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Abstract
Ethanol preconditioning (EtOH-PC) refers to a phenomenon in which tissues are protected from the
deleterious effects of ischemia/reperfusion (I/R) by prior ingestion of ethanol at low to moderate
levels. In this study, we tested whether prior (24 hrs) administration of ethanol as a single bolus that
produced a peak plasma concentration of 42-46 mg/dl in gerbils would offer protective effects on
neuronal damage due to cerebral I/R. In addition, we also tested whether reactive oxygen species
(ROS)-derived from NADPH oxidase played a role as an initiator of these putative protective effects.
Groups of gerbils were administered either ethanol or the same volume of water by gavage 24 hrs
prior to transient global cerebral ischemia induced by occlusion of both common carotid arteries
(CCA) for 5 min. In some experiments, apocynin, a specific inhibitor of NADPH oxidase, was
administered (5 mg/kg body wt, i.p.) 10 min before ethanol administration. EtOH-PC ameliorated
behavioral deficit induced by cerebral I/R and protected the brain against I/R-induced delayed
neuronal death (DND), neuronal and dendritic degeneration, oxidative DNA damage, and glial cell
activation. These beneficial effects were attenuated by apocynin treatment coincident with ethanol
administration. Ethanol ingestion was associated with translocation of the NADPH oxidase subunit,
p67phox, from hippocampal cytosol fraction to membrane, increased NADPH oxidase activity in
hippocampus within the first hour after gavage, and increased lipid peroxidation (4-hydroxy-2-
nonenal, HNE) in plasma and hippocampus within the first 2 hrs after gavage. These effects were
also inhibited by concomitant apocynin treatment. Our data are consistent with the hypothesis that
antecedent ethanol ingestion at socially-relevant levels induces neuroprotective effects in I/R by a
mechanism that is triggered by ROS produced through NADPH oxidase. Our results further suggest
the possibility that preconditioning with other pharmacological agents that induce a mild oxidative
stress may have similar therapeutic value for suppressing stroke-mediated damage in brain.
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INTRODUCTION
The results of a large number of epidemiologic studies indicate that consumption of red wine
at low to moderate levels is cardioprotective, reducing the incidence and severity of myocardial
infarction and stroke (1-3). Studies conducted in cultured cell and intact animal models
attributed these beneficial effects to the polyphenolic antioxidants present in red wine (4-7).
However, there is evidence that moderate consumption of ethanol alone also exerts protective
effects against injury due to cerebral and myocardial ischemia (8-12). Furthermore, ethanol
ingestion 24 hrs prior to ischemia/reperfusion (I/R) (ethanol preconditioning or EtOH-PC)
completely prevented postischemic leukocyte-endothelial cell adhesive interactions by a
mechanism that involves the ability for ethanol to activate an oxidant-dependent signaling
pathway (13).

NADPH oxidase (nicotinamide adenine dinucleotide phosphate oxidase) is an important
enzymatic source for the generation of reactive oxygen species (ROS) that damage cells in a
variety of pathologic conditions, including I/R-induced injury in the brain and other tissues
(14,15). However, it is becoming increasingly apparent that these reactive molecules can also
participate in a number of normal physiologic phenomena (16,17). Indeed, we have
demonstrated a role for ethanol-induced NADPH oxidase-derived oxidants in the appearance
of anti-adhesive and anti-inflammatory phenotype in postcapillary venules that becomes
apparent on subsequent exposure to I/R (13,18,19). However, whether ethanol also exerts
neuroprotective effects in stroke is unknown.

In this study, we determined whether antecedent ethanol ingestion would confer protection
against I/R in the gerbil brain and whether ROS derived from NADPH oxidase played a role
as an initiator of these putative protective effects. Although NADPH oxidase has been
identified in the cerebrovascular system (20-22) and in brain of the mouse and rat (23,24), the
presence of this oxidant-producing enzyme in the gerbil brain has not been evaluated.
Therefore, this study included characterization of the NADPH oxidase subunits in hippocampal
region of the gerbil brain.

MATERIALS AND METHODS
Production of ethanol preconditioning

Adult male Mongolian gerbils (60-80 g body wt) (Charles River, Wilmington, MA) were
housed in the Small Animal Facilities of the University of Missouri-Columbia that was
maintained at 22 ± 2°C with constant humidity under a 12:12 hrs light:dark cycle, and were
allowed free access to water and lab chow. Experiments were carried out in accordance to the
guidelines set forth by the NIH Guide for the Care and Use of Laboratory Animals.

Ethanol preconditioning (EtOH-PC) was induced by gavaging animals with a moderate dose
of ethanol (volume ethanol in µl calculated from the relation: body weight (in g) × 0.6] + 0.3)
24 hrs before ischemia, as we have previously described (13,18). This volume of ethanol (95%
in µl) was mixed in 0.3 ml of sterile distilled water before gavage. Animals in the sham control
group (no I/R) and the I/R alone group (no EtOH-PC) received similar volume of sterile distilled
water by gavage. After administration, all animals were returned to their cages, and were
provided free access to food and water.
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Induction of global forebrain ischemia
Twenty-four hrs after ethanol or distilled water administration by gavage, animals were
anesthetized with a mixture of 70% nitrous oxide, 30% oxygen and 2.5% isoflurane during
preparation for surgical operation, after which isoflurane was reduced to 1% during surgery
and ischemic insult. Transient global cerebral ischemia was induced by occlusion of both
common carotid arteries (CCA) for 5 min and followed by reperfusion as described previously
(5). Sham-operated animals underwent similar procedures except CCA were not occluded. To
eliminate the complicating effects on cerebral blood flow changes that occur in the subset of
gerbils with communicating arteries, regional cerebral blood flow (rCBF) was monitored
before and after bilateral clamping the CCAs using a laser Doppler blood flow monitor
(MBF3D, Moor Instruments, Devon, UK). After CCA occlusion, gerbils showing a decrease
in rCBF of less than 80% were excluded from subsequent analyses (5). After surgical
procedures, animals were allowed to regain consciousness and maintained in the Small Animal
Facility with free access to food and water for four days. The animal protocol was approved
by the University of Missouri-Columbia Animal Care and Use Committee (Protocol #1741).

