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The cohesion protein ORD is required for homologue
bias during meiotic recombination

Hayley A. Webber,' Louisa Howard,” and Sharon E. Bickel'

'"Department of Biological Sciences and *Ripple Electron Microscope Facility, Dartmouth College, Hanover, NH 03755

for normal levels of homologous recombination,

although how cohesion regulates exchange is not
understood. Null mutations in orientation disruptor (ord)
ablate arm and centromeric cohesion during Drosophila
meiosis and severely reduce homologous crossovers in mutant
oocytes. We show that ORD protein localizes along oocyte
chromosomes during the stages in which recombination
occurs. Although synaptonemal complex (SC) components
initially associate with synapsed homologues in ord mutants,
their localization is severely disrupted during pachytene

During meiosis, sister chromatid cohesion is required

progression, and normal tripartite SC is not visible by electron
microscopy. In ord germaria, meiotic double strand breaks
appear and disappear with frequency and timing indistin-
guishable from wild type. However, Ring chromosome
recovery is dramatically reduced in ord oocytes compared
with wild type, which is consistent with the model that
defects in meiotic cohesion remove the constraints that
normally limit recombination between sisters. We conclude
that ORD activity suppresses sister chromatid exchange
and stimulates inter-homologue crossovers, thereby promoting
homologue bias during meiotic recombination in Drosophila.

Introduction

Sister chromatid cohesion is a prerequisite for accurate
chromosome segregation during mitosis and meiosis (Lee
and Orr-Weaver, 2001; Nasmyth, 2001). In both types of
cell division, the association between sister chromatids
depends on the cohesin complex. However, several meiosis-
specific cohesin subunits have been characterized, and in
contrast to mitosis, meiotic cohesion must be released in
a step-wise manner.

Meiotic cohesion not only ensures proper segregation of
the sister chromatids during anaphase II but also functions
to direct the proper behavior of homologous chromosomes
during meiosis I. Arm cohesion distal to a chiasma is required
for the stable association of recombinant homologues until
anaphase I (Buonomo et al., 2000; Bickel et al., 2002). In
addition, homologous recombination during meiosis is also
dependent on sister chromatid cohesion. In yeast, flies,
worms, and plants, mutations that disrupt meiotic cohesion
severely reduce the number of crossovers (Mason, 1976;
Broverman and Meneely, 1994; Klein et al., 1999; Parisi et
al., 1999; Chan et al., 2003; Mercier et al., 2003). However,
despite its essential role, the mechanism by which cohesion
regulates recombination is not understood.
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During meiotic prophase, recombination takes place
within the context of a specialized structure called the synap-
tonemal complex (SC; Zickler and Kleckner, 1999; Page
and Hawley, 2003). Like the proteins that mediate sister
chromatid cohesion, SC axial/lateral element (AE/LE)
components also assemble between sister chromatids (van
Heemst and Heyting, 2000). As homologous chromosomes
achieve synapsis, the AE/LEs become connected by evenly
spaced transverse filaments that hold homologous chromo-
somes in close juxtaposition along their entire length. Be-
cause SC assembly depends in part on normal cohesion be-
tween sister chromatids (van Heemst and Heyting, 2000),
mutations that disrupt cohesion may reduce meiotic ex-
change because the SC is defective.

After the induction of double strand breaks (DSBs)
during prophase I of meiosis, only strand invasion into the
homologous chromosome can produce a chiasma that will
stabilize homologue association until anaphase 1. Al-
though meiotic recombination occurs preferentially between
homologous chromosomes, not between sister chromatids
(Schwacha and Kleckner, 1994; Petes and Pukkila, 1995),
the mechanisms underlying homologue bias are largely un-
known. One possibility is that meiosis-specific cohesion
and/or SC components inhibit inter-sister recombination

Abbreviations used in this paper: AE/LE, axial/lateral element; CE, central
element; DSB, double strand break; y-H2Av, phosphorylated H2Av; ord,
orientation disruptor; SC, synaptonemal complex.
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events. In support of this model, disruption of SC AE/LEs
has been shown to increase the proportion of inter-sister re-
combination intermediates during meiosis in Saccharomyces
cerevisiae (Schwacha and Kleckner, 1997). These data sug-
gest that AE/LEs provide a meiosis-specific mechanism to
suppress sister chromatid exchange, and thereby promote
crossovers between homologues. Although this mechanism
may be conserved evolutionarily, evidence that inter-homo-
logue bias in metazoans is achieved by SC-mediated sup-
pression of sister chromatid exchange is lacking. In addition,
whether meiotic sister chromatid cohesion contributes di-
rectly to homologue bias has not been investigated in any or-
ganism.

Despite the lack of cohesin mutants in Drosophila melano-
gaster, analysis of the regulation of meiotic cohesion is af-
forded by mutations in the orientation disruptor (ord) gene.
ORD protein is required for meiotic sister chromatid cohe-
sion as well as normal levels of homologous recombination
(Mason, 1976; Miyazaki and Orr-Weaver, 1992; Bickel et
al., 1997). In both males and females, null 074 alleles result
in random segregation of sister chromatids during both mei-
otic divisions (Bickel et al., 1997). Genetic data, in addition
to FISH analysis, indicate that in the absence of ORD activ-
ity, cohesion is abolished before prometaphase I when mi-
crotubule/kinetochore attachments are established (Balicky
et al., 2002; Bickel et al., 2002). In addition, crossovers are
reduced but not eliminated in Drosophila females that com-
pletely lack ORD activity (Bickel et al., 1997). At present,
no alleles have been identified that separate the cohesion and
recombination phenotypes. Therefore, we have proposed
that meiotic exchange is reduced in ord females because de-
fects in cohesion disrupt inter-homologue crossing over
(Bickel et al., 1997). Our previous localization of ORD pro-
tein in Drosophila testes indicated that ORD associates with
the meiotic chromosomes during the extended G2 phase of
spermatogenesis and remains at the centromeres until cohe-
sion is released at anaphase II (Balicky et al., 2002). How-
ever, Drosophila males do not undergo meiotic recombina-
tion (Morgan, 1912), and the regulation of arm cohesion in
primary spermatocytes appears to be distinct from other or-
ganisms (Vazquez et al., 2002). Therefore, to investigate
how cohesion and recombination are coordinately regulated,
we turned our attention to the analysis of ORD function
during female meiosis.

Here, we provide key insights into the mechanism by
which sister chromatid cohesion promotes crossovers be-
tween homologous chromosomes during meiosis. We exam-
ine the localization of ORD protein during prophase I in
Drosophila females and demonstrate that ORD is found
along the entire length of oocyte chromosomes during the
time that meiotic recombination takes place. Our data indi-
cate that homologous chromosomes achieve synapsis in the
absence of ORD activity and that the frequency and timing
of DSBs are normal. In ord mutants, although SC compo-
nents appear to load normally onto meiotic chromosomes,
their association deteriorates during the progression of
pachytene. Furthermore, we observe pronounced defects in
SC ultrastructure. Decreased meiotic transmission of a Ring
chromosome in ord females argues that ORD is required to
suppress inter-sister crossovers during meiosis. Together, our

data support the model that ORD is required for homo-
logue bias during meiotic recombination. We propose that
in ord oocytes, defects in sister chromatid cohesion and SC
AE/LEs lead to decreased numbers of inter-homologue
crossovers because the constraints that limit sister exchange
are lifted. In addition, inter-homologue events may be in-
hibited by destabilization of the SC central element (CE) in
ord mutants.

Results
ORD associates with arms and centromeres
of oocyte chromosomes

In the Drosophila ovary, meiosis is initiated within the germar-
ium, the most anterior portion of each ovariole (Spradling et al.,
1997). Based on morphological criteria, the germarium can be
divided into four regions (Fig. 1 A). In region 1, germline mi-
totic divisions produce cysts composed of 16 cells that remain
interconnected by cytoplasmic bridges. A branched structure
called the fusome connects the cells during the mitotic divisions
and can be used as a marker to identify two-, four-, and eight-
cell cysts (de Cuevas et al., 1997). The meiotic program initiates
shortly after formation of the 16-cell cyst, and extensive SC as-
sembly occurs in up to four cells per cyst in region 2A (Car-
penter, 1975). DSBs, identified as phosphorylated H2Av
(y-H2Av) foci, are first apparent in region 2A (Jang et al.,
2003), indicating that initiation of meiotic recombination also
occurs in region 2A. As the 16-cell cysts mature, they move poste-
riorly. As early as region 2B but no later than region 3, oocyte de-
termination is completed and full-length SC becomes restricted
to the oocyte, which assumes a posterior position within the cyst.

