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Phagosomes containing the bacterial pathogen Legionella
pneumophila are transported to the ER after macrophage
internalization. To modulate phagosome transport, Le-
gionella use a specialized secretion system that injects
bacterial proteins into eukaryotic cells. This review will
focus on recent studies that have identified bacterial
proteins and host processes that play a concerted role in
transporting Legionella to the ER.

Legionnaires’ disease

In the summer of 1976, a story topping news headlines
across America was on an outbreak of pneumonia claiming
the lives of many attendees of a Legionnaires’ convention in
Philadelphia (Fraser et al., 1977). What made this outbreak
so terrifying was that scientists assigned to the case could not
determine the cause of these deaths. It wasn’t until 1977
that investigators from the Center for Disease Control in
Atlanta announced that a new a gram-negative bacterium
had been isolated from both infected patients and the air
conditioning system of the hotel at which many of these
individuals were staying (McDade et al., 1977). Their
conclusion was that this newly isolated organism was respon-
sible for the deadly outbreak of pneumonia that occurred at
the Legionnaires’ convention in Philadelphia. This new
bacterium was appropriately named Legionella pneumophila.
Human infections most often occur when aerosols containing
Legionella are inhaled. Legionella that gain access to the lung
are internalized by alveolar macrophages where they multiply
intracellularly (Horwitz and Silverstein, 1980). If infected
macrophages are not cleared quickly from the lung, a serious
infection can result that leads to pneumonia and in severe
instances death.

Legionella alter phagosome transport
It is after Legionella are internalized by a phagocytic host that
their pathogenic behavior is revealed (Fig. 1, step A).

Address correspondence to Craig R. Roy, Section of Microbial Pathogen-
esis, Yale University School of Medicine, Boyer Center for Molecular
Medicine, 295 Congress Ave., New Haven, CT 06536. Tel.: (203) 737-
2408. Fax: (203) 737-2630. E-mail: craig.roy@yale.edu

Key words: phagosome lysosome fusion; ADP ribosylation factor; type
IV secretion; immune evasion; intracellular replication

© The Rockefeller University Press, 0021-9525/2002/08/415/5 $5.00
The Journal of Cell Biology, Volume 158, Number 3, August 5, 2002 415-419
http://www.jcb.org/cgi/doi/10.1083/jcb.200205011

Phagosomes containing Legionella evade endocytic maturation
(Horwitz, 1983b). Proteins residing in late endosomes or
lysosomes are not acquired by phagosomes harboring virulent
strains of Legionella (Clemens and Horwitz, 1995; Roy et
al., 1998). The lumenal pH of vacuoles in which Legion-
ella reside remains neutral (Horwitz and Maxfield, 1984;
Sturgill-Koszycki and Swanson, 2000). It is not known how
Legionella prevent vacuole acidification. These bacteria may
block host vacuolar ATPase function either by excluding the
complex or inhibiting its activity. Alternatively, Legionella
may take steps to neutralize their compartments as the vacuolar
ATPase pumps protons into the lumen.

One of the most remarkable features observed for phago-
somes containing Legionella is that 2-4 h after uptake the
vacuoles in which Legionella reside look nothing like the
young phagosomes containing these bacteria inidally. These
older compartments have ribosomes on their surface and stain
positive for resident proteins of the ER (Horwitz, 1983a;
Swanson and Isberg, 1995). It is within these ribosome-lined
vacuoles that Legionella replicate (Katz and Hashemi, 1982).

The morphological similarities between replicative vacuoles
harboring Legionella and the host ER indicate that these
bacteria have devised a way to enter the ER lumen by alter-
ing phagosome transport. Once in the ER, they reside in an
organelle rich in peptides, the primary carbon source for
Legionella, and are safe from future lysosome degradation.
Other bacterial pathogens, such as Brucella, have adopted a
similar strategy and replicate within the ER, indicating that
the ER is a desirable organelle for bacterial proliferation
(Anderson and Cheville, 1986; Pizarro-Cerda et al., 1998).
But how are these bacteria able to trick eukaryotic cells into
transporting them to the ER? Recent studies have revealed
bacterial proteins and host processes that are essential for

transport of Legionella to the ER.