Preparation of brain samples
Four days after ischemia, gerbils were anesthetized by inhaling 2.5% isoflurane and were
transcardially perfused with heparinized saline followed by fixation with 4% (w/v)
paraformaldehyde in 0.05 M phosphate buffered saline (PBS, pH 7.4). Brains were post-fixed
for 3 days and embedded in paraffin. Six µm coronal sections were prepared from the dorsal
hippocampus as described previously by Wang et al (5).

Identifying NADPH oxidase subunits in gerbil brain
p47phox and p67phox, two of the main cytosolic subunits of NADPH oxidase, were used as
markers to identify NADPH oxidase in gerbil brain. p47phox and p67phox immunoreactivities
were measured in coronal brain sections from the dorsal hippocampus in normal gerbils as
previously described by Wang et al (5). Mouse anti-p47phox and p67phox antibodies (1;100
dilution, Upstate, Charlottesville, VA) were used as primary antibodies and Alexa Fluor 568
goat anti-mouse IgG was used as the secondary antibody (1:200 dilution, Molecular Probe,
Eugene, OR). To assess specific staining, alternate sections were incubated with PBS instead
of the primary antibody as the negative control.

Experimental protocols
In order to characterize the time course for changes in plasma ethanol concentration and lipid
peroxidation in gerbils (n = 6 for each time point), fresh plasma and hippocampi were collected
from gerbils prior to and at 30 min, 1 hr and 2 hrs after ethanol administration by gavages.

In the second study, apocynin, a selective inhibitor of NADPH oxidase, was tested for its ability
to inhibit NADPH oxidase activation (cytosolic subunit translocation)(25), activity (NADPH
consumption)(25,26), and lipid peroxidation (HNE production)(27) in plasma and brain during
the first two hours after ethanol ingestion. Gerbils were randomly divided into 3 groups;
namely, control, EtOH alone, and EtOH plus apocynin pretreatment. Apocynin (Sigma, St
Louis, MO) was dissolved in normal saline and administered by i. p. injection (5 mg/kg body
wt) 10 min before administering ethanol or distilled water by gavage. Plasma and hippocampal
samples were collected at 1hr and 2hrs after administration of ethanol or water.

To assess the neuroprotective effects of antecedent ethanol ingestion and the role of NADPH
oxidase in these responses, gerbils were randomly divided into 4 groups: sham control (control,
no I/R), I/R alone, antecedent ethanol ingestion 24 hrs prior to ischemia/reperfusion (EtOH-
PC+I/R), and EtOH-PC coincident with apocynin treatment 24 hrs prior to induction of I/R
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(Apo+EtOH-PC+I/R). Apocynin was administered by intraperitoneal injection (i.p., 5 mg/kg
body wt) 10 min before ethanol ingestion. Gerbils in the control, I/R alone (no EtOH-PC) and
EtOH-PC+I/R groups received i.p.injections of saline at the volume and time as in the Apo
+EtOH-PC+I/R group.

Measurement of ethanol concentration in plasma
Ready-to-use Q.E.D. A150 Alcohol Test kit (OraSure Technologies, Bethlehem, PA) was used
to quantify alcohol levels in plasma samples obtained from gerbils under control conditions
and 30 min, 1hr and 2hrs after ethanol administration by gavage. Prior to the study, we verified
the accuracy and linearity of the readout over a range of ethanol concentrations (10 to 145 mg/
dl or 0.01-0.145 mg %).

Measurement of lipid peroxidation in plasma and hippocampus
Generation of 4-hydroxy-2-nonenal (HNE) in plasma and in hippocampus was used as an
indication of lipid peroxidation (27). Briefly, at different time points after ethanol ingestion,
blood was collected in EDTA vacutainer tubes and centrifuged briefly to remove blood cells.
Hippocampi (∼100mg) from both sides of the cerebrum were removed and homogenized in
buffer (20 mM HEPES, pH 7.5, 0.25 M sucrose, 10 mM KCI, 1.5 mM MgCl2 1 mM EDTA,
1 mM EGTA, and 1 mM dithiothreitol). HNE in plasma and the hippocampus homogenates
were detected using the Bioxytech HAE-586 spectrophotometric assay kit (OxisResearch,
Portland, OR) as described by Wang et al. (15). Calculation of HNE in plasma or hippocampus
was performed based on the standard curve generated by HNE standard and was expressed as
µmol/dl in plasma or µmol/mg protein in hippocampus, respectively.

Western blotting to assess translocation of NADPH oxidase subunits
For preparation of membrane and cytosolic fractions, both sides of hippocampus were dissected
and homogenized in 1 ml of homogenization buffer (10 mM Tris-HCl, pH 7.4, 1 mM EDTA,
200 mM sucrose). The nuclei and cell debris were removed from the homogenate by
centrifugation at 900 × g for 10 min at 4 °C. The resulting supernatant was centrifuged at
110,000 × g for 75 min at 4 °C. The resulting supernatant was collected as cytosolic fraction
and the membrane pellet was solubilized in buffer (10 mM Tris-HCl, pH 7.4, 1 mM EDTA,
0.5% Triton X-100) for 1 hr at 4 °C. Both of the membrane and cytosolic fractions were stored
at −70 °C until use.