To better define the role of ORD in meiotic sister chroma-
tid cohesion and recombination, we used GFP antibodies to
examine the localization of GFP-ORD in ovaries from trans-
genic flies. We have previously demonstrated that GFP-ORD
is fully functional (Balicky et al., 2002) and that no GFP im-
munostaining is detectable in flies lacking the GFP-ORD fu-
sion protein (Balicky et al., 2002; unpublished data). Fig. 1 B
shows a full projection of GFP-ORD localization in a single
germarium. ORD signal is visible within mitotic and meiotic
germline cysts, but not in the somatically derived follicle cells
that surround the germarium and older 16-cell cysts. In addi-
tion to bright ORD foci that are present in germline nuclei
throughout the germarium (Fig. 1 B), diffuse ORD staining
is detectable throughout the nuclei of some 8-cell cysts in re-
gion 1 (Fig. 1, C and D, arrows) and within 16-cell cysts at
all stages (Fig. 1, B-D). Although ORD staining is not re-
stricted to the oocyte, a few linear stretches of ORD signal are
visible in the oocyte nucleus in region 3 (Fig. 1 B, arrowhead)
and appear to overlap with the threadlike C(3)G staining that
marks the SC (Fig. 1 C, arrowhead).

To better visualize ORD localization within female germ
cells, we developed a chromosome spread protocol for ger-
marial cells and early previtellogenic stages of the Drosophila
ovary. In some instances, we obtain semi-intact cysts that al-
low us to observe all 16 germ cells (Fig. 1, E-G). In such
cysts, ORD is clearly associated with the chromatin of all the
germ cells. In addition, distinct ribbonlike ORD signal is
visible within those cells that exhibit localization of the SC
component C(3)G (Fig. 1 F). Although long threads of
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Figure 1.
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Localization of ORD protein in wild-type germaria. (A) Schematic depiction of germline cysts and SC in different regions of the

germarium. (B-D) Full projection of deconvolved z-series shows ORD localization in single germarium. Bar, 10 wm. (B) Linear stretches of

ORD signal are visible in region 3 oocyte nucleus (arrowhead). (C) ORD foci and whole cyst staining are visible in region 1 before C(3)G
localization (arrow). Threadlike ORD staining colocalizes with C(3)G in the oocyte nucleus (arrowhead in B and C). (D) ORD foci in a four-cell
cyst and an early eight-cell cyst (arrowheads). In addition to bright ORD foci, diffuse ORD signal becomes visible throughout an older 8-cell
cyst (arrow) and persists during the development of 16-cell germarial cysts. (E-G) Chromosome spread of semi-intact region 2A cyst showing
single optical section from a deconvolved z-series. Bar, 10 um. (E) Bright foci and linear stretches of ORD are visible within all 16 nuclei of
the cyst. (F) Threadlike ORD staining (green) is more pronounced within nuclei that also stain for C(3)G (magenta). (G) DAPI-stained DNA.
(H-)) Enlarged view from G (arrow) shows ORD (green) concentrated along the center of the bivalent (blue). Bar, 500 nm. (K-M) Extensive
colocalization of ORD and C(3)G in a single nucleus. (N-P) Bright focus of ORD staining overlaps with CID signal. (K-P) Each image represents

a single optical section from a deconvolved z-series of a chromosome spread. Bar, 2 pm.

ORD staining are most pronounced within nuclei that con-
tain C(3)G, less distinct linear elements are also visible
within other cells of the cyst that do not form SC.

Within isolated nuclei of well-spread preparations (Fig. 1,
K-M), ORD colocalizes with C(3)G along the five euchro-
matic arms that form continuous SC (Page and Hawley
2001). Furthermore, localization of ORD on DAPI-stained
chromosomes (Fig. 1, H-]) reveals that ORD staining is re-
stricted to a narrow region within the wider DNA signal of
the bivalent. These data suggest that ORD may colocalize
with the AE/LEs that connect meiotic sister chromatids.

Within each nucleus, one to four bright foci of ORD
staining are prominent and often correspond to the most
DAPI-intense regions of the chromatin (Fig. 1, compare E
with G). We tested the possibility that ORD is enriched in
centromeric heterochromatin by asking whether or not
ORD colocalizes with CID, the Drosophila CENP-A or-
thologue that replaces H3 within the nucleosomes of cen-
tromeric heterochromatin (Henikoff et al., 2000; Blower

and Karpen, 2001; Blower et al., 2002). We often observed
one CID signal per nuclear spread (Fig. 1 O), confirming
that the centromeres of pro-oocytes are often clustered
(Carpenter, 1975; Dernburg et al., 1996). In colocalization
experiments, bright ORD foci overlap with the CID signal
(Fig. 1, N=P). However, CID staining is limited to a small
region within the much larger bright ORD signal (Fig. 1
P). These data support the hypothesis that ORD is en-
riched within the heterochromatin of meiotic chromo-
somes but is not restricted to the specialized heterochroma-
tin of the centromere.

Our localization experiments demonstrate that ORD pro-
tein is found along the entire length of oocyte chromosomes,
which is consistent with its essential role in promoting both
arm and centromeric cohesion during female meiosis. More-
over, extensive colocalization of ORD with the SC compo-
nent C(3)G during pachytene indicates that ORD is associ-
ated with meiotic chromosomes during the stages when
crossovers normally occur.
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Figure 2. ord mutations disrupt C(3)G and C(2)M localization.
(A-C) C(3)G localization within a single nucleus is shown for each
region of the germarium and a vitellarial stage 2 egg chamber. Each
image represents a full projection from a deconvolved z-series. Staining
was performed on intact ovarioles (not spreads). ORB staining (not
depicted) was used to identify oocytes in ord mutants. (A) In ord*
germaria, extensive ribbonlike C(3)G is visible at each stage. (B) In
region 2A of ord'/Df mutant germaria, normal ribbonlike C(3)G staining
is detected, but C(3)G staining becomes fragmented in the majority of
ord'/Df oocytes by region 3. (C) ord”/Df mutant germaria also contain
normal C(3)G staining in region 2A. However, the C(3)G signal is
severely fragmented and spotted by region 3. Bar, 3 um. (D) Quantifi-
cation of the C(3)G defects in ord mutants shows the percentage of
nuclei with normal, fragmented, spotted, or no C(3)G staining. Over
170 cells corresponding to each stage were examined. (E) Localization
of C(2)M in ord™ ovarioles. (F) C(2)M localization defects in ord*/Df
mutant germaria are similar to those observed for C(3)G. Although
normal C(2)M signal is visible in region 2A, only fragmented and
spotty staining is visible in region 3. Bar, 3 pm.

Destabilization of SC components in the absence

of ORD protein

Colocalization of ORD with C(3)G, a putative transverse
filament component of the SC (Page and Hawley, 2001),
raises the possibility that homologous recombination is de-

creased in ord mutant females because ORD activity is re-
quired for normal assembly and/or function of the SC. Mu-
tations that abolish SC in Drosophila females also abolish
recombination (Gowen and Gowen, 1922; Gowen, 1933;
Carpenter and Sandler, 1974; Page and Hawley, 2001).
Therefore, we examined C(3)G localization in whole-mount
preparations of Drosophila ovaries from ord mutants to de-
termine whether ORD activity is required for the formation
and/or maintenance of the SC (Fig. 2, A-C).

Examination of intact ovarioles allowed us to monitor the
temporal progression of C(3)G staining within germaria
of both wild-type and ord mutants. In wild-type ovaries,
threadlike C(3)G staining becomes visible in up to four cells
of each cyst in region 2A (Figs. 1 C and 2 A). As cysts ma-
ture during their progression through the germarium, the
C(3)G signal becomes restricted to the oocyte and remains
visible throughout pachytene (Figs. 1 C and 2 A).

