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The intramitochondrial dynamin-related GTPase,
Mgm1p, is a component of a protein complex
that mediates mitochondrial fusion

Edith D. Wong, Jennifer A. Wagner, Sidney V. Scott, Voytek Okreglak, Timothy J. Holewinske, Ann Cassidy-Stone,
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mines the morphology of mitochondria. In yeast,

mitochondrial fission is regulated by the outer
membrane-associated dynamin-related GTPase, Dnm1p.
Mitochondrial fusion requires two integral outer membrane
components, Fzo1p and Ugo1p. Interestingly, mutations in
a second mitochondrial-associated dynamin-related GTPase,
Mgm1p, produce similar phenotypes to fzoT and ugo cells.
Specifically, mutations in MGM1 cause mitochondrial
fragmentation and a loss of mitochondrial DNA that are
suppressed by abolishing DNM1-dependent fission. In
contrast to fzo1* mutants, blocking DNM1-dependent fission
restores mitochondrial fusion in mgmi“ cells during
mating. Here we show that blocking DNM1-dependent
fission in Amgm1 cells fails to restore mitochondrial fusion
during mating. To examine the role of Mgm1p in mitochon-
drial fusion, we looked for molecular interactions with
known fusion components. Immunoprecipitation experiments
revealed that Mgm1p is associated with both Ugo1p and

ﬁ balance between fission and fusion events deter-

Fzolp in mitochondria, and that Ugolp and Fzolp also
are associated with each other. In addition, genetic analysis
of specific mgm1 alleles indicates that Mgm1p’s GTPase
and GTPase effector domains are required for its ability to
promote mitochondrial fusion and that Mgm1p self-interacts,
suggesting that it functions in fusion as a self-assembling
GTPase. Mgm1p’s localization within mitochondria has
been controversial. Using protease protection and immuno-
EM, we have shown previously that Mgm1p localizes to
the intermembrane space, associated with the inner
membrane. To further test our conclusions, we have used a
novel method using the tobacco etch virus protease and
confirm that Mgm1p is present in the intermembrane space
compartment in vivo. Taken together, these data suggest a
model where Mgm1p functions in fusion to remodel the
inner membrane and to connect the inner membrane to the
outer membrane via its interactions with Ugolp and
Fzo1p, thereby helping to coordinate the behavior of the
four mitochondrial membranes during fusion.

Introduction

Mitochondria are complex organelles bound by both an
inner and an outer membrane. In Saccharomyces cerevisiae,
mitochondria form branched, reticular structures via a
mechanism dependent on both fission and fusion events
(Nunnari et al., 1997; Shaw and Nunnari, 2002). Fission is
mediated by the coordinated actions of three proteins:
Dnmlp, a dynamin-related GTPase; Mdv1p, a WD domain
protein; and Fislp, a small integral outer membrane protein
(Otsuga et al., 1998; Bleazard et al., 1999; Sesaki and
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Jensen, 1999; Fekkes et al., 2000; Mozdy et al., 2000; Tieu
and Nunnari, 2000; Cerveny et al., 2001). Current data
suggest that Dnm1p is localized to punctate structures that
are targeted to the outer mitochondrial membrane by Fislp
where it mediates fission in an Mdv1p- and Fislp-dependent
manner (Tieu et al., 2002).

In contrast to mitochondrial fission, the mechanism
whereby the outer and inner mitochondrial membranes are
coordinately fused is less clear. Until recently, the only
known component involved in mitochondrial fusion was
Fzolp, a novel GTPase with homologues in Drosophila
melanogaster and humans (Hales and Fuller, 1997; Hermann
et al., 1998; Rapaport et al., 1998; Santel and Fuller, 2001).
In §. cerevisiae, mutations in, or deletion of, FZO1 cause
mitochondria to fragment, a phenotype consistent with a
block in fusion (Hermann et al., 1998; Rapaport et al.,
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1998). Based on kinetic analysis, mitochondrial DNA
(mtDNA)* loss is thought to be a secondary consequence
of mitochondrial fragmentation in fzo mutants (Hermann
et al., 1998). Interestingly, disruption of fission in fzol
mutants suppresses mitochondrial fragmentation and re-
stores mitochondrial tubules, but does not restore mito-
chondrial fusion during mating, indicating that FZOI
plays a direct role in this process (Bleazard et al., 1999;
Sesaki and Jensen, 1999).

Recently, two genes, named UGOI and UGO2, were
identified in a genetic screen for mutations that caused
DNM1-dependent loss of mitochondrial DNA and were
shown to be required for mitochondrial fusion during mat-
ing (Sesaki and Jensen, 2001). To date, the sequence of the
UGO2 gene has not been reported. However, UGOI en-
codes a 58-kD integral outer mitochondrial membrane pro-
tein with its NH, terminus in the cytosol and its COOH
terminus in the intermembrane space. In a manner identical
to fzol mutants, #go mutants have fragmented mitochondria
and lose mecDNA during cell division. Disruption of fission
in a ugol background restores mitochondrial tubules, but
not mitochondrial fusion, consistent with a direct role in
mitochondrial fusion (Sesaki and Jensen, 2001). Interest-
ingly, localization of Ugolp’s domains in both the cytosol
and the intermembrane space suggests that it could interact
with components both inside and outside of the organelle.