40 µg membrane or cytosolic proteins were subjected to SDS-PAGE. The separated proteins
were transferred by electrophoresis to polyvinylidine difluoride membranes. The membranes
were incubated with anti-p67phox antibody or anti-gp91phox antibodies (1:1,000 dilution;
Upstate Biotechnology) at 4°C overnight and subsequently with a horseradish peroxidase-
linked secondary antibody (1:5,000 dilution; Sigma) at room temperature for 90 min. The
positive bands were revealed using Western blotting detection reagents (Pierce, Rochford, IL)
and autoradiography film. The intensities of the immunoblot bands were quantified using the
Quantity One software (Bio-Rad).

Measurement of NADPH oxidase activity in hippocampus
For measurement of NADPH oxidase activity, hippocampi from both side of the brain were
homogenized together in Krebs-Ringer phosphate buffer at pH 7.4 (120 mM NaCl, 4.8 mM
KCl, 1.2 mM MgSO4, 2.2 mM CaCl2, 0.1 M phospate buffer) with protease inhibitor cocktail
(Sigma). Homogenates were centrifuged at 500 × g for 5 min at 4°C and the pellet discarded.
Supernatants were spun at 100 000 × g for 1 hr at 4°C. Cytosolic (supernatant) and membrane
(pellet) fractions were separated. The pellet was resuspended in 100 µL of buffer and kept at
−70°C until analysis.
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NADPH oxidase enzymatic activity was determined in membrane fraction using the protocol
as described Wei and Whaley (25,26). Briefly, aliquots of the membrane fractions (30 µg
proteins) were incubated with NADPH (100 µM) at 37°C. NADPH activity was determined
by measuring the conversion of NADPH to NADH using a Radical Detector kit (Cayman
Chemical) and a plate reader spectrophotometer (450 nm) at every 10 min. NADPH oxidase
activity was normalized by the amount of protein and the increase in optical density between
10-20 min. Activity was calculated as mOD/µg protein/min.

Assessment of locomotor activity
Locomotor activity in gerbils was assessed using a procedure described previously (28,29).
Locomotor activity was monitored automatically by the Med Associates Open Field Test
Environments (ENV-515) (Georgia, VT). Each environment consisted of a 16 × 16 horizontal
grid of infrared sensors and a bank of 16 vertical sensors. The sensor grids surrounded an acrylic
cage (43.2 × 43.2 × 30.5 cm) and each sensor grid and cage was housed in a large sound-
resistant cubicle. 24 hrs after ischemia, gerbils (n = 7 – 9 gerbils/group) were weighed and
placed in the apparatus for 30 min. Data were collected in 5-min intervals by the Med Associates
Open Field Activity Software (SOF-811), which recorded the number of sensor breaks and
subsequently computed these data as distance traveled.

Histochemical and immunohistochemical staining for neurons and glial cells
Brain sections were stained with cresyl violet for neurons and immunohistochemical labeled
with glial fibrillary acidic protein (GFAP) antibody for astrocytes according to the protocol
described by Wang et al (5). Rabbit anti-human GFAP antibody (1:100 dilution, Sigma, St.
Louis, MO) was used as primary antibody and Texas Red-conjugated goat-anti-rabbit IgG was
used as secondary antibody (1:200 dilution; Jackson ImmunoResearch, West Grove, PA).
Microglial cells were identified using FITC labeled isolectin B4 (20 µg/ml, Sigma, St. Louis,
MO) according to the protocol outlined by (30) with modifications (5). The fluorescent dye,
4′, 6-diamidine-2′-phenylindole (DAPI) (0.1 µg/ml, Roche, Molecular Chemicals, Mannheim,
Germany) was used to counter-stain the sections for identification of nuclear DNA in cells.

Fluoro-Jade B and MAP-2 staining for assessment of neuronal degeneration
Fluoro-Jade B is a polyanionic fluorescein derivative which sensitively and specifically binds
to degenerating neurons (both apoptotic and necrotic). Its high affinity to degenerating neurons
with green fluorescence has made it an excellent marker for detecting degenerating neurons.
Fluoro-Jade B staining was performed according to the protocol described by Schmued et al
(31).

MAP-2 is the major microtubule associated protein in brain tissue and MAP-2 is useful for
identifying cytoskeletal structures in neurons. A mouse monoclonal antibody to MAP-2 (1:100,
Sigma, St. Louis, MO) was used to mark the dendritic structures according to the protocol
described by Monnerie et al (32). Alexa Fluor 568 goat anti-mouse IgG was used as the
secondary antibody (1:200 dilution; Molecular Probe, Eugene, OR) and DAPI counter-staining
was used to identify nuclear DNA damage in cells.

Detection of oxidized DNA by 8-OHdG immunohistochemistry
Formation of 8-OHdG (8-hydroxyl-deoxyguanosine) is regarded as a hallmark of oxidative
DNA damage (33). A time course study by Hwang et al (34) showed an increase in
immunoreactivity of 8-OHdG in the gerbil hippocampal CA1 region, with peaks at 12 hrs and
4 days after ischemic insult. In this study, determination of 8-OHdG was carried out with brain
sections obtained at 4 days after I/R according to the protocol described previously by Wang
et al (28). Briefly, brain sections were immunostained with mouse anti-8-OHdG antibody
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(diluted at 5 µg/ml, OxisResearch, Portland, OR) followed by goat anti-mouse Ig G labeled
with horseradish peroxidase (HRP) (dilution 1: 200, Sigma, St. Louis, MO).