We examined C(3)G staining in the ovarioles of two mu-
tant ord backgrounds. The ord’ mutation causes premature
truncation of ORD protein and genetically behaves as a null
(Bickel et al., 1996, 1997). In contrast, ord’ contains a mis-
sense mutation that does not completely abolish ORD activ-
ity (Mason, 1976; Miyazaki and Orr-Weaver, 1992; Bickel
et al., 1996). In both mutants, the onset of C(3)G staining
appears normal in zygotene/early pachytene pro-oocytes in
region 2A (Fig. 2, B and C). However, the C(3)G signal de-
teriorates as ord oocytes progress through the germarium. By
region 3, only foci or short stretches of C(3)G are visible in
most ord oocytes (Fig. 2, B and C).

Because the staining pattern of C(3)G varied somewhat in
different ovarioles, we quantified defects within the germar-
ium as well as in vitellarial stage 2 oocytes, the first stage af-
ter exit from the germarium (Fig. 2 D). Our analysis dem-
onstrates a clear temporal progression in the deterioration of
C(3)G signal in ord oocytes. In most cells, C(3)G appears to
load normally onto meiotic chromosomes in region 2A, but
staining progressively degenerates as the cysts mature. De-
fects appear less severe in ord' oocytes, indicating that the
strength of the ord allele dictates the severity of C(3)G dis-
ruption. Our data argue that ORD activity is required to
maintain the normal localization of C(3)G during pachytene
and suggest that ORD plays a role in stabilizing the SC.

We also examined the localization of C(2)M, another pu-
tative Drosophila SC component (Manheim and McKim,
2003). Immunostaining experiments with C(2)M antibod-
ies have demonstrated that, like C(3)G, threadlike C(2)M
staining becomes visible within wild-type pro-oocytes in re-
gion 2A. Moreover, C(3)G staining is severely disrupted or
absent in ¢(2)M mutants, which is consistent with the model
that C(2)M is required for synapsis and assembly of the CE
of the SC. Interestingly, computer analysis of the C(2)M se-
quence has identified a kleisin domain within the protein,
suggesting that C(2)M may associate with SMC subunits
(Schleiffer et al., 2003).

In ord’l Df ovarioles, we observe normal threadlike C(2)M
staining in region 2A (Fig. 2 F). However, in contrast to
ord " germaria (Fig. 2 E), C(2)M signal is severely fragmented
or absent in older o7d mutant cysts (Fig. 2 F). The C(2)M and
C(3)G defects that we observe in ord germaria are indistin-

guishable. Although the initial association of two different SC
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Figure 3. Abnormal SC ultrastructure
in ord mutants. Transmission electron
micrographs of germaria from ord" and
ord?*/Df females. (A-C) Single sections
showing examples of normal tripartite
SC observed in each region of an ord™
germarium. Lateral elements (le), trans-
verse filaments (tf), and central elements
(ce) are well defined and clearly visible
in wild type. (D) Lower magnification
of the entire region 3 nucleus showing
multiple stretches of SC (arrowheads).
The SC shown in C is indicated by the
arrow. (E-G) Examples of abnormal
SC-like structures from each region

of ord”Df germaria. In some instances,

(E and F) a central element (ce) is visible without obvious lateral elements. (H) Lower magnification of the entire region 3 nucleus with
the area shown in G indicated by the arrow. Bars: (A-C and E-G) 200 nm; (D and H) 1 pm.

components with meiotic chromosomes appears normal in
ovaries that lack ORD activity, ORD is required to maintain
the normal localization of both C(2)M and C(3)G during
pachytene. Because the SC is required for meiotic exchange in
Drosophila, reduced levels of homologous recombination in
ord mutants could be caused by destabilization of the SC.

Disruption of SC ultrastructure in ord oocytes
Deterioration of C(3)G and C(2)M localization during
pachytene in ord mutants suggests that the SC may form
normally in the absence of ORD but that its stabilization re-
quires ORD activity. To test this hypothesis, we performed
EM analysis to directly visualize the ultrastructure of the SC
in ord mutants. Both wild-type and 074’/ Df ovarioles were
fixed and processed for EM.

In wild type, stretches of SC were easily identified in the re-
gion 3 oocyte as well as the pro-oocytes of region 2A and 2B
(Fig. 3, A-D). Distinct transverse filaments within the CE
and well-defined lateral elements were clearly discernible (Fig.
3 A). We identified numerous examples of normal tripartite
SC in all three regions of the wild-type germarium (136 exam-
ples in 380 longitudinal sections of a single germarium).

In two ord’/ Df germaria that were completely sectioned,
structures that resembled SC were rare (18 instances in 740
longitudinal sections) and in all cases appeared abnormal
(Fig. 3, E-G). In most cases, distinct lateral elements were
not apparent (Fig. 3, E and F). We observed a few examples
of what appeared to be a twisted CE containing organized
transverse filaments in the absence of well-formed lateral ele-
ments (Fig. 3 E). In addition, some SC-like structures lacked
definition between the central region and what could be lat-
eral elements (Fig. 3 G). Their somewhat “fused” ultrastruc-
ture could represent frontal views of abnormal tripartite SC
in which the central and lateral elements lack definition. Al-
ternatively, such structures might also represent a side view
of a saggital section through a CE.

Our EM analysis indicates that the ultrastructure of the
SC is severely perturbed in o7d germaria. Normal threadlike
C(3)G and C(2)M immunofluorescent signal is visible in all
ord germaria in region 2A, indicating that some SC compo-
nents assemble in the absence of ORD activity. However,
lack of normal electron-dense tripartite SC at any stage
within the germarium suggests that ORD is required for

proper formation of the SC. The discrepancy between the
severity of defects observed in region 2A with the two visual-
ization techniques could arise if thin and/or disorganized SC
in ord mutants were sufficient for an immunofluorescent sig-
nal but not the highly ordered ultrastructure required for de-
tection by EM. Alternatively, we cannot rule out the possi-
bility that tripartite SC forms in ord mutants but is unstable
and therefore more vulnerable than wild-type SC to disrup-
tion by EM sample preparation.

Homologous chromosomes synapse in ord oocytes

We were surprised that C(3)G staining in region 2A ap-
peared normal in the absence of ORD activity even though
SC ultrastructure was clearly disrupted at this stage. Al-
though long threads of C(3)G signal represent synapsed ho-
mologues in wild-type oocytes (Page and Hawley, 2001), we
reasoned that it was formally possible that in 0rd mutants,
C(3)G was loading onto individual homologues in region
2A in the absence of synapsis. In addition, failure of homo-
logues to achieve complete synapsis might be responsible for
the destabilization of C(3)G localization that we observe in
ord oocyrtes.

We used two methods to ask if synapsis depends on ORD
activity. First, we measured the combined length of C(3)G
threads within individual nuclei of wild-type and ord’/Df
chromosome spreads. If the linear segments of C(3)G stain-
ing observed in ord mutants represent entirely unsynapsed
homologues, the total length of C(3)G signal per ord nu-
cleus should be twice that of wild type. However, as shown
in Fig. 4 A, lengths of C(3)G signal in wild-type and o7d nu-
clei were quite similar and consistent with those previously
reported (Page and Hawley, 2001). In addition, FISH analy-
sis using X chromosome arm and pericentromeric probes
(Fig. 4, B and C) indicates that homologous chromosomes
pair in ord mutants and rules out the possibility that C(3)G
threadlike signal represents nonhomologous synapsis. These
results lead us to conclude that homologous chromosomes
synapse normally in the absence of ORD protein.

Normal frequency and timing of DSBs in ord oocytes

In addition to SC defects, a reduction in the number of mei-
otic DSBs might also contribute to decreased numbers of
crossovers in ord oocytes. Therefore, we monitored the tem-
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Figure 4. Homologues synapse in the absence of ORD activity.
(A) Measured length of C(3)G staining in chromosome spread
preparations from region 2B of wild-type and ord”/Df mutant germaria.
Mean C(3)G length is 114.6 = 8.4 um (n = 4) in ord™ and 107.5 *
3.2 um (n = 8) in ord’/Df. (B) Examples of chromosome spreads
stained for C(3)G (magenta) and hybridized with probes (green)
corresponding to pericentromeric heterochromatin or single copy
sequences on the X chromosome arm (green). Bars, 2 pm.

