions. To de-
tect VEGF forms with intact carboxy termini, VEGF antibody 375 (raised
against amino acids coded by exon 8) was immobilized onto the surface
of the 96-well plates and was assayed by using sandwich ELISA. After nor-
malization, a comparison of both ELISA assays revealed the levels of
cleaved and uncleaved VEGF. To determine the VEGF levels in tumor ex-
plant cultures, tumors were collected and incubated in 200 wl DME con-
taining 0.5% FBS, either in the presence or absence of MMP3 (1 ng/pl)
or MMP3 (1 ng/pl) in the presence of BB94 (10 uM). After 24 h of incu-
bation at 37°C, the conditioned medium was removed and assayed by us-
ing a sandwich mouse VEGF-ELISA kit (Calbiochem).

Immunohistochemical analysis

Tumors were collected, fixed in 1% paraformaldehyde, and sectioned at
200 pm using a vibratome (Ted Pella). The evaluation of skin near tumors
was performed as a whole-mount preparation. Vessels were visualized
with a rat anti-mouse CD31 antibody followed by Cy3-labeled goat anti-
rat IgG antibody (both from Jackson ImmunoResearch Laboratories). The
evaluation was performed on a confocal system (model MRC-1024; Bio-
Rad Laboratories). For hematoxylin and eosin staining, tumors were fixed
in 4% paraformaldehyde, were paraffin embedded, sectioned, and stained
by members of the UCLA Tissue Core Laboratory.

Quantitation of angiogenesis

Quantitation of vascular density was performed from confocal immuno-
stained images. Images were collected randomly (two images from each
tumor, CAM, or Matrigel; four to six individual samples were evaluated in
every case), and vascular density was determined with the aid of IM-
AGEPRO 4.0 software (Media Cybernetics).

In vitro angiogenesis assay
Cytodex beads (712,000 beads/ml; Sigma-Aldrich) were incubated with
PAE or with PAE-VEGFR2 cells and were then embedded into fibrinogen/
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fibronectin gel (2.5 mg/ml; Sigma-Aldrich) containing 100 ng VEGF and
1 U/pl thrombin (Sigma-Aldrich). The extent of angiogenesis was eval-
vated on a fluorescent inverted microscope (model Diaphot 300; Ni-
kon). To assess cell proliferation, cells were simultaneously stained with
AlexaFluor546-conjugated phalloidin (Molecular Probes) and with the an-
tibody to phosphohistone H3 (Cell Signaling).

Cleavage of fluorescence-labeled peptide

MMP3 was incubated with fluorescent substrate at 37°C for 30 min with
different molar ratios. The fluorescent substrates (7-methoxycoumarin-4-yl)
acetic acid-CRPKKDRTKPENHCEPCK (2,4-dinitrofluorobenzene)-CONH,
(wild-type peptide) and (7-methoxycoumarin-4-yl) acetic acid—~CRPKKDKP-
KPENHCEPCK (2,4-dinitrofluorobenzene)]-CONH, (mutant peptide) were
custom synthesized at SynPep Corporation. Fluorescence was detected
by a Dual-Scanning Microplate Spectrofluorometer (model SPECTRAmax
GEMINI; Spinco Biotech) with an excitation/emission wavelength of
365:440 nm.

Online supplemental material

Fig. S1 shows the effect of pH on the proteolytic processing of VEGF by
MMP3. It also compares the stability of the proteolyzed VEGF fragments
that are released by MMP3 and plasmin. Fig. S2 provides results as to the
proteolytic sensitivity of VEGF mutant forms (113 and A108-118) to
MMP3 and plasmin. Fig. S3 compares the growth rates of T47D mam-
mary carcinoma cells transfected with different forms of VEGF and shows
a proliferative index of endothelial cells in response to different VEGF
forms. Online supplemental material is available at http://www.jcb.org/

cgi/content/full /jcb.200409115/DC1.
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