Quantitative assessment and statistical analysis
Neuronal damage, degeneration, glial activation and oxidative DNA were quantified by
counting the number of live neurons and fluorescent or immuno-reactive positive cells of
Fluoro-Jade B, GFAP, Isolectin-B4, 8-OHdG in the middle of a defined CA1 area (0.17 µm ×
0.54 µm) in both sides of the hippocampi per high magnification field (magnification 400x)
using the Bioquant Image Analysis System (Bioquant True Color Windows 95 Software
Version 2.50, Nashville, TN) and the Mata Imaging Serials (Version 6.1, Molecular Devices
Corporation, Downingtown, PA). The average values of live neurons and the above positive
stained cells were obtained from left and right hippocampus of each gerbil.

The dendritic degeneration of neurons was assessed by quantifying the average intensity of the
MAP-2 positive staining in the same defined area (0.17 µm × 0.54 µm) below the middle of
CA1 in both sides of the hippocampi under the same magnification field (400x) using the Mata
Imaging Serials (Version 6.1, Molecular Devices Corporation, Downingtown, PA.

Data (mean ± SEM) were subjected to a one-way ANOVA, followed by the Newman-Keuls
post-hoc test using the GraphPad Prism program version 4.0. A p-value of less than 0.05 was
considered to indicate significant difference.

In the assessment of locomotor activity, distance traveled data were analyzed via two-way
repeated-measures ANOVA with treatment group as a between-groups factor and session time
as a within-subjects factor. Tukey post-hoc tests were performed when appropriate (p < 0.05).

RESULTS
Plasma ethanol concentration

Using the same ethanol treatment regimen as described by Yamaguchi et al (18), we examined
blood ethanol concentrations in gerbils. As shown in Fig. 1, ethanol administration resulted in
an increase in blood ethanol concentration that reached a peak level of 42-46 mg/dl at 30-60
min after ingestion and returned to control levels 2 hrs after consumption. Thus, ethanol
administration to gerbils by our dosing protocol produced an increase in plasma ethanol
concentration similar to that noted in our earlier studies in mice (18).

Detection of p47phox and p67phox immunoreactivity in the gerbil brain
Neuronal immunopositive staining for p47phox and p67phox were observed in both the cerebral
cortex and hippocampus (Fig. 2). Replacement of primary antibodies with PBS did not exhibit
any immunoreactivity, confirming the specificity of the p47phox and p67phox antibodies used
in this experiment. In the cortex, p47phox and p67phox immunoreactivities were distributed in
all cortical layers but were especially prominent in layer V (Fig. 2A and 2E). In the
hippocampus, p47phox and p67phox immunoreactivities were prominently observed in the
pyramidal neurons in CA1 and CA3 regions (Fig. 2B, 2C, 2F and 2G) and also in the molecular
and polymorphic layers of dentate gyrus (DG) (Fig. 2D and 2F). These observations provide
the first description of immunoreactivity of NADPH oxidase subunits in the gerbil brain.

Apocynin inhibited lipid peroxidation after EtOH-PC
Administration of a moderate dose of ethanol resulted in a transient increase in plasma HNE
levels and reached a peak at 1 hr (Fig. 3A). This time course is in agreement with previous
studies showing lipid peroxidation in plasma at 1-1.5 hrs following ethanol exposure (35).
Ethanol administration also caused an increase in HNE levels in the hippocampus but unlike
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that in plasma, the levels of HNE in hippocampus remained elevated 2 hrs after ethanol
administration (Fig. 3B). Apocynin pretreatment (i.p. 5 mg/kg body wt) 10 min before ethanol
administration significantly attenuated the increases in both plasma (Fig. 3C) and hippocampal
HNE (Fig. 3D) determined at 1 hr after ingestion, suggesting that increased ROS production
due to ethanol administration was generated by NADPH oxidase. Pilot experiments using
HPLC analysis demonstrated the ability of apocynin to cross the blood brain barrier (BBB)
and reached the brain within 30 min after i.p. injection (data not shown).

Effects of apocynin on hippocampal NADPH oxidase subunit translocation and enzyme
activity after EtOH-PC

NADPH oxidase activation requires translocation of cytosolic subunits to the plasma
membrane (16,17). To further determine whether NADPH oxidase contributed to EtOH-PC-
induced ROS production, Western blotting of p67phox and gp91phox was used and a significant
increase in p67phox expression in the membrane fraction and a decrease in the cytosolic fraction
at 1hr after ethanol administration (Fig. 4A and 4B). The ethanol effects were were inhibited
by apocynin administration 10 min before ethanol administration. These results suggest that
p67phox subunit translocation from cytosol to membrane occurred in response to ethanol
administration, and that this translocation was inhibited by the NADPH oxidase inhibitor,
apocynin. The plasma membrane gp91phox subunit was strongly expressed in hippocampus but
was not significantly affected by ethanol and apocynin treatment (Fig. 4A and 4C).

Measurement of NADPH oxidase activity in hippocampal membrane fraction showed a
significant increase at 1 hr after EtOH administration and this effect was also significantly
reduced by apocynin pretreatment (Fig. 4D). The increases in p67phox translocation and
NADPH oxidase activity after EtOH administration and their reduction by apocynin
pretreatment are positive data supporting the notion that NADPH oxidase contributed to EtOH-
PC-induced ROS in brain.