C) Quantification of FISH analysis shows percentage of nuclei
containing a single hybridization signal (green) or two to four signals
(black) separated by <1 pum. n values are noted for each bar.

poral progression of DSB appearance and disappearance in
ordm/Df germaria. Like ord’, ord" is a nonsense mutation
that truncates the ORD open reading frame and genetically
behaves as a null (Bickel et al., 1997). We chose 074"’ for
this analysis because it is the only null o7 allele for which re-
combination levels have been measured (Bickel et al., 1997).
Homologous recombination is severely reduced, but not
eliminated in om’m/Df females. As a marker for DSBs, we
used an affinity-purified polyclonal antibody that recognizes
the Drosophila H2Av histone variant when it is phosphory-
lated at serine 137 (Madigan et al., 2002). In Drosophila so-
matic cells, phosphorylation of H2Av has been shown to oc-
cur within 1 min after DNA damage (Madigan et al., 2002).
Moreover, Jang et al. (2003) have recently demonstrated
that y-H2Av foci provide a useful marker for DSBs induced
during meiotic prophase in Drosophila ovaries.

In wild-type germaria we observe a large number of
v-H2Av foci in region 2A nuclei (Fig. 5 B, asterisk). Foci are
absent in mei-W68 mutants that lack the Drosophila SPO11

ord10/Df

mei-W68 ord*

A

Region 2A

ord10/Df
@ 12 @ ord?%pf
3. | ord™
- 10 -
=} XX 2
c 8 folole!
|1 *e e
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.A. E 2 *e 0 .
0

Figure 5. Normal numbers of DSBs appear and disappear in ord
oocytes. (A-C) Whole germaria costained for C(3)G (magenta) and
y-H2Av (green). Images represent a full projection of a deconvolved
z-series. Bars, 10 pm. Region 2B and region 3 cysts are outlined
in white. (A) No y-H2Av foci are visible in a mei-W68 germarium.
(B) In wild type, y-H2Av foci appear in region 2A (asterisk) and
disappear in the oocyte by region 3 (arrow). (C) In ord"%/Df, y-H2Av
foci appear and disappear with normal kinetics. Asterisk marks
region 2A and arrow points to region 3 cyst. (D and E) Examples
of region 2B nuclei used to generate the graph in F. Bar, 3 pm.
(F) Scatter plot representing the number of y-H2Av foci per C(3)G
staining nucleus in region 2B. Mean number of y-H2Av foci in ord"
is 7.0 (n = 25) and for ord’%/Df mutant is 7.2 (n = 25). Late 2B cysts
in which y-H2Av foci were absent in both pro-oocytes were not
included in this analysis.

protein (McKim and Hayashi-Hagihara, 1998), confirming
that the staining we observe in wild-type germaria is depen-
dent on DSB formation (Fig. 5 A). Consistent with the re-
sults of Jang et al. (2003), we observe that the number of
v-H2Av foci in wild-type germaria declines as the cysts
move posteriorly (Fig. 5 B). Oocytes in region 3 rarely con-
tain a detectable signal, suggesting that repair has progressed
beyond the DSB stage (Fig. 5 B, arrow).

The y-H2Av staining that we observe in 0rd"’/ Df germa-
ria is indistinguishable from wild type (Fig. 5, compare B
with C). Foci are most numerous in region 2A nuclei (Fig. 5
C, asterisk) but are almost always absent in region 3 oocytes
(Fig. 5 C, arrow). Therefore, DSBs are not only formed at
the correct time in ord pro-oocytes, but their repair seems to
occur with normal kinetics. Occasionally in both mutant
and wild-type region 3 cysts, we observe residual y-H2Av
foci in the pro-oocyte that does not continue along the mei-
otic pathway.

To confirm our qualitative assessment that meiotic DSBs
occur at wild-type levels in 074 mutant germaria, we counted
the number of foci in individual pro-oocytes within region
2B (Fig. 5, D-F). Although the number of foci varied from
cell to cell in both genotypes, we observe a similar distribu-
tion for both wild-type and ord nuclei (Fig. 5 F). Moreover,
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Figure 6. Possible meiotic outcomes for females carrying one Ring
X chromosome and one normal Rod X chromosome. (A) Absence of
inter-homologue or inter-sister exchange should yield equal numbers
of meiotic products/progeny carrying either the Ring X or the Rod X
chromatid. (B) Although a single crossover between homologous
chromosomes will generate a dicentric chromosome that will not
be transmitted, the number of progeny inheriting a nonrecombinant
Ring or Rod chromosome should still be relatively equal. (C) Sister
chromatid exchange between Rod X chromosomes should not affect
their segregation. In contrast, a single crossover between the two
Ring X sister chromatids will yield a large dicentric Ring chromo-
some that will not be transmitted to progeny. Therefore, high levels
of sister chromatid exchange should cause Rod-containing progeny
to greatly outnumber the Ring-containing progeny.

the average number of DSBs/nucleus in region 2B is almost
identical in wild type (7.0) and mutant (7.2). Interestingly,
the average number of DSBs that persist at this stage is
slightly greater than the average number of crossovers per
wild-type oocyte (%[map length for each arm/50 cM] =
5.68; Lindsley and Zimm, 1992), which is consistent with
the possibility that late y-H2Av foci represent DSBs that

will be processed as crossover events.

Ring chromosome assay suggests that sister chromatid
exchange is elevated in ord mutants

If DSBs are formed and repaired with normal frequency
and timing in the absence of ORD protein, why is the
number of crossovers reduced? One possibility is that re-
combination defects arise in ord oocytes because normal sis-
ter chromatid cohesion is essential to limit inter-sister re-
pair of DSBs. Therefore, in the absence of ORD, sister
exchange might be favored and the number of crossovers
between homologues reduced.

To test the hypothesis that ORD inhibits sister ex-
change, we monitored the transmission of a Ring X chro-
mosome during meiosis in R(1)2/+; ord/ord females. A
single crossover between two Ring sister chromatids will
create a dicentric Ring chromosome that will not be trans-
mitted efficiently (Fig. 6 C). In contrast, recombination
between normal “Rod” sister chromatids will not impair
their transmission (Fig. 6 C). Therefore, if lack of ORD
activity causes significant elevation of sister chromatid ex-
change in females that contain one Ring X and one nor-
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Table I. Decreased Ring chromosome transmission during meiosis
in ord oocytes

Genotype Ring progeny  Rod progeny  Ring/Rod
R(1)2/+; +/+ 1,859 2,790 0.7
R(1)2/+; ord®ord™ 697 1,692 0.4
R(1)2/+; ord*/ord" 400 1,665 0.2

mal X chromosome, progeny containing the normal X
chromosome should greatly outnumber those that inherit
the Ring chromosome.

We monitored meiotic transmission of the R(1)2 chro-
mosome in wild-type, ord%ord"’, and ord’/ord"’ females.
Unlike 07d” and ord’’, which behave as nulls, 074 is a mis-
sense allele that codes for an altered protein with residual
activity (Bickel et al., 1996). As shown in Table I, recovery
of the R(1)2 chromosome relative to a normal Rod X chro-
mosome is significantly lowered in ord oocytes when com-
pared with wild type. The strongest effect is observed in
ord’/ord" females in which ORD activity is completely ab-
sent. These data argue that sister chromatid exchange is el-
evated in ord oocytes and support the model that ORD ac-
tivity is required to suppress sister chromatid exchange in
Drosophila oocyrtes.

Discussion

Although sister chromatid cohesion during meiosis is essen-
tial for normal levels of homologous recombination, the
mechanism by which cohesion regulates meiotic recombina-
tion has remained elusive. Here, we provide evidence that
meiotic cohesion is required to suppress sister chromatid ex-
change and thereby promote inter-homologue recombina-
tion during meiosis. Moreover, we further define the link
between meiotic cohesion and the formation/stabilization of
the SC by focusing our analysis on a cohesion protein that is
distinct from the cohesin complex.