Mutations in MGM]1, a dynamin-related GTPase, also
were found to cause fragmentation and aggregation of mito-
chondria with secondary loss of mtDNA, raising the possi-
bility that MGM]I might function in fusion (Shepard and
Yaffe, 1999; Wong et al., 2000). In addition, mitochondrial
fragmentation and mtDNA loss in mgm! mutants are sup-
pressed when fission is abolished by deletion of DNM]I
(Wong et al., 2000). However, in contrast to fzoI” cells, de-
letion of DNM1 in mgmI® cells restores mitochondrial fu-
sion during mating. This observation suggests that MGMI
may not be directly involved in fusion (Hermann et al.,
1998; Wong et al., 2000).

Structural Mgm1p homologues have been identified in
higher eukaryotes, where they also have been shown to regu-
late mitochondrial morphology and function (Pelloquin et
al., 1999; Alexander et al., 2000; Delettre et al., 2000; Mi-
saka et al., 2002). Interestingly, the human homologue of
Mgmlp, OPAl, was shown to be mutated in individuals
with autosomal dominant optic atrophy, indicating the im-
portant role that mitochondrial structure plays in cellular
function (Alexander et al., 2000; Delettre et al., 2000). The
reported submitochondrial localization of Mgmlp homo-
logues, however, has been conflicting. Data from both pro-
tease protection and immuno-EM analyses indicate that
Mgmlp is localized to the intermembrane space, associated
with the inner mitochondrial membrane. A previous study
reported an outer membrane localization of Mgm1p (Shep-
ard and Yaffe, 1999), and the Schizosaccharomyces pombe ho-
mologue, Msplp, was reported to be localized to the mito-
chondrial matrix, associated with the inner membrane

*Abbreviations used in this paper: DSP, dithiobis-(succinimidyl propionate);
GED, GTPase effector domain; IMS, intermembrane space; mtDNA,
mitochondrial DNA; TEV, tobacco etch virus.

(Pelloquin et al., 1999). Recently, however, OPA1 was re-
ported to reside in the mitochondrial intermembrane space,
associated with the inner membrane, in agreement with
findings on Mgmlp’s localization by Wong et al. (2000)
(Olichon et al., 2002).

In this report, we show that blocking DNMI-dependent
fission in Amgm1 cells does not restore mitochondrial fusion
during mating. This observation is in contrast to our previ-
ous results where fusion was observed during mating in
mgmI” dnml cells (Wong et al., 2000). To address whether
Mgmlp plays a direct role in fusion, we have performed cy-
tological, biochemical, and genetic analyses. We show that
Mgmlp is in a complex with two mitochondrial fusion
components that reside in the outer membrane, Ugolp and
Fzolp, and that its GTPase and assembly activities are re-
quired for mitochondrial fusion. Taken together, our data
suggest a model where Mgm1p functions to remodel inner
membranes and, through its association with outer mem-
brane components, coordinates the behavior of the inner
and outer membranes during fusion.

Results and discussion

MGMT is required for mitochondrial fusion

Deletion of, or mutations in, MGM1 causes mitochondrial
fragmentation and a subsequent loss of mitochondrial DNA
in a similar fashion to mutations in FZO1I or UGOI, two
genes required for mitochondrial fusion (Shepard and Yaffe,
1999; Wong et al., 2000). We previously reported that
mgml mutants also failed to fuse during mating, suggesting
that MGM]I plays a role in fusion (Wong et al., 2000). We
asked if this block in fusion was due to structural limitations
of fragments, or whether MGM1 plays a direct role in fusion
by deleting the dynamin-related GTPase DNM1I to disrupt
fission in mgm1 mutants. We found that deletion of DNM1
in mgmI® mutants blocked mitochondrial fragmentation
and restored mitochondrial tubules, in an identical fashion
to fzol and ugol mutants. Restoration of mitochondrial tu-
bules in mgmI® cells, as assessed by mitochondrial morphol-
ogy and growth, was accompanied by restored mitochon-
drial fusion (Wong et al., 2000; unpublished data). This is
in contrast to fzoI-1 Adnml mutants, where mitochondrial
tubules are restored, but mitochondrial fusion is blocked
(Hermann et al., 1998).

In the present study, we assayed for mitochondrial fusion
in Amgm1Adnm1I cells during mating. As shown in Fig. 1,
we observed that, as expected, mitochondrial fragmentation
due to loss of MGM]1 function was suppressed by block-
ing DNMI-dependent fission, and tubules were restored
(E-H). However, in contrast to wild-type (Fig. 1, A-D) and
mgmlI®Adnm]I cells (Fig. 1, E-H; Wong et al., 2000), mi-
tochondrial fusion was blocked in AmgmIAdnmI cells (Fig.
1, E-H, 8% unfused, » = 50; I-L, 98% unfused, » = 50),
a phenotype identical to that observed for AfzolAdnmI
cells (Fig. 2, N-P). One explanation for this observed dif-
ference between Amgml and mgml® strains is that the
mgm1” alleles tested are hypomorphs and, when shifted to
the nonpermissive temperature, retain enough function to
support mitochondrial fusion. In this case, Mgm1p may be
essential for mitochondrial fusion, and our observations in-
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Figure 1. MGMT is required for
mitochondrial fusion during mating.
Cells of the opposite mating type
expressing either mito—GFP or mito-RFP
were grown to log phase at 25°C, mated
at 37°C, and imaged as previously
described (Wong et al., 2000). Mitochon-
drial fusion was assessed by examining
merged mito—GFP and mito—RFP images
of large-budded homozygous zygotes
formed from wild type (A-D), mgm1-
5Adnm1 (E-H), Amgm1Adnm1 (I-L),
and Afzo1Adnm1 (M-P). Bars, 2 pm.