EtOH-PC ameliorated I/R-induced hyperactivity that was attenuated by coincident apocynin
treatment

A widely used behavioral test in animal models of stroke involves assessment of locomotor
hyperactivity (Fig. 5). Analysis of distance traveled data revealed a significant main effect of
session time (F(5,162) = 64.53, p < 0.001) and treatment group (F(3,162) = 9.07, p < 0.001).
The interaction of session time by treatment group was not significant (F(15, 162) = 0.825, p
= 0.65). Post-hoc tests determined that there was greater activity for gerbils that received
ischemia (mean = 10,624 cm, S.E.M. = ±2185 cm) than for gerbils in the sham condition (mean
= 7922 cm, S.E.M. = ±644 cm). There was no significant difference in activity between the
gerbils that received apocynin pretreatment (mean = 12,037 cm, S.E.M. = ±1648 cm) and
gerbils that received ischemia. However, there was significantly less activity for gerbils that
received ethanol (mean = 7771 cm, S.E.M. = ±929 cm) than for gerbils that received only
ischemia. There were no differences between the gerbils that received ethanol and gerbils under
sham conditions.

EtOH-PC induced neuroprotection in postischemic hippocampus was attenuated by
coincident apocynin treatment

Cresyl violet staining revealed healthy neurons in the hippocampal CA1 area in the sham
control group (Fig. 6A and 7B) and dead neurons 4 days after I/R (Fig. 6B and 1A). Fluoro-
Jade B staining demonstrated very few degenerated neurons in the hippocampal CA1 region
in sham control (Fig. 6E and 7B), but neuronal degeneration was markedly increased 4 days
after I/R (Fig. 6F and 7B). Similar to description by Caceres et al. (36), we showed that the
cytoskeletal protein MAP-2 is extensively localized in dendrites of hippocampal neurons. In
the sham control group, immunoreactivity of MAP-2 was clearly visualized in the dendrites
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of pyramidal neurons in the hippocampal CA1 area (Fig. 6I and 7C) but was decreased
significantly after I/R (Fig. 6J and 7C). When ethanol was administered 24 hrs before CCA
occlusion, I/R-induced delayed neuronal death (DND) and neuronal and dendritic degeneration
in the hippocampal CA1 area were significantly reduced as compared to the I/R group without
prior ethanol treatment (Fig. 6C vs. 6B, 6G vs. 6F, 6K vs. 6J and Fig. 7A,B,C). Apocynin
administration 10 min prior to ethanol ingestion significantly attenuated the neuroprotective
effects of EtOH-PC in I/R (Fig. 6D vs. 6C, 6H vs. 6G, 6L vs. 6K and Fig. 7A,B,C).

Apocynin inhibited EtOH-PC-induced neuroprotection against glial activation and DNA
oxidation after I/R

Immunohistochemical staining of GFAP showed few GFAP-positive astrocytes in the sham
control group (Fig. 8A and 9A) but a large increase was observed in the I/R group (Fig. 8B
and 9A). When brain sections were stained with isolectin B4 to identify microglial cells, very
few microglial cells were observed in the sham control group (Fig. 8E and Fig. 9B). However,
there was a substantial increase in the number of microglial cells in both the hippocampal CA1
area and in the surrounding area after I/R (Fig. 8F and Fig. 9B). EtOH-PC 24 hrs prior to I/R
significantly reduced the number of reactive astrocytes and microglial cells as compared to I/
R group (Fig. 8C vs. 8B, 8G vs. 8F and Fig. 9A and 9B). Apocynin administration 10 min
before EtOH-PC significantly attenuated the inhibitory effects of EtOH-PC on activation of
astrocytes and microglial cells after I/R (Fig. 8D vs. 8C, 8H vs. 8G and Fig. 9A and 9B).

I/R-induced increases in DNA oxidation was assessed by immunohistochemical determination
of 8-OHdG. In this study, weak 8-OHdG immunoreactivity was observed in the CA1 region
of the sham control group (Fig. 8I and Fig. 9C) but was significantly increased by I/R (Fig.
8J). EtOH-PC significantly reduced the I/R-induced increase in 8-OHdG (Fig. 8K vs. 8J and
Fig. 9C). Administration of apocynin prior to EtOH-PC significantly attenuated the ability of
antecedent ethanol to reduce postischemic DNA oxidation (Fig. 8L vs. 8K and Fig. 9C).

DISCUSSION
Results from the present study demonstrate for the first time that moderate ethanol ingestion
24 hrs prior to global cerebral I/R exerts preconditioning-like protective effects, ameliorating
postischemic behavioral deficit and reducing postischemic DND, neuronal and dendrite
degeneration, oxidative DNA damage, and glial cell activation in the hippocampus. We further
demonstrate that this moderate dose of ethanol is sufficient to cause a mild oxidative stress
during the period of ethanol exposure as indicated by the increases in lipid peroxidation (HNE
levels) and NADPH oxidase activity in the hippocampus concomitant with plasma ethanol
elevation after ingestion. Moreover, treatment with the NADPH oxidase inhibitor apocynin 10
min prior to ethanol ingestion not only suppressed the ethanol-induced ROS production with
increased NADPH activity, but also attenuated the beneficial actions of EtOH-PC to reduce
postischemic DND, neuronal and dendrite degeneration, oxidative DNA damage, glial cell
activation and behavioral deficit. Thus, our results also provide the first evidence that
antecedent ethanol ingestion initiates a protective response in the brain that attenuates
postischemic neurodegenerative processes by an oxidant-dependent triggering mechanism.
Although NADPH oxidase has been recently identified as a major source of ROS production
in the cerebrovascular system (20-22) and in brain of mouse and rat (23,24), this study provides
the first evidence for the presence of this oxidant-producing enzyme and action in the gerbil
brain. Staining for NADPH oxidase subunits was observed in neurons in all regions of the
gerbil brain, and particularly prominent in the hippocampus and cortex. This pattern of
expression is similar to the distribution of NADPH oxidase reported in mouse and rat brain
(23,24). The expression of NADPH oxidase subunits in neurons suggests the possibility that
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superoxide produced by NADPH oxidase may play a role in normal as well as pathological
function in the brain.