Localization of ORD during pachytene

The localization of ORD protein along the entire length of
oocyte chromosomes is consistent with previous genetic and
cytological evidence that ORD is essential for arm and cen-
tromeric cohesion during female meiosis. Bright centro-
meric ORD foci in the premeiotic cysts of region 1 are simi-
lar to those detected in the mitotic cysts within the testis
(unpublished data), and diffuse ORD signal throughout the
nuclei of some 8-cell cysts and all 16-cell cysts suggests that
ORD accumulates along the length of chromosomes before
premeiotic S phase. Unlike SC components, ORD protein is
not restricted to a subset of nuclei within the cyst. In chro-
mosome spreads, ORD linear elements are visible in all of
the cells within the cyst. However, distinct stretches of rib-
bonlike ORD staining are more pronounced within nuclei
that are assembling SC, perhaps because of the high degree
of chromatin structure/organization within the context of
the SC. In addition, SC compaction and shortening during
pachytene (Carpenter, 1975) probably enhance the ribbon-
like nature of the ORD signal in the pro-oocytes. Like the
SC components C(3)G and C(2)M, ORD remains along
the entire length of oocyte bivalents throughout pachytene.
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These data are consistent with the model that ORD pro-
motes arm and centromeric cohesion during the stages in
which meiotic recombination occurs.

ORD may direct assembly of SC lateral elements

Our work indicates that ORD activity is required for normal
SC. Although C(3)G and C(2)M appear to localize normally
during eatly prophase in ord mutants, their association with
bivalents is severely disrupted during pachytene progression.
By EM analysis, we observe SC-like structures in ord™" ger-
maria that appear to be composed of CEs without distinct
AE/LEs. These results, coupled with our fluorescent immu-
nodetection of C(3)G in ord mutants, suggest that some CE
components can assemble in the absence of normal AE/LEs.
Although somewhat unexpected, similar results have been
obtained in yeast and mice (Smith and Roeder, 1997; Pelt-
tari et al., 2001) and have led to the proposal that CEs form
in the absence of AE/LEs by using the cohesin complex core
as a scaffold for assembly (Pelttari et al., 2001). Interestingly,
although cohesin subunits initially associate with chromatid
arms in ord germaria, their localization starts to deteriorate
before the time that we first observe C(3)G localization de-
fects (unpublished results). Therefore, assembly of CEs in
ord mutants may rely on the cohesin complex and disinte-
grate when cohesin localization is destabilized.

Our results are consistent with the hypothesis that ORD ac-
tivity is required for the formation of AE/LEs during meiosis in
Drosophila. One possibility is that ORD is a structural compo-
nent of the AE/LEs. However, we think this unlikely because
ORD is essential for meiotic sister chromatid cohesion in both
males and females, and Drosophila spermatocytes do not un-
dergo meiotic recombination or form SC (Morgan, 1912; Ras-
mussen, 1973). In addition, our observation that ribbonlike
ORD signal is visible in all 16 cells of germarial cysts demon-
strates that chromatin association of ORD occurs in cells that
never form extensive SC. Therefore, we propose that ORD ac-
tivity is a prerequisite for formation of the AE/LE and may
colocalize with this structure, but that the primary function of
ORD protein is to promote sister chromatid cohesion.

Sister chromatid exchange in ord oocytes
During meiosis, only crossovers between homologous chro-
mosomes can generate a stable chiasma that will promote
proper segregation during meiosis I (Fig. 7 A). After the for-
mation of a DSB, strand invasion into the sister chromatid
will not be productive in maintaining the association of ho-
mologous chromosomes. Schwacha and Kleckner (1994)
have provided physical evidence that recombination is bi-
ased in S. cerevisiae meiosis to favor recombination between
homologues. Although crossovers between sisters are not
completely inhibited, homologues are the preferred partners
and inter-homologue intermediates represent ~70% of the
joint molecules that form during strand invasion. When the
AE/LE component Redlp is missing/mutated, the per-
centage of inter-sister events increases, indicating that in
yeast, normal AE/LEs suppress sister chromatid exchange
(Schwacha and Kleckner, 1997).

Although we cannot analyze recombination intermediates
at the molecular level in Drosophila, our Ring chromosome
genetic assay argues that mutations in o7 disrupt homologue
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Figure 7.  Homologue bias during meiotic recombination. (A) After
premeiotic S phase, the oocyte enters meiotic prophase with two
homologous chromosomes (blue and orange) each composed of a
pair of sister chromatids (top). Different hues are used for each sister
chromatid and both strands of DNA are shown. After the formation
of a DSB, strand invasion can occur between homologues (middle left)
or between sisters (middle right). Only a crossover between homol-
ogous chromosomes can generate a stable chiasma and the preferred
pathway for strand invasion and recombination is between homo-
logues (large arrows). Sister chromatid strand invasion and exchange
occur much less frequently (small arrows). (B) Model for how ORD
promotes homologue bias. ORD maintains meiotic sister chromatid
cohesion, which is required for normal AE/LEs and stabilization of
the CE of the SC. AE/LEs are required to suppress recombination
between sister chromatids and stabilize CEs. In Drosophila, the SC
is required for crossovers between homologous chromosomes. High
levels of sister chromatid exchange occur in ord mutants because
DSBs are preferentially repaired by strand invasion into the sister
chromatid. ORD promotes homologue bias both by limiting cross-
overs between sister chromatids and by promoting exchange between
homologous chromosomes.

bias during Drosophila meiosis. Similar to other investigators
(Sandler et al., 1974; Hall, 1977; McKim et al., 1998; Man-
heim and McKim, 2003), we obtain a Ring/Rod ratio in
wild type that is <1 and probably reflects the level of sister
chromatid exchange that normally occurs in Drosophila oo-
cytes (Hawley and Walker, 2003). However, the recovery of
Ring chromosome—containing progeny from ord“ord"’ and
ord’lord"’ females is significantly lower than from ord" fe-
males, and 074" females exhibit lower transmission of the
Ring chromosome than those with partial ORD activity.



Our results are most consistent with the model that disrup-
tion of ORD activity allows increased levels of sister chroma-
tid exchange during meiosis. Null mutations in ord cause
random segregation of normal Rod chromosomes due to
complete loss of centromeric cohesion. Therefore, reduced re-
covery of the Ring chromosome in ord*/ord"’ females cannot
arise because the Ring chromosome is more sensitive to cohe-
sion defects than the Rod chromosome. Moreover, nearly
equivalent recovery of Ring and Rod chromosomes from
¢(3)G oocytes (Sandler et al., 1974) argues that cis-acting se-
quences on the R(1)2 chromosome are capable of mediating
proper centromeric cohesion and kinetochore function during
meiosis. Although failure to decatenate interlocked Ring chro-
mosomes could result in their reduced recovery, chromosome
bridges have not been observed for normal chromosomes in
ord mutants. Therefore, we propose that ORD activity is re-
quired during Drosophila meiosis to limit exchange between
sisters and thereby promote inter-homologue crossovers. To
our knowledge, these data represent the first evidence in meta-
zoans of a gene product that suppresses recombination be-
tween sister chromatids during meiosis.

Homologue bias in Drosophila meiosis

An increase in sister exchange in 074 mutants cannot be ex-
plained by the disruption of C(3)G localization that occurs
during pachytene progression. Although inter-homologue
crossovers are abolished in ¢(3)G mutant females (Gowen
and Gowen, 1922; Gowen, 1933; Page and Hawley, 2001),
sister exchange is not elevated (Sandler et al., 1974; Hall,
1977). In contrast to Jang et al. (2003), we find that DSBs
are not significantly reduced in ¢(3)G oocytes (unpublished
data). Therefore, absence of the SC CE is not sufficient to
lift the constraints that limit inter-sister events. Colaiacovo
et al. (2003) have recently made a similar argument for Cae-
norhabditis elegans meiosis.