Overlay
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b

dicate that the requirement for Mgm1p function in fusion
is diminished in the context of mitochondrial tubules,
as opposed to mitochondrial fragments. Alternatively, it
is possible that mitochondrial fusion is abolished in
Amgm1Adnm1 cells as a secondary, indirect consequence of
loss of MGM1 function.

Mgm1p, Ugo1p, and Fzo1p interact

To examine these two possibilities, we tested the relation-
ship of Mgmlp to two known fusion components, Ugolp
and Fzolp, by performing immunoprecipitation reactions.
Immunoprecipitations were performed on mitochondrial-
enriched fractions isolated from wild-type cells or cells ex-
pressing either a previously characterized and functional in-
ternally HA-tagged version of Mgm1p (Mgm1:3XHAp) or a
functional COOH-terminal HA epitope—tagged allele of
Ugolp (Ugol:3XHAp) using both mouse monoclonal
anti-HA antibodies and polyclonal anti-Mgm1 antibodies
(Wong et al., 2000, Sesaki and Jensen, 2001). We were un-
able to detect interactions among Mgmlp, Fzolp, and
Ugolp in native cell extracts, suggesting that they might be
labile in vitro. To overcome this instability, before immuno-
precipitation, proteins were cross-linked in mitochondrial
fractions with the bifunctional, reversible cross-linker dithio-
bis-(succinimidyl propionate) (DSP) and extracted under
denaturing conditions. After immunoprecipitation, cross-
links were reversed with reducing agents and precipitates

were analyzed by SDS-PAGE and Western blotting.

We first examined whether Mgm1p and Ugolp interact
with Fzolp by performing immunoprecipitations using
anti-HA antibodies from cross-linked Mgm1:3XHA-tagged
and Ugol:3XHA-tagged mitochondrial extracts. Western
blot analysis with anti-Fzolp antibodies of fractions from
mitochondrial extracts immunoprecipitated with anti-HA
antibodies demonstrated that a fraction of Fzolp was re-
producibly coimmunoprecipitated with either Mgmlp or
Ugolp (Fig. 2 A, lanes 1-4). As expected, the majority of
Ugol:3xHA and Mgm1:3XHA were specifically recovered
in immunoprecipitate fractions from cells that expressed
these proteins (unpublished data). In contrast, neither the
outer mitochondrial membrane fission component, Fislp,
nor the inner membrane protein import component,
Tim44p, was observed in the immunoprecipitate fraction,
indicating that the interaction of Ugolp and Mgmlp with
Fzolp is specific (Fig. 2 A, lanes 1-4). In addition, Tim23p,
an inner membrane import component that contains an in-
termembrane space domain, also was not recovered in the
immunoprecipitate (unpublished data). To further address
specificity, immunoprecipitations were performed from en-
riched, DSP—cross-linked mitochondrial fractions isolated
from wild-type cells, not expressing either Ugo1:3XHA or
Mgm1:3XHA. Under these conditions, Fzolp was not re-
covered in the immunoprecipitate fraction, indicating that
the coimmunoprecipitation of Fzolp with the anti-HA anti-
body is dependent on the HA-tagged versions of Ugolp and
Mgmlp (Fig. 2 A, lanes 5 and 06).



>~
oo
1S
2
m
)
)
—
o
©
c
-
>
L=}
(D)
e
—

306 The Journal of Cell Biology | Volume 160, Number 3, 2003

A

1 2. 3 4 5 6 7 8
Fzolp “"‘.“ ”‘

Fis1p — S—_— —_— -
Tim44p — - ~— L
Fraction: T P T P T P T P

Strain: WT WT WT Amgm1

train:

Mgm1HA Ugo1HA UgoTHA
B 1 2 3 4 5 6

UgoTHAp D —emm S i —

Fis1p - e

Tim44p ® - e

Fraction: T P T P T P

Strain: WT Amgm1 Afzo1

UgoT1HA UgoTHA UgoTHA

Figure 2. Mgm1p, Ugo1p, and Fzo1p interact. (A) Immuno-
precipitations were performed using anti-HA on cross-linked
mitochondrial fractions isolated from MGM1:3XHA (lanes 1 and 2),
UGO1:3XHA (lanes 3 and 4), wild-type (lanes 5 and 6), and
Amgm1 UGOT1:3XHA (lanes 7 and 8) strains. The total and immuno-
precipitated pellet fractions were probed with antibodies as described
in the Materials and methods. The amount loaded from the total
fraction is equivalent to 2.5% of the bound fraction. (B) Mitochon-
drial extracts from UGOT1:3XHA (lanes 1 and 2), Amgm1 UGO1:
3XHA (lanes 3 and 4), and Afzo1 UGO1:3XHA (lanes 5 and 6) were
immunoprecipitated using anti-Mgm1 antibodies. The total and
pellet fractions were analyzed by Western blotting with anti-HA.
Ugo1:3XHAp is designated UgoTHA in the figure.