Several pharmacological inhibitors of NADPH oxidase are available including PR-39,
diphenyliodonium, and apocynin. In prior studies, we have used PR-39 as a mechanistic probe
for examining the role of NADPH oxidase-derived oxidants in the development of the anti-
inflammatory phenotype induced by ischemic and ethanol preconditioning (13,37). However,
this agent is now known to produce a variety of other effects, in addition to inhibition of
NADPH oxidase, which relate to its ability to enter cells and bind to SH3 domain-containing
proteins such as p130Cas (38), an adapter protein that plays a role in several signaling pathways
involved in cell survival (39). More relevant to preconditioning is the fact that it is now known
that PR-39 inactivates NF-κB (40), a transcription factor that plays an essential role in the
infarct-sparing effects of delayed ischemic preconditioning by promoting the expression of
inducible NOS (iNOS) (41-43). Diphenyliodonium has been employed as an NADPH oxidase
inhibitor in a large number of studies, but this agent is not specific and known to interfere with
activities of flavor-proteins including endothelial nitric oxide synthase (eNOS) and
mitochondrial respiratory chain activity (44). The latter effect is important because we have
obtained strong evidence supporting a role for eNOS-derived NO as a trigger for the
development of the anti-inflammatory effects of ethanol preconditioning (18,45,46).

In light of these non-specific effects of PR-39 and diphenyliodonium, we considered the use
of other agents that inhibit NADPH oxidase activity for investigating the role of this enzyme
in late EtOH-PC. Apocynin is a naturally occurring compound that effectively inhibits NADPH
oxidase by reacting with thiol groups required for enzyme subunit assembly (15). The
suggested action is in agreement with our observation that apocynin inhibited the translocation
of cytosolic p67phox subunit to membrane. Apocynin is derived from the rhizome of the
Himilayan herb Picrorhiza kurroa and has been used as a treatment for many inflammatory
conditions for centuries (47). In contrast to PR-39 and diphenyliodonium, apocynin does not
scavenge xanthine oxidase-derived superoxide, inhibit eNOS, or prevent NF-κB activation
(40,48-50). Coincident treatment with apocynin during the period of EtOH-PC attenuated the
mild oxidative stress induced by ethanol ingestion, an effect that was associated with a
concomitant reduction in NADPH activity that occurred during the time plasma ethanol rises
and falls. Furthermore, apocynin treatment coincident with ethanol administration 24 hrs prior
to induction of cerebral ischemia also markedly abrogated the postischemic neuroprotective
action of EtOH-PC. These results suggest that moderate ethanol ingestion triggers entrance
into this protected state through the formation of NADPH oxidase-derived oxidants during the
period of ethanol exposure 24 hrs prior to I/R.

Some studies have correlated changes in cerebral I/R-induced biochemical indices of injury
with neurological outcome in gerbils (51). Global cerebral ischemia in the gerbils produced a
significant increase in locomotor activity which was correlated with a severe loss of
hippocampal CA1 neurons after I/R (52). Our previous study demonstrated an increase in
locomotor activity in gerbils after I/R, a behavorial effect of stroke that was reduced by
curcumin treatment, a polyphenolic compound that also ameliorated hippocampal delayed
neuronal death (29). We now extend these observations to the protective actions of EtOH-PC,
which markedly inhibited the hyperlocomotion induced by I/R. Importantly, the reduction in
the I/R-induced hyperactivity response by antecedent ethanol ingestion was abolished by
coincident apocynin pretreatment.

It is important to note that while apocynin markedly decreased the oxidative stress induced by
ethanol exposure and attenuated the neuroprotective effects that become apparent upon
exposure to cerebral I/R, NADPH oxidase inhibition did not completely prevent these effects.
It is possible that oxidative stress occurs secondary to ethanol metabolism by alcohol
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dehydrogenase and cytochrome P4502E1 could also play a role in triggering the development
of EtOH-PC. However, the fact that nitric oxide (NO) inhibits the catalytic activity of both
alcohol dehydrogenase and cytochrome P4502E1 (53,54), when coupled with our observation
that NO is formed during the period of ethanol preconditioning (18,45,46), argues against a
role for either enzyme as additional sources of ROS in the EtOH-PC effects. Xanthine oxidase
activity is increased by ethanol, although much higher ethanol doses were used to demonstrate
this effect than were employed in the present study (13,55-57). Nevertheless, xanthine oxidase
has been implicated as an important instigating event for the development of the postischemic
anti-inflammatory phenotype noted in postcapillary venules 24 hrs after ethanol ingestion
(13). This may relate to the fact that xanthine oxidase produces superoxide when metabolizing
acetaldehyde, the major product of ethanol catabolism (13,57). It is also possible that
production of mitochondrial oxidants at sites I and III contribute to the oxidative stress that
precipitates the development of the neuroprotective phenotype in response to antecedent
ethanol. This possibility is supported by the observation that ethanol stimulates the production
of ROS in hepatocytes through mitochondria at complexes I and III (13,58,59), but again at
ethanol concentrations higher than achieved in the present study. Although it is unclear whether
this also occurs in the brain, especially at the concentrations achieved in our study, it is
important to note that apocynin does not inhibit ischemia-induced mitochondrial oxidant
production (13,60).