Homologue bias during meiotic recombination in Drosoph-
ila most likely arises from mechanisms that promote homolo-
gous recombination as well as those that suppress inter-sister
events. Recombination defects in 074 mutants may result from
disruption of both pathways (Fig. 7 B). We propose that the
absence of ORD activity disrupts the formation and/or stabil-
ity of AE/LEs which normally limit inter-sister strand inva-
sion after the induction of DSBs. Although meiotic DSBs ap-
pear and disappear with normal frequency and timing in
ord™" germaria, the preferred pathway for DSB repair in ord
oocytes is strand invasion into the sister chromatid. In addi-
tion, ORD is required to maintain C(3)G localization and
presumably the integrity of the CE. Elimination of crossovers
in ¢(3)G mutants indicates that the SC is absolutely required
for repair of DSBs as inter-homologue crossovers in Drosoph-
ila. Although crossovers are decreased in oocytes completely
lacking ORD activity, they are not abolished. Transient local-
ization of C(3)G in ord mutants may allow the few crossovers
that do occur, but subsequent disruption of C(3)G localiza-
tion most likely prevents normal numbers of inter-homologue
events. We conclude that ORD activity promotes homologue
bias during Drosophila meiosis by suppressing inter-sister
events as well as promoting inter-homologue events and that
disruption of both pathways leads to decreased numbers of
crossovers in ord mutants.
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Meiosis-specific controls that direct partner choice during
recombination are essential for accurate chromosome segre-
gation of homologous chromosomes during meiosis I. Our
results provide critical answers about how sister chromatid
cohesion ensures that crossovers occur between homologous
chromosomes during meiosis in Drosophila. Because cohe-
sion is required for normal levels of meiotic exchange in sev-
eral species, we predict this mechanism to be highly con-
served among eukaryotes.

Materials and methods

Fly strains

Flies were reared at 25°C on standard cornmeal molasses media. GFP-
ORD immunolocalization was performed on ovaries from yw/yw; ord'
bw/ord" bw; P{gfp::ord}/P{gip::ord} (Balicky et al., 2002) adult females.
ord* oocytes were obtained from y/y; cn bw sp females, and ord’, ord®,
ord", and Df(2R)WI370 stocks have been previously described (Mason,
1976; Miyazaki and Orr-Weaver, 1992; Bickel et al., 1996, 1997). For
y-H2Av analyses, y/y"Y; mei-W68" homozygotes were selected from a
y/y"Y; mei-W68'/CyO stock (McKim et al., 1998). For the Ring X chromo-
some assay, a Dp(1,Y) BSYy™/C(1)DX, y' f/R(1)2, y" wh¥I7 f stock (BL-
3957; Bloomington) was used to generate females containing the R(7)2
chromosome over a normal Rod X chromosome (see Genetic assay for sis-
ter chromatid exchange).

Immunolocalization in whole-mount ovaries

Before dissection, newly eclosed females were fattened overnight in vials
with yeast and males. Ovaries were dissected in 1X Modified Robb’s Me-
dium (Matthies et al., 2000) for 15 min, rinsed three times in PBS (130 mM
NaCl, 7 mM Na,HPO,, and 3 mM NaH,PO,) containing 0.2% Tween 20,
and fixed and processed for immunofluorescence as described by Page
and Hawley (2001). After staining, ovaries were separated into individual
ovarioles, transferred to an 18-mm poly-L-lysine-treated coverslip, and
mounted in 18-20 ul of Prolong Antifade reagent (Molecular Probes).

Chromosome spreads

To develop a procedure to spread Drosophila oocyte chromosomes, we
adapted protocols used successfully for mammalian meiotic cells (Peters et
al., 1997; Koehler et al., 2002). Seven sets of ovaries from newly eclosed
females fattened overnight with yeast and males were dissected in PBS and
rinsed once in freshly made hypo buffer containing 50 mM sucrose, 17
mM trisodium citrate dihydrate, 5 mM EDTA, 0.5 mM DTT, 30 mM Tris,
pH 8.2, and 0.5 mM Pefabloc. Ovaries were immersed in 500 pl hypo
buffer, incubated ~20-30 min, and transferred to a drop of hypo buffer.
Tungsten needles were used to isolate the transparent tips from the ovaries,
and all egg chambers containing yolk were discarded. Ovary tips were
transferred to a single 25-pl drop of 100 mM sucrose and minced with
tungsten needles leaving no intact ovarioles. The ovary mixture was pipet-
ted up and down several times through a P-2 pipet tip that had been
coated in BSA. A Superfrost Plus slide (VWR) was dipped for ~15 s into
fixative (0.25 g PFA dissolved in 22.5 ml of water containing one drop of
1 N NaOH, and subsequently adjusted to pH 9.2 using 50 mM of boric
acid and supplemented with 350 pl Triton X-100). The slide was held at an
angle, and 10 pl of the ovary mixture was applied to the middle of the
slide and rolled around to spread out the cells. A second slide was pre-
pared with the remaining 10 ul of ovary mixture and slides were immedi-
ately placed in a humidified chamber at RT. After ~14 h, the chamber was
opened slightly, allowing slides to dry completely (~6 h). Dry slides were
placed in a 0.4% solution of photoflo (Kodak) in water for 2 min. The
edges were dabbed dry and the slides were allowed to air dry in a dry cop-
lin jar ~2 h and stored overnight at —20°C. Longer storage resulted in
weaker immunofluorescent signal.

Tissue was rehydrated in PBS for 15 min and blocked for 1 h in a hu-
midified chamber at RT in 5% donkey serum, 2% BSA, 0.1% Triton X-100,
and 0.01% sodium azide in PBS. All antibodies were diluted in PBS con-
taining 0.1% BSA and 0.1% Triton X-100. For incubations, 100 pl of solu-
tion was added to the slide and covered with a parafilm coverslip for 1 hin
a humidified chamber at RT. After each incubation, slides were rinsed
three times in 0.1% Triton X-100 in PBS followed by three additional 10-
min washes. Tissue was stained with DAPI at 1 wg/ml in PBS for 10 min
followed by one rinse with PBS and mounted under a 24 X 50-mm cover-
slip with 40-50 .l of Prolong.
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Antibodies

Rabbit anti-GFP antibodies (Molecular Probes) diluted 1:2,000 and Alexa
488-conjugated anti-rabbit antibodies (Molecular Probes) were used to
detect GFP-ORD. Guinea pig anti-C(3)G serum (provided by S. Page and
R.S. Hawley, Stowers Institute for Medical Research, Kansas City, MO;
Page and Hawley, 2001) was used at a final dilution of 1:1,000 and visual-
ized with either CY3- or CY5-conjugated anti-guinea pig antibodies (Jack-
son ImmunoResearch Laboratories). For ORB staining, 4H8 and 6H4
mouse mAbs (Developmental Studies Hybridoma Bank [DSHB]; Lantz et
al., 1994) were used together, each at a final concentration of 1:30 and de-
tected with Alexa 488-conjugated anti-mouse antibodies (Molecular
Probes). Rabbit anti-C(2)M antibodies (provided by K. McKim, Waksman
Institute, Rutgers University, Piscataway, NJ; Manheim and McKim, 2003)
were diluted 1:1,000 and detected with CY3 anti-rabbit (Jackson Immu-
noResearch Laboratories). For CID staining, affinity-purified chicken anti-
CID antibodies (provided by G. Karpen, Lawrence Berkeley National Lab,
Berkeley, CA; Blower and Karpen, 2001) were used at 1:200 followed by
CY3 anti—chicken secondary (Jackson ImmunoResearch Laboratories). 1B1
mouse mAbs (DSHB; Zaccai and Lipshitz, 1996) were used at 1:20 to de-
tect the fusome with CY5-conjugated anti-mouse antibodies (Jackson Im-
munoResearch Laboratories). Affinity-purified rabbit anti-H2Av-ser137-
PO4 antibodies (provided by R. Glaser, Wadsworth Center, Albany, NY;
Madigan et al., 2002) were diluted 1:2,000 and visualized with Alexa
488—conjugated anti-rabbit antibodies (Molecular Probes). All secondary
antibodies were diluted 1:400.

FISH analysis

For FISH experiments, chromosome spreads were processed for immu-
nolocalization as described in Chromosome spreads section with a final
C(3)G antibody dilution of 1:500 and secondary antibody at 1:200. After
antibody incubations, slides were postfixed in 1% formaldehyde in PBS for
5 min. FISH was performed on chromosome spreads using X chromosome
arm and pericentromeric (359 bp satellite) probes as described by Balicky
etal. (2002).