To further examine the nature of Ugolp’s interactions
with Fzolp, immunoprecipitation experiments were per-
formed using a DSP—cross-linked mitochondrial fraction
isolated from Amgml UgolHA cells. Interestingly, Western
blot analysis of fractions from anti-HA immunoprecipita-
tions in AmgmI Ugol:3XHA mitochondria revealed that al-
though Fzolp was present at lower levels, it coimmuno-
precipitated with anti-HA antibodies, indicating that an
Fzo1lp-Ugolp interaction occurs independently of Mgm1p
(Fig. 2 A, lanes 7 and 8). Interestingly, the level of Fzolp in
total Amgml Ugol:3XHA yeast extracts prepared under
denaturing conditions was similar to that observed in
wild-type Ugol:3XHA extracts (unpublished data). Thus,
Fzolp’s instability in the mitochondrial fraction from
Amgm1 Ugol:3XHA cells probably results from proteolysis
in vitro. These observations suggest that in the absence of
Mgmlp, Fzolp may be present in mitochondrial mem-
branes in an altered conformation, consistent with our ob-
servation of an Fzolp—-Mgm1p interaction.

Our observations indicate that both Mgm1p and Ugolp
are present in a complex(es) with Fzolp. To determine
whether Mgm1p also is present in a complex containing
Ugolp, we performed immunoprecipitations using anti-
Mgmlp antibodies from cross-linked Ugol:3XHA-tagged

MGM1 S224A T244A R824A K854A

Mgmip &

L2

PGK == e cm e am o
1 2 3 4 5 6

Figure 3. Determination of the steady-state levels of mutant
Mgm1 proteins. JNY845 was transformed with pRS425 vectors
containing mgm1 mutants, and strains were grown overnight to log
phase. Whole cell extracts were made and analyzed by SDS-PAGE
followed by Western blotting as described in the Materials and
methods. Western analysis of the cytosolic protein 3-phosphoglycero-
kinase (PGK) was used as a loading control.

mitochondria. Significantly, we observed that a fraction of
Ugolp was specifically and reproducibly coimmunoprecipi-
tated with Mgmlp (Fig. 2 B, lanes 1-4). Interestingly,
Ugolp coimmunoprecipitated with Mgmlp in the absence
of Fzolp, indicating that the interaction observed between
Mgmlp and Ugolp occurs independently of Fzolp (Fig. 2
B, lanes 5 and 6). Taken together, these biochemical data
demonstrate that Mgmlp forms a complex(es) with two
known fusion components, Ugolp and Fzolp, and support
a direct role for Mgm1p in mitochondrial fusion.

Mgm1p behaves as a dynamin-related GTPase

In addition to a GTPase domain, dynamin-related GTPases
share a middle domain and an assembly or GTPase effector
domain (GED) (van der Bliek, 1999). These additional do-
mains function together with the GTPase domain to pro-
mote the self-assembly of dynamin-related GTPases into
ring and spiral-like structures, resulting in a stimulation of
GTPase activity (Hinshaw and Schmid, 1995; Muhlberg
et al., 1997; Okamoto et al., 1999; Sever et al., 1999;
Smirnova et al., 1999; Zhang and Hinshaw, 2001). Both the
self-assembly and GTPase activities of dynamin-related GTP-
ases have been shown to be important for their ability to re-
model biological membranes (Sever et al., 1999). To further
characterize Mgm1p’s role in fusion, we examined whether
mutations predicted to affect the GTPase and self-assembly
activities of Mgm1p would affect its ability to promote mi-
tochondrial fusion.

We created mutants predicted to be defective in the GTP-
ase cycle, based on the analysis of dynamin and other GTPase
superfamily members, by mutating specific conserved residues
in the G1 and G2 nucleotide binding regions of Mgm1p.
Conserved residues in the G1 region, K223 and $224, and in
the G2 region, T244, were mutated to alanine in Mgmlp.
We first examined the expression of these mutant forms of
Mgmlp in Amgml cells by Western blotting. Interestingly,
only Mgm1S224A and Mgm1T244A were detected in cells,
suggesting that the nucleotide binding state of Mgmlp af-
fects its stability in vivo (Fig. 3; unpublished data).