Excessive production of ROS is an important event underlying cerebral I/R injury (61,62) and
the damaging effects can be ameliorated by administration of botanical antioxidants, including
resveratrol from grape skin and curcumin from turmeric (5,29). We recently demonstrated that
apocynin similarly attenuated postischemic neuronal damage in the same gerbil stroke model
(15). These findings provide additional support for the notion that ROS contribute to the genesis
of I/R injury and indicate that that NADPH oxidase may be an important source of cytotoxic
oxidants in stroke (15). Chronic excessive ethanol ingestion is also known to cause a number
of pathophysiological manifestations that arise secondary to oxidative damage (6,63). In light
of this work, our demonstrated role for ethanol-induced oxidant formation by NADPH oxidase
as an inaugural event that precipitates the development of a neuroprotective phenotype in I/R
might be viewed as surprising. However, since the dose of ethanol used in this study raises
plasma ethanol to a peak concentration that is only ∼50% of that required for legal intoxication,
it seems reasonable to hypothesize that this moderate dose of ethanol produces only slight
fluctuations in redox status that allow NADPH oxidase-derived ROS to subserve a signaling
function as opposed to the biomolecular damage induced by the much higher oxidant flux that
is produced during I/R or after excessive ethanol exposure. Indeed, previous studies have
demonstrated that short bouts of preconditioning ischemia and reperfusion (ie, ischemic
preconditioning) protect against the deleterious effects induced by subsequent exposure to
prolonged I/R in stroke models (64,65). More recent work has demonstrated that these
protective effects are triggered by oxidants generated during ischemic preconditioning (66).
In addition, we have previously demonstrated that ethanol preconditioning induces the
development of an anti-inflammatory phenotype in postcapillary venules by a mechanism
involved oxidants generated during the first hour after ethanol ingestion [13,19]. Taken
together, our studies indicate that NADPH-oxidase derived oxidants can play dual and
opposing roles in I/R, serving to produce neuronal injury in brains exposed to I/R alone and
by acting as important initiators in the signaling cascade that is activated by antecedent ethanol
ingestion to produce a neuroprotective phenotype.

Identification of the downstream signaling elements that are activated by NADPH oxidase-
derived ROS formed during the period of ethanol exposure and entrance into the
preconditioned, neuroprotective state that becomes apparent when I/R is induced 24 hrs later
are unknown. However, studies conducted by our group that have focused on the mechanisms
whereby antecedent ethanol induces the development of an anti-inflammatory phenotype such
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that postcapillary venules fail to support leukocyte adhesion on subsequent exposure to I/R
suggest the role for NO/superoxide interactions, release of calcitonin gene-related peptide, and
activation of specific protein kinase C isoforms (13,18,45,46,67,68). These observations, when
coupled with the demonstration that leukocyte infiltration plays a critical role in the
pathogenesis of cerebral I/R injury (69-72), suggest that these signaling elements may
contribute to the protective actions of antecedent ethanol ingestion. In addition, mitochondrial
dysfunction during cerebral I/R is well established as a contributor to stroke-induced injury
(61,73,74), and amelioration of mitochondrial dysfunction reduces neuronal apoptosis and
behavioral deficits after cerebral I/R (29). Clearly, much additional work will be required to
identify the role of mitochondria and downstream mediators and ultimate effectors of the
neuroprotective actions of antecedent ethanol in cerebral I/R.

The experimental design for the present study was based on earlier work by our group which
demonstrated that ethanol ingestion 24 hrs prior to I/R completely prevented postischemic P-
selectin expression and leukocyte/endothelial cell adhesion in postcapillary venules by an
oxidant-dependent mechanism (13,18,75). The idea that moderate ethanol consumption
induces a mild oxidative stress that provokes the development of a neuroprotective state in I/
R is consistent with previous reports demonstrating that moderate ethanol consumption can
limit the neurotoxicity and apoptosis induced by HIV-1 protein gp-120 and amyloid-β,
respectively (76,77). These studies suggest that the neuroprotective effects of moderate ethanol
consumption may be of therapeutic value in other neurological disorders. However, we are not
advocating the use of ethanol as a neuroprotective intervention. Rather, we suggest that
elucidation of the underlying mechanisms that account for its remarkable protective actions
may provide a rationale for the development of new treatment modalities that mimic its
protective actions but avoid the untoward side effects associated with even moderate ethanol
consumption.

In summary, the present study provides the first anatomical evidence for the presence of
NADPH oxidase in gerbil brain and that antecedent ethanol ingestion 24 hrs prior to induction
of cerebral I/R attenuates postischemic neuronal injury and behavioral deficit. Moreover, our
work suggests that ethanol-induces the formation of ROS derived from NADPH oxidase occurs
during the period of ethanol exposure, which serve a critical signaling function to inaugurate
entrance into a preconditioned state that affords significant neuroprotection on subsequent
exposure to I/R 24 hrs after ethanol ingestion.
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Abbreviations
EtOH-PC  

Ethanol preconditioning

ROS  
reactive oxygen species

HNE  
4-hydroxy-2-nonenal

NADPH oxidase 
nicotinamide adenine dinucleotide phosphate-oxidase
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CCA  
common carotid arteries