Microscopy and image analysis

Epifluorescence microscopy was performed on a microscope (model
Axioplan2; Carl Zeiss Microlmaging, Inc.) equipped with a camera (model
ORCA-ER; Hamamatsu) and a 100X Plan-APOCHROMAT objective (NA
1.4). Openlab 3.1.5 (Improvision) was used to capture, overlay, and crop
z-series image stacks (0.1 wm step size). Volocity 2.0.1 (Improvision) was
used to deconvolve image stacks. Total length of C(3)G staining was calcu-
lated using the Volocity measurements function. Tetraspeck fluorescent
beads (Molecular Probes) and the Openlab registration module were used
to resolve registration differences.

EM

Fixation and embedding were performed as described by McKim et al.
(1998) with modifications. Ovaries were dissected in PBS from y,; cn bw sp
(ord*) and ord?/Df females that had been fattened overnight with yeast
and males. Fixation in 3% glutaraldehyde in 0.1 M sodium cacodylate
buffer, pH 7.4, was performed for 3 h at RT. Ovaries were rinsed in 0.1 M
sodium Cacodylate buffer, pH 7.4, and placed in 2% OsO, in 0.1 M so-
dium Cacodylate, pH 7.4, for 1 h at RT. En-bloc staining in 2% aqueous
uranyl acetate was performed for 1 h in the dark at RT and dehydrated
through a graded series of ethanol to 70%. Single ovarioles were separated
with tungsten needles and dehydrated to 100% ethanol followed by pro-
pylene oxide and conventionally flat-embedded in epon (LX112).

Two complete germaria were consecutively sectioned from two differ-
ent ord”/Df females, and one germarium from a y; cn bw sp female was
sectioned as a control. Each germarium was oriented with the long axis
parallel to the plane of sectioning, and 350-400 sections were required to
cut through each entire germarium. 80—-100-nm sections were collected on
uncoated 400HH grids and stained for 20 min with 2% uranyl acetate in
methanol, followed by 5 min in Reynold’s lead citrate. Every germarial
cyst from every section was examined on a transmission electron micro-
scope (model 2000FX or 100CX; JEOL). Nuclei with SC were photo-
graphed at a magnification of 8,300. High magnification (50,000) photo-
graphs were taken of every structure that resembled SC in the two ord”/Df
germaria as well as numerous stretches of SC in the control germarium.
Negatives were digitized with a UMAX optical scanner.

Genetic assay for sister chromatid exchange
Sister chromatid exchange in wild-type and ord oocytes was indirectly as-
sayed by monitoring the recovery of a Ring X chromosome relative to a

normal (Rod) X chromosome. Because exchange between Ring sister chro-
matids will generate a dicentric Ring chromosome that is not transmitted to
progeny, reduced recovery of the Ring chromosome from mutant females
is diagnostic of increased levels of sister chromatid exchange in their oo-
cytes.

R(1)2, y' w7 f/y*y males were crossed with C(1)DX, y' f'/y*Y;
ord' cn bw sp If/+ virgins to generate males that were R(7)2, y' w17
'/y*Y; ord' cn bw sp If/+. Then, these males were crossed with either y/y;
ord® bw/SM1; pol or y/y; ord® px bw/SM1; pol virgins. Progeny virgins
that were R(1)2, y' w7 f1/y: ord'® cn bw sp If/ord* were selected and
crossed with yw/y"Y males. As an ord™ control, R(1)2, y' w17 fl/y: cn
bw sp virgins were crossed to yw/y"Y males. To look at sister exchange in
its normal context we chose to perform these experiments in the absence
of an X chromosome balancer so that inter-homologue and inter-sister
pathways were both available in wild type and mutants. Eye color was
used to differentiate female progeny containing the maternal R(7)2 Ring
chromosome (white eyes) from those that inherited the Rod chromosome
(red eyes). Male progeny containing the maternal Ring chromosome
(white™ forked™) could be differentiated from those carrying the Rod chro-
mosome (white™ forked™). XO male progeny that did not inherit any mater-
nal X chromosome could also be distinguished (white™ forked™).

We thank the following people for generous gifts of antibodies: S. Page
and R.S. Hawley (C(3)G), R. Glaser (y-H2Av), G. Karpen (CID), and K.
McKim (C(2)M). ORB and fusome (1B1) monoclonals were obtained from
the University of lowa, Developmental Studies Hybridoma Bank devel-
oped under the auspices of National Institute of Child Health and Human
Development. We acknowledge N. Kleckner and R.S. Hawley for helpful
discussions about sister chromatid exchange and K. Koehler for advice
about chromosome spreads. We thank T. Orr-Weaver, K. McKim, R. Slo-
boda, and the Bickel lab for comments on the manuscript.

This work was funded by National Institutes of Health (NIH) Training
Grant support (grant GM-08704) to H.A. Webber and March of Dimes
(grant 5-FY98-738) and NIH (grant GM-59354) awards to S.E. Bickel.

Submitted: 16 October 2003
Accepted: 27 January 2004

References

Balicky, E.M., M.W. Endres, C. Lai, and S.E. Bickel. 2002. Meiotic cohesion re-
quires accumulation of ORD on chromosomes prior to condensation. Mol.
Biol. Cell. 21:3890-3900.

Bickel, S.E., D.W. Wyman, W.Y. Miyazaki, D.P. Moore, and T.L. Orr-Weaver.
1996. Identification of ORD, a Drosophila protein essential for sister-chro-
matid cohesion. EMBO J. 15:1451-1459.

Bickel, S.E., D.W. Wyman, and T.L. Orr-Weaver. 1997. Mutational analysis of
the Drosophila sister-chromatid cohesion protein ORD and its role in the
maintenance of centromeric cohesion. Genetics. 146:1319-1331.

Bickel, S.E., T. Orr-Weaver, and E.M. Balicky. 2002. The sister-chromatid cohe-
sion protein ORD is required for chiasma maintenance in Drosophila oo-
cytes. Curr. Biol. 12:925-929.

Blower, M.D., and G.H. Karpen. 2001. The role of Drosophila CID in kinetochore
formation, cell-cycle progression and heterochromatin interactions. Nat.
Cell Biol. 3:730-739.

Blower, M.D., B.A. Sullivan, and G.H. Karpen. 2002. Conserved organization of
centromeric chromatin in flies and humans. Dev. Cell. 2:319-330.

Broverman, S.A., and P.M. Meneely. 1994. Meiotic mutants that cause a polar de-
crease in recombination on the X chromosome in Caenorhabditis elegans. Ge-
netics. 136:119-127.

Buonomo, S.B., RK. Clyne, J. Fuchs, J. Loidl, F. Uhlmann, and K. Nasmyth.
2000. Disjunction of homologous chromosomes in meiosis I depends on
proteolytic cleavage of the meiotic cohesin Rec8 by separin. Cell. 103:387—
398.

Carpenter, A.T.C. 1975. Electron microscopy of meiosis in Drosophila melanogaster
females. Chromosoma. 51:157-182.

Carpenter, A.T.C., and L. Sandler. 1974. On recombination-defective meiotic mu-
tants in Drosophila melanogaster. Genetics. 76:453—475.

Chan, R.C,, A. Chan, M. Jeon, T.F. Wu, D. Pasqualone, A.E. Rougvie, and B.].
Meyer. 2003. Chromosome cohesion is regulated by a clock gene paralogue
TIM-1. Nature. 424:1002—-1009.

Colaiacovo, M.P., A.J. MacQueen, E. Martinez-Perez, K. McDonald, A. Adamo,
A. La Volpe, and A.M. Villeneuve. 2003. Synaptonemal complex assembly



in C. elegans is dispensable for loading strand-exchange proteins but critical
for proper completion of recombination. Dev. Cell. 5:463—474.

de Cuevas, M., M.A. Lilly, and A.C. Spradling. 1997. Germline cyst formation in
Drosophila. Annu. Rev. Genet. 31:405-428.

Dernburg, A.F., J.W. Sedat, and R.S. Hawley. 1996. Direct evidence of a role for
heterochromatin in meiotic chromosome segregation. Cell. 86:135-146.

Gowen, ]J.W. 1933. Meiosis as a genetic character in Drosophila melanogaster. J.
Exp. Zool. 65:83-106.

Gowen, M.S., and J.W. Gowen. 1922. Complete linkage in Drosophila melano-
gaster. Am. Naruralist. 56:286-288.