Mutations of §224 in the G1 region of Mgmlp are pre-
dicted to alter nucleotide binding, and mutations in T244 in
the G2 region of MgmIp are predicted to stabilize the pro-
tein in the GTP-bound form (Bourne et al.,, 1991). Re-

cently, however, a careful analysis of the effects of similar
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Table I. Mutations in Mgm1p’s GTPase and GTPase effector domains affect mitochondrial morphology and fusion

Mutation in MGM1

% cells containing fragmented/aggregated mitochondria
in Amgm1 cells (n = 100)

% mitochondrial fusion in Amgm1Adnm1
budded zygotes (n = 50)

5224A 92
T244A 100
R824A 88
K854A 100
empty vector 100
MGCM1 34

57
0
88
0
0
92

mutations on dynamin’s ability to bind and hydrolyze GTP
revealed that they did not produce the predicted effects and
instead destabilized the binding of both GDP and GTP to
mutant proteins (Damke et al., 2001). Nevertheless, we de-
termined the ability of these Mgml mutant proteins to
complement both the mitochondrial morphology and fu-
sion defects in mgm1 cells.

Both the S224A and T244A Mgmlp mutants were un-
able to support wild-type levels of Mgm1p function (Table
D). Specifically, these mutants were unable to fully comple-
ment the mitochondrial morphology defect of Amgm1 cells
and also failed to completely restore the ability of mitochon-
dria to fuse during mating in AmgmlIAdnml cells, where
mitochondrial tubules were restored. Interestingly, when
Mgm1§224A and Mgml1T224A were overexpressed in
wild-type cells, they interfered to varying degrees and in a
dose-dependent manner with wild-type MGM1I function, as
assessed by mitochondrial morphology, similar to observa-
tions of dynamin and Dnm1p mutants (Table IT) (Damke et
al., 1994; Otsuga et al., 1998). These observations are con-
sistent with a previous study reporting that Mgm1S224Np
failed to complement the mitochondrial morphology defect
in mgm1 cells and displayed a dominant negative phenotype
when overexpressed in wild-type cells (Shepard and Yaffe,
1999). We conclude that Mgm1p’s GTPase cycle is essential
for its ability to function in mitochondrial fusion.

Intermolecular interactions are required for dynamin
and dynamin-related GTPases to function (for review see
Hinshaw, 2000). Our observation that overexpression of
Mgm1p GTPase mutants induced mitochondrial fragmen-
tation in wild-type cells is consistent with the possibility
that mutant Mgmlp coassembles and interferes with the
function of wild-type Mgmlp and suggests that Mgmlp
self-assembly is required for its function in fusion. To fur-
ther test this, we examined the role of Mgmlp’s putative
GED in mitochondrial fusion. Lysine and arginine resi-

dues in dynamin’s GED have been shown previously to
play a role in assembly and assembly-stimulated GTPase
activity (Sever et al., 1999, 2000). To test the role of these
basic residues, we mutated all of the arginine and lysine
residues in Mgmlp’s predicted GED to alanine and as-
sessed the function of these mutant proteins by examining
mitochondrial morphology and fusion in cells. Interest-
ingly, two mutations in MGM1’s predicted GED domain,
R824A and K854A, failed to completely restore mitochon-
drial morphology in AmgmI cells and mitochondrial fu-
sion during mating in AmgmIAdnmI cells (Table I). West-
ern blot analysis of cells showed that these mutant proteins
were expressed at levels comparable to wild-type Mgmlp,
indicating that loss of function was not the result of pro-
tein instability (Fig. 3). In the case of Mgm1S224A and
Mgm1K854A mutants, the defect observed in mitochon-
drial fusion in AmgmIAdnmI cells was less severe than that
observed for mitochondrial morphology in AmgmI cells
(Table I). This discrepancy could be explained if the re-
quirement for Mgm1p function in fusion is diminished in
the context of mitochondrial tubules, as opposed to mito-
chondrial fragments, which also may explain our previous
observations for mgm1I” cells (Wong et al., 2000). Similar
to Mgmlp GTPase mutants, when Mgm1R824A and
Mgm1K854A were overexpressed in wild-type cells, they
interfered to varying degrees and in a dose-dependent
manner with wild-type MGM 1 function, as assessed by mi-
tochondrial morphology (Table II). These observations in-
dicate that Mgmlp’s GED is important for its function
and suggest that Mgmlp self-assembly occurs and is im-
portant for the ability of Mgmlp to facilitate mitochon-
drial fusion.

To further test whether Mgm1p self-assembles in vivo, we
analyzed diploids from crosses of several mgmI® mutants,
previously isolated in a forward genetic screen for mutants
unable to maintain mtDNA at elevated temperatures (Fig.

Table Il. Mutations in Mgm1p’s GTPase and GTPase effector domains cause dose-dependent dominant negative effects on

mitochondrial morphology

Mutation in MGM1

% cells containing fragmented/aggregated mitochondria in MGM1 cells (n = 100)

CEN/ARS plasmid 2 plasmid
S5224A 6 17
T244A 30 81
R824A 6 32
K854A 8 87
empty vector 5 6
MGM1 4 7




>~
oo
1S
2
m
)
O
Y—
o
©
C
—
o)
2
(D)
e
I_

308 The Journal of Cell Biology | Volume 160, Number 3, 2003

A Mgmip N | GTPase | | GED [C
t t t
mgmi1-8 mgmi-6 mgm1-7
P236L S307F D823N

B Growth on glycerol-containing media

Cross 25°C 34°C
mgm1-6 x mgm1-6
mgm1-6 x mgm1-7
mgm1-6 x mgm1-8
mgm1-7 x mgm1-7
mgm1-7 x mgm1-8
mgm1-8 x mgm1-8

MGM1 X MGM1

||+ [ +]+

+

Figure 4. Intragenic complementation is observed between
mgm1 temperature-sensitive mutants. (A) Schematic of MGM1
domain structure designating the position of the temperature-sensitive
mutations analyzed for intragenic complementation is shown.