rCBF  
regional cerebral blood flow

BBB  
blood brain barrier

I/R  
ischemia/reperfusion

DND  
delayed neuronal death

GFAP  
glial fibrillary acidic protein

MAP-2  
microtubule associated protein-2

8-OHdG  
8-hydroxyl-deoxyguanosine

DAPI  
4′,6-diamidine-2′-phenylindole

eNOS  
endothelial nitric oxide synthase
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Figure 1.
Changes of plasma ethanol concentrations in gerbils after ethanol administration by gavage
(n=6 for each time point). The volume (in µl) of 95% ethanol instilled in each animal was
calculated as follows: [body weight (in g) × 0.6] + 0.3), and was mixed in 0.3 ml sterile distilled
water just before administration as a single bolus by gavage. *Values that are statistically
different from corresponding values obtained during the control period (before ethanol gavage)
and 2 hrs after ethanol ingestion at p < 0.05.
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Figure 2.
Immunoreactivities (IR) of p47phox and p67phox in normal gerbil brain. In cerebral cortex, IR
of p47phox and p67phox were observed in all layers, but were especially prominent in layer V
(Panel A and E). In the hippocampus, p47phox and p67phox IR were prominently observed in
the pyramidal cell layer of the CA1 (Panel B and F) and CA3 (Panel C and G) regions and in
both the molecular and polymorphic layers of dentate gyrus (DG) (Panel D and F). Arrows
highlight individual cells that are positive for p47phox and p67phox IR. (Magnification, 200x).
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Figure 3.
Moderate ethanol administration by gavage increased lipid peroxidation in plasma (Panel A)
and hippocampus (Panel B), as assessed by changes in 4-hydroxy-2-nonenal (HNE) levels (n=6
for each time point and each sample type), and effects of apocynin on plasma (Panel C) and
hippocampal (Panel D) lipid peroxidation after ethanol administration by gavage. Data
depicted in Panels C and D illustrate the HNE levels in plasma and hippocampus in water
control, ethanol ingestion alone (EtOH-PC), and i.p. injection of apocynin 10 min prior to
ethanol gavage (Apo+EtOH-PC). * and # indicate values that were statistically different from
corresponding values in control and EtOH-PC groups at p < 0.05, respectively.
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Figure 4.
Effects of apocynin on translocation of p67phox (Panel A, B and C) and on NADPH oxidase
activity in hippocampus (Panel D) after ethanol administration by gavage. Data in Panels A to
C illustrate the effects of control, ethanol ingestion alone (EtOH-PC), and i.p. injection of
apocynin 10 min prior to ethanol gavage (Apo+EtOH-PC) on p67phox and gp91phox expression
in membrane and cytosolic fractions. Data in Panel D show NADPH oxidase activity in
hippocampus. See details in Method for the assay protocols. Samples were collected 1h after
administration of ethanol or distilled water vehicle. Western blotting results are expressed as
fold of control for three independent experiments (Panel B and C). * and # indicate values that
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are statistically different from corresponding values in control and EtOH alone groups at p <
0.05, respectively.
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Figure 5.
Effects of ethanol preconditioning and apocynin pretreatment on the spontaneous locomotor
activity after cerebral I/R. Data represent mean (± S.E.M.) distance traveled (in cm) (n = 7 –
9 gerbils/group). Gerbils were placed in an automated locomotor activity monitor 24 hrs after
cerebral I/R and locomotor activity was measured for 30 min. Statistical analysis revealed a
significant main effect of session time (p <0.001) and treatment group (p < 0.001), but the
session time by treatment group interaction was not significant (p = 0.65).
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Figure 6.
Representative micrographs depicting I/R-induced delayed neuronal death (DND) (cresyl
violet) and neuronal (Fluoro-Jade B) and dendritic degeneration (MAP-2) in the hippocampal
CA1 subfield of gerbils subjected to sham operation (Panels A, E, and I, respectively), 5 min
occlusion of the common carotid arteries (ischemia) followed by 4 days reperfusion (I/R)
(Panels B, F, and J, respectively), EtOH-PC 24 hrs prior to I/R (EtOH-PC+I/R) (Panels C, G,
and K, respectively), and apocynin treatment coincident with ethanol administration 24 hrs
prior to I/R (Apo+EtOH-PC+I/R) (Panels D, H, and L, respectively). (Magnification, 200x).
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Figure 7.
Quantification of viable neurons (cresyl violet, Panel A) and neuronal (Fluoro-Jade B, Panel
B) and dendritic (MAP-2, Panel 3) degeneration in the hippocampal CA1 region of gerbils
subjected to sham, I/R alone, ethanol preconditioning 24 hrs prior to I/R (EtOH-PC+I/R), and
apocynin treatment coincident with ethanol administration 24 hrs prior to I/R (Apo+EtOH-PC
+I/R). *, #, and Δ = values statistically different from corresponding values in sham, I/R, and
EtOH-PC+I/R groups, respectively, at p < 0.05.
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Figure 8.
Representative micrographs depicting I/R-induced activation of astrocytes (GFAP, Panel A),
microglial cells (isolectin-B4, Panel B) and DNA oxidation (8-OHdG, Panel C) in the
hippocampal CA1 subfield of gerbils subjected to sham (Panels A, E, and I, respectively), I/R
(Panels B, F, and J, respectively), ethanol preconditioning 24 hrs prior to I/R (EtOH-PC+I/R)
(Panels C, G, and K, respectively), and apocynin treatment coincident with ethanol
administration prior to I/R (Apo+EtOH-PC+I/R) (Panels D, H, and L, respectively).
(Magnification, 200x).
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Figure 9.
Quantification of astrocytic (GFAP, Panel A) and microglial activation (Isolectin-B4, Panel
B) and DNA oxidation (8-OhdG, Panel C) in gerbils subjected to sham, 5 min occlusion of the
common carotid arteries followed by 4 days of reperfusion (I/R), ethanol preconditioning 24
hrs prior to I/R (EtOH-PC+I/R), and apocynin treatment coincident with ETOH-PC 24 hrs
prior to I/R (Apo+EtOH-PC+I/R). *, #, and Δ = values statistically different from corresponding
values in sham, I/R, and EtOH-PC + I/R groups, respectively, at p < 0.05.
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