Hall, J.C. 1977. Recombination influenced by two alleles of the meiotic mutant
c(3)g. Drosoph. Inf- Serv. 52:143—-144.

Hawley, R.S., and M.Y. Walker. 2003. Advanced Genetic Analysis: Finding Mean-
ing in a Genome. Blackwell Science, Ltd., Malden, MA. 239 pp.

Henikoff, S., K. Ahmad, J.S. Platero, and B. van Steensel. 2000. Heterochromatic
deposition of centromeric histone H3-like proteins. Proc. Natl. Acad. Sci.
USA. 97:716-721.

Jang, J.K., D.E. Sherizen, R. Bhagat, E.A. Manheim, and K.S. McKim. 2003. Re-
lationship of DNA double-strand breaks to synapsis in Drosophila. J. Cell
Sci. 116:3069-3077.

Klein, F., P. Mahr, M. Galova, S.B. Buonomo, C. Michaelis, K. Nairz, and K.
Nasmyth. 1999. A central role for cohesins in sister chromatid cohesion, for-
mation of axial elements, and recombination during yeast meiosis. Ce/l. 98:
91-103.

Koehler, K.E., J.P. Cherry, A. Lynn, P.A. Hunt, and T.J. Hassold. 2002. Genetic
control of mammalian meiotic recombination. I. Variation in exchange fre-
quencies among males from inbred mouse strains. Genetics. 162:297-3006.

Lantz, V., ].S. Chang, ].I. Horabin, D. Bopp, and P. Schedl. 1994. The Drosophila
orb RNA-binding protein is required for the formation of the egg chamber
and establishment of polarity. Genes Dev. 8:598-613.

Lee, J.Y., and T.L. Orr-Weaver. 2001. The molecular basis of sister-chromatid co-
hesion. Annu. Rev. Cell Dev. Biol. 17:753-777.

Lindsley, D., and G. Zimm. 1992. The Genome of Drosophila melanogaster. Aca-
demic Press, Inc., New York. 1133 pp.

Madigan, J.P., H.L. Chotkowski, and R.L. Glaser. 2002. DNA double-strand
break-induced phosphorylation of Drosophila histone variant H2Av helps
prevent radiation-induced apoptosis. Nucleic Acids Res. 30:3698-3705.

Manheim, E.A., and K.S. McKim. 2003. The synaptonemal complex component
C(2)M regulates meiotic crossing over in Drosophila. Curr. Biol. 13:276—
285.

Mason, J.M. 1976. Orientation disruptor (ord): a recombination-defective and dis-
junction-defective meiotic mutant in Drosophila melanogaster. Genetics. 84:
545-572.

Matthies, H.J.G., M. Clarkson, R.B. Saint, R. Namba, and R.S. Hawley. 2000.
Analysis of meiosis in fixed and live oocytes by light microscopy. /n Drosoph-
ila Protocols. W. Sullivan, M. Ashburner, and R.S. Hawley, editors. Cold
Spring Harbor Laboratory Press, Cold Spring Harbor, New York. 67-85.

McKim, K.S., and A. Hayashi-Hagihara. 1998. mei-W68 in Drosophila melano-
gaster encodes a Spol1 homolog: evidence that the mechanism for initiating
meiotic recombination is conserved. Genes Dev. 12:2932-2942.

McKim, K.S., B.L. Green-Marroquin, ].J. Sekelsky, G. Chin, C. Steinberg, R.
Khodosh, and R.S. Hawley. 1998. Meiotic synapsis in the absence of recom-
bination. Science. 279:876-878.

Mercier, R., S.J. Armstrong, C. Horlow, N.P. Jackson, C.A. Makaroff, D. Vezon,
G. Pelletier, G.H. Jones, and F.C. Franklin. 2003. The meiotic protein
SWI1 is required for axial element formation and recombination initiation

ORD and homologue bias | Webber etal. 829

in Arabidopsis. Development. 130:3309-3318.

Miyazaki, W.Y., and T.L. Orr-Weaver. 1992. Sister-chromatid misbehavior in
Drosophila ord mutants. Genetics. 132:1047-1061.

Morgan, T.H. 1912. Complete linkage in the second chromosome in the male of
Drosophila melanogaster. Science. 36:719-720.

Nasmyth, K. 2001. Disseminating the genome: joining, resolving, and separating
sister chromatids during mitosis and meiosis. Annu. Rev. Genet. 35:673—
745.

Page, S.L., and R.S. Hawley. 2001. c(3)G encodes a Drosophila synaptonemal com-
plex protein. Genes Dev. 15:3130-3143.

Page, S.L., and R.S. Hawley. 2003. Chromosome choreography: the meiotic ballet.
Science. 301:785-789.

Parisi, S., M.J. McKay, M. Molnar, M.A. Thompson, P.J. van der Spek, E. van
Drunen-Schoenmaker, R. Kanaar, E. Lehmann, ]J.H. Hoeijmakers, and J.
Kohli. 1999. Rec8p, a meiotic recombination and sister chromatid cohesion
phosphoprotein of the Rad21p family conserved from fission yeast to hu-
mans. Mol. Cell. Biol. 19:3515-3528.

Pelttari, J., M.R. Hoja, L. Yuan, J.G. Liu, E. Brundell, P. Moens, S. Santucci-Dar-
manin, R. Jessberger, J.L. Barbero, C. Heyting, and C. Hoog. 2001. A mei-
otic chromosomal core consisting of cohesin complex proteins recruits DNA
recombination proteins and promotes synapsis in the absence of an axial ele-
ment in mammalian meiotic cells. Mol. Cell. Biol. 21:5667-5677.

Peters, A.H., A.W. Plug, M.J. van Vugt, and P. de Boer. 1997. A drying-down
technique for the spreading of mammalian meiocytes from the male and fe-
male germline. Chromosome Res. 5:66—68.

Petes, T.D., and P.J. Pukkila. 1995. Meiotic sister chromatid recombination. Adv.
Genet. 33:41-62.

Rasmussen, S.W. 1973. Ultrastructural studies of spermatogenesis in Drosophila
melanogaster Meigen. Z. Zellforsch. Mikrosk. Anat. 140:125-44.

Sandler, L., P. Romans, and J. Figenshow. 1974. An effect of centromere function
on the behavior of ring-X chromosomes in Drosophila melanogaster. Genetics.
77:299-307.

Schleiffer, A., S. Kaitna, S. Maurer-Stroh, M. Glotzer, K. Nasmyth, and F. Eisen-
haber. 2003. Kleisins: a superfamily of bacterial and eukaryotic SMC protein
partners. Mol. Cell. 11:571-575.

Schwacha, A., and N. Kleckner. 1994. Identification of joint molecules that form
frequently between homologs but rarely between sister chromatids during
yeast meiosis. Cell. 76:51-63.

Schwacha, A., and N. Kleckner. 1997. Interhomolog bias during meiotic recombi-
nation: meiotic functions promote a highly differentiated interhomolog-only
pathway. Cell. 90:1123-1135.

Smith, A.V., and G.S. Roeder. 1997. The yeast Red1 protein localizes to the cores
of meiotic chromosomes. /. Cell Biol. 136:957-967.

Spradling, A.C., M. de Cuevas, D. Drummond-Barbosa, L. Keyes, M. Lilly, M.
Pepling, and T. Xie. 1997. The Drosophila germarium: stem cells, germ line
cysts, and oocytes. Cold Spring Harb. Symp. Quant. Biol. 62:25-34.

van Heemst, D., and C. Heyting. 2000. Sister chromatid cohesion and recombina-
tion in meiosis. Chromosoma. 109:10-26.

Vazquez, J., A.S. Belmont, and ].W. Sedat. 2002. The dynamics of homologous
chromosome pairing during male Drosophila meiosis. Curr. Biol. 12:1473—
1483.

Zaccai, M., and H.D. Lipshitz. 1996. Differential distributions of two adducin-like
protein isoforms in the Drosophila ovary and early embryo. Zygote. 4:159—
166.

Zickler, D., and N. Kleckner. 1999. Meiotic chromosomes: integrating structure
and function. Annu. Rev. Genet. 33:603-754.