(B) Analysis of intragenic complementation of mgm1“ alleles. Growth
on glycerol is indicated by +.

4; Meeusen et al., 1999). We reasoned that if Mgm1p self-
interacts, two different mutations in AMGM 1 may be able to
compensate for one another within an assembled Mgm1p
complex and restore mitochondrial fusion activity, resulting
in maintenance of mtDNA and growth on a nonferment-
able carbon source at the nonpermissive temperature. Inter-
estingly, the entire collection of mgmI” mutants isolated in
the screen contained mutations only in either the GTPase
domain or the GED, underscoring the importance of these
domains in MGM]1 function (Fig. 4 A; unpublished data). A
combination of a subset of these mgmI” alleles in diploids
grew at the nonpermissive temperature on media containing
glycerol, indicating that they displayed intragenic comple-
mentation (Fig. 4 B). In total, data from our genetic analysis
of mgm1 mutants support a model where Mgm1p functions
in fusion as a self-assembling GTPase.

MgmT1p is an intermembrane space protein

We previously reported that Mgmlp is an intermembrane
space protein based on data from protease protection experi-
ments of intact and hypo-osmotically shocked mitochon-
dria. Protease protection experiments, however, are techni-
cally difficult in that isolated mitochondria must be intact
and hypo-osmotic conditions for selectively disrupting the
outer mitochondrial membrane are variable. Because of
these difficulties, and the reported differing submitochon-
drial localizations of Mgm1p and its S. pombe orthologue,
Msplp, we reexamined Mgmlp’s submitochondrial local-
ization using a novel method involving the tobacco etch vi-
rus (TEV) protease.

Tobacco etch virus has a 27-kD protease subunit that spe-
cifically cleaves proteins containing the consensus sequence
EXXYXQ®S, which is absent from all predicted ORFs from
the yeast genome (Smith and Kohorn, 1991). For this rea-
son, it has been used successfully to examine the in vivo to-
pology of proteins (Faber et al., 2001). We obtained plasmids
harboring genes encoding active mitochondrial matrix (ma-
trix-TEV)- and intermembrane space (IMS-TEV)—targeted
versions of TEV, constructed using the well-defined targeting
sequences of ATP9 and CYB2, respectively (Thatcher, J., and
J. Shaw, personal communication).

AN
& |
& &
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116 = ; _
i . . — Mgmi1:tev:3xHA
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Figure 5. MgmTp is in the IMS compartment in vivo. Mitochondria
were isolated from strains expressing Mgm1:tev:3XHAp alone
(lane 1), Mgm1:tev:3XHAp and ATP9-TEVp (lane 2), and Mgm1:
tev:3XHAp and CYB2-TEVp (lane 3) and analyzed by SDS-PAGE
followed by Western blotting with anti-HA and anti-porin antibodies,
as a loading control. Asterisk indicates a TEV-specific Mgm1
cleavage product.

To determine the localization of Mgm1p in vivo, MGM]I:
3XHA, contained on a CEN/ARS plasmid, was engineered
with a sequence encoding a TEV consensus cleavage site di-
rectly preceding the coding sequence of the 3XHA tag
(MGM1:tev:3XHA). Interestingly, this version of MGM]I
maintained function, as assessed by its ability to support the
growth of AmgmI cells on media containing a nonferment-
able carbon source (unpublished data). Given the internal
position of the TEV cleavage site and the 3XHA tag, cleav-
age of Mgm1:tev:3XHAp by TEV is predicted to produce a
product of ~75 kD, specifically detected by Western analy-
sis using anti-HA antibodies.

Western blot analysis of mitochondrial fractions isolated
from wild-type cells expressing Mgml:tev:3XHAp alone
with anti-HA antibodies revealed two predominant forms of
Mgm1l:tev:3XHAp, as scen previously in cells expressing
both Mgm1:3XHAp and native, untagged Mgmlp (Fig. 5,
lane 1). When coexpressed with matrix-TEV, the two
Mgml:tev:3XHAp products remained unchanged (Fig. 5,
lane 2). In contrast, an additional, faster-migrating species,
estimated at ~75 kD, was detected with anti-HA antibodies
in cells coexpressing Mgm1:tev:3XHAp and IMS-TEV (Fig.
1, lane 3, asterisk). The apparent molecular mass of this spe-
cies is in agreement with the size of a predicted TEV-depen-
dent cleavage product of Mgml:tev:3XHAp and indicates
that Mgm1p was accessible only to the IMS-targeted version
of TEV. This observation confirms our previously published
results that Mgm1p is localized to the intermembrane space
and is in agreement with the recently published localization
of the human Mgmlp orthologue, OPA1 (Wong et al,
2000; Olichon et al., 2002).

Our previous immuno-EM observations of Mgm1p indi-
cate that it is associated with the mitochondrial inner mem-
brane (Wong et al., 2000). Since our report, additional ob-
servations have been made that substantiate this conclusion.
In a study that revealed a role for ATP synthase in the forma-
tion of mitochondrial inner membrane cristae structures in
yeast, the localization of the outer membrane protein porin
and the inner membrane-associated B subunit of ATP syn-
thase were determined by immuno-EM (Paumard et al.,
2002). In the case of the B subunit of ATP synthase, gold

particles were observed in the interior of mitochondria, in
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most cases clearly associated with cristae, similar to the pat-
tern we observed for Mgm1p (Wong et al., 2000; Paumard et
al., 2002). In contrast, in the case of porin, the majority of
gold particles were associated with the periphery of mito-
chondria, consistent with an outer membrane localization
(Paumard et al., 2002). In addition, immuno-EM localiza-
tion of OPALI indicates that it is localized within mitochon-
dria, associated with cristac membranes, in a pattern similar
to that observed for Mgmlp (Olichon et al., 2002). Thus,
taken together, these observations substantiate our previous
report of Mgm1p topology, where it is tightly associated with
the inner membrane, with its GTPase domain localized to
the intermembrane space compartment (Wong et al., 2000).

A model for Mgm1p function during

mitochondrial fusion

The data presented in this paper support a model where the
intermembrane space protein Mgm1p functions in fusion as
a self-assembling GTPase and plays a role in coordinating
the inner and outer membranes during the fusion process. As
a self-assembling GTPase, Mgm1p may directly promote the
fusion of the inner membrane by helping to form a transient
tubule or protrusion of this membrane, similar to the role
proposed for the dynamin-related GTPase phragmoplastin
in cell plate formation in plants (Samuels et al., 1995; Verma
and Gu, 1996). This Mgmlp-dependent inner membrane
remodeling event may be regulated by fusion-promoting
events in the outer membrane via Mgm1p’s interaction with
Ugolp and Fzolp. In addition, Mgm1p’s interactions with
Ugolp and Fzolp may serve to physically coordinate the be-
havior of both membranes and promote the formation of a
double membrane structure with a higher radius of curva-
ture, thereby producing a fusion-competent microenviron-
ment (Chernomordik and Zimmerberg, 1995). Alterna-
tively, Mgmlp might function as a classical GTPase that
recruits Fzolp and Ugolp, which in turn promote fusion,
similar to the role proposed for dynamin during endocytosis
(Sever et al., 1999, 2000). Recently it was reported that dele-

Table IIl. Strains used in this study
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tion of several novel ORFs encoding predicted inner mito-
chondrial membrane proteins caused mitochondrial frag-
mentation and mtDNA loss in cells, similarly to fzo!, ugo,
and mgml mutants (Dimmer et al., 2002). Given their pre-
dicted localization and mutant phenotypes, it is attractive to
speculate that these components may play a role in mito-
chondrial fusion by modulating Mgm1p function. Elucidat-
ing the exact role of these components in mitochondrial
morphology will help illuminate the complex process of co-
ordinately fusing four mitochondrial membranes.

Materials and methods

Plasmid and strain construction and analysis

Strains used in this study are summarized in Table Ill. Temperature-sensi-
tive MGMT alleles were isolated in a previous screen (Meeusen et al.,
1999) and mutations were identified by amplifying the MGMT1 locus in
mutant cells by PCR using Vent polymerase (New England Biolabs, Inc.)
and sequencing the products directly (Davis Sequencing, University of
California, Davis). To mutagenize MGM1, Xbal sites flanking the MGM1
locus with its native promoter were engineered by PCR. The entire locus
was subcloned into pRS425 or pRS315 (Christianson et al., 1992). Point
mutations in MGMT were created using a Stratagene QuikChange mu-
tagenesis kit. Mutations were confirmed by sequence analysis of the entire
MGMT insert (DBS sequencing facility, Section of Molecular and Cellular
Biology, University of California, Davis). A yeast strain harboring a
COOH-terminal 3XHA-tagged version of Ugo1p was created by homolo-
gous recombination between the UGOT locus in JSY1826 cells and a PCR
product as previously described (Longtine et al., 1998). This strain,
JNY894, was confirmed by PCR of the UGOT locus and Western blotting
using anti-HA antibodies (Covance Research). Strains JNY898 and JNY903
were obtained by crossing, sporulation, and tetrad analysis. To construct a
TEV cleavage site within Mgm1p, Xbal sites flanking MGM1:3XHA with its
native promoter were engineered by PCR from genomic JSY2519 DNA.
The Xhol to EcoRI and Notl to Sall restriction sites were destroyed in
pRS313 to create pEDI14. MGM1:3XHA was nondirectionally cloned into
pEDI14 using the engineered Xbal sites. A TEV protease site was created
by annealing complementary oligonucleotide primers to the following se-
quence: TCG ACG AAA ACT TGT ATT TTC AAG GTG and TCG ACA CCT
TGA AAA TAC AAG TTT TCG. This TEV site was inserted into a unique
Xhol site preceding the sequence encoding 3XHA in MGM1:3XHA, de-
stroying the Xhol site and creating MGM1p:tev:3XHA. Whole cell extracts
were prepared as previously described (Tieu and Nunnari, 2000). Mito-
chondrial morphology and mitochondrial fusion during mating were ana-
lyzed as previously described (Nunnari et al., 1997; Wong et al., 2000).

Strain Genotype Reference
W303 ade2-1, leu2-3, his3-11,15, trp1-1, ura3-1, can1-100, MATa or MAT« Meeusen et al., 1999
INY177 same as W303, except mgm1-5 G408D MATa Wong et al., 2000
JNY179 same as W303, except mgm1-7 D823N MATa This study
JNY537 same as W303, except Amgm1::his5+, MATa This study
JNY679 same as W303, except Amgm1::his5+ Adnm1::his5+, MATa This study
JNY845 same as W303, except Afzo1::his5+ Adnm1::his5+, MATa This study
JNY896 same as W303, except AugoT::his5+, MATa This study
JNY894 same as W303, except UGOT:3XHA::his5+, MATa This study
JNY898 same as W303, except Amgm1::his5+ UGOT1:3XHA::his5+, MATa This study
JNY903 same as W303, except Afzo1::his5+ UGOT1:3XHA::his5+, MATa This study
JNY925 same as W303, except mgm1-5 G408D MATa This study
JNY926 same as W303, except mgm1-6 S307F MAT« This study
JNY927 same as W303, except mgm71-6 S307F MATa This study
JNY928 same as W303, except mgm1-7 F823N MATa This study
JNY929 same as W303, except mgm1-8 P236L MATa This study
JNY933 same as W303, except mgm1-8 P236L MATa This study
JSY2519 ura3-52, leu2A1, hisA200, trp1463, MGM1:3XHA, MATa Wong et al., 2000
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Immunoprecipitation of cross-linked mitochondrial proteins

To enrich for mitochondrial proteins, mitochondria were isolated by differ-
ential centrifugation as previously described (Meeusen et al., 1999), except
that the mitochondrial fraction was pelleted only once. The mitochondrial-
enriched membrane fraction resulting from 100 ODgq of spheroplasts was
resuspended in 500 wl mitochondrial isolation buffer (20 mM Hepes, pH
7.5, 600 mM sorbitol, and 1X protease inhibitors). To cross-link associated
proteins, DSP was added to a final concentration of T mM and incubated at
0°C for 2 h. Cross-linking was stopped by the addition of 100 mM glycine,
pH 8.0, followed by precipitation of proteins using trichloroactetic acid (fi-
nal concentration 10% wt/vol). Mitochondrial proteins were denatured and
solubilized by suspension in 100 wl MURB (100 mM MES, pH 7, 1% SDS,
3 M urea) and incubated at 65°C for 5 min, followed by the addition of 750
wl TWIP (50 mM Tris-Cl, pH 7.5, 150 mM NaCl, 0.5% Tween 20, 0.1%
EDTA). The supernatant fraction was incubated overnight at 4°C with 75 pl
protein A agarose beads (Santa Cruz Biotechnology, Inc.) with gentle rock-
ing. Protein A agarose beads were washed three times with 1T ml TWIP.
Bead pellets were resuspended in MURB with 5% B-mercaptoethanol and
incubated at 65°C for 10 min to release proteins into the sample buffer and
reduce cross-links. Protein in total and protein A agarose-bound fractions
were analyzed by SDS-PAGE followed by Western blot analysis.

In vivo localization of Mgm1p

GAL1-regulated matrix and IMS-targeted versions of TEV protease were
were provided by J. Thatcher and J. Shaw (University of Utah, Salt Lake
City, UT). Plasmids were cotransformed into strains with MGMT:tev:
3XHAp and cells were grown to log phase in selective media containing
raffinose. TEV expression was induced by subculturing cells in media con-
taining galactose, and proteolysis of Mgm1:tev:3XHAp by TEV protease
was determined by the analysis of mitochondria-enriched fractions after
growth in galactose-containing media for 30 min using SDS-PAGE and
Western blotting.

SDS-Page and Western blot analysis

All protein samples were analyzed by gel electrophoresis using 12.5%
Anderson polyacrylamide gels as previously described (Meeusen et al.,
1999). Proteins were transferred to a nitrocellulose membrane and
analyzed using primary antibodies to Tim44p (1:1,000; Debukmar
Pain), anti-Fis1p (1:2,000), Mgm1p (1:200), HA (1:2,500; Covance),
3-phosphoglycerokinase (PGK) (1:1,000; Molecular Probes, Inc.), GFP
(1:10,000; Covance), and Fzolp (1:1,000; provided by J. Shaw) in PBS-T
plus 5% dry milk. Rabbit polyclonal anti-Mgm1p antibodies were raised
against bacterial-expressed Mgm1p region (amino acids 490-902) from
pET28aMGM1490-902 (Covance). Proteins were visualized by incuba-
tion with the appropriate secondary antibody conjugated to horseradish
peroxidase (1:5,000) in PBS-T plus 5% dry milk, followed by ECL (Amer-
sham Biosciences).

We are grateful to John Thatcher and Janet Shaw for providing TEV re-
agents prior to publication. We are also grateful to members of the Nun-
nari lab for their critical input into this project.
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