A bacterial microinjection device controls Legionella
phagosome transport

Screens for intracellular growth mutants of Legionella have
identified genes that play an essential role in phagosome
transport. These genes are called doz (defective organelle
trafficking) or icm (intracellular multiplication) (Segal et al.,
1998; Vogel et al., 1998). The dot/icm products comprise a

specialized secretion apparatus that can transfer proteins
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Figure 1.

Transport of a phagosome-containing Legionella to the ER. (A) Legionella resides in a plasma membrane-derived phagosome after

macrophage internalization. (B) The Dot/Icm secretion system sends a signal that inhibits the fusion of endocytic organelles with the

phagosome-containing Legionella. The icmS and icmW products play specific roles in this event. (C) The phagosome-containing Legionella
recruits ER vesicles by a process that requires the icmR product. ER vesicles are seen attached to the phagosome-containing Legionella shortly
after uptake. At this time, the RalF protein is being injected into host cells by the Dot/lcm secretion system. RalF activates the host protein
ARF1, and ARF1-GTP begins to accumulate on this phagosome. (D) Legionella has established a vacuole with ER vesicles covering its surface.
(E) An ER-like vacuole studded with ribosomes is created by Legionella, and it is within this organelle that bacterial replication is observed.
Maintenance of this vacuole does not require continuous signaling by the Dot/lcm secretion system (Coers et al., 1999), suggesting that host

factors involved in ER biogenesis are providing these functions.

from the cytosol of Legionella into the cytosol of their eu-
karyotic hosts (Nagai et al., 2002).

To inject proteins into eukaryotic hosts, the Dot/Icm se-
cretion system must translocate substrates across the inner
and outer bacterial membranes and through a host cellular
membrane. It is thought that the Dot/Icm secretion system
must first assemble a pore in the host cellular membrane to
serve as a conduit for protein transfer. A dot/icm-dependent
activity that forms pores in host membranes has been de-
tected during Legionella infection (Kirby et al., 1998). This
pore-forming activity allows membrane-impermeable probes
added extracellularly to diffuse into eukaryotic host cells
during Legionella infection. Because the Dot/Icm secretion
system is ancestrally related to type IV secretion systems that
mediate conjugal DNA transfer between bacteria (Christie,
2001), the pore that Legionella form in the eukaryotic cell
membrane is probably functioning similar to a mating chan-
nel that allows the transfer of genetic material between two
cells during conjugation.

It is not currently known which Legionella proteins form
the pores in host cellular membranes. One potential candi-
date is the DotA protein (Berger et al., 1994). The Dot/Icm
system secretes DotA protein into culture supernatant dur-
ing growth of Legionella in liquid broth (Nagai and Roy,

2001). The DotA protein contains seven hydrophobic trans-
membrane helices, and electron micrographs show that se-
creted DotA protein is part of a doughnut-shaped oligomer
that one could envision functioning as a membrane channel
(Roy and Isberg, 1997; Nagai and Roy, 2001). All mutants
of Legionella that are unable to secrete DotA are defective in
forming pores in host cellular membranes (Coers et al.,
2000). There are proteins with amino acid similarity to
DotA found in other type IV secretion systems (Christie and
Vogel, 2000). These properties make DotA an attractive
candidate for being a component of a pore or mating chan-
nel-like structure that is inserted into the host cell during Le-
gionella infection. However, it cannot be stated for certain
that DotA is a pore-forming molecule because initial at-
tempts to isolate DotA protein from host cellular mem-
branes have been unsuccessful.

The iemS and iemW genes encode interacting proteins
that Legionella require for transport of their phagosomes
(Coers et al., 2000). Unlike most of the other do#/icm prod-
ucts, proteins encoded by icmS and iemW are not required
for DotA secretion (Nagai and Roy, 2001). The IemS and
IemW proteins have properties that suggest they are func-
tioning as chaperones that assist in the secretion of a distinct
class of substrates by the Dot/Icm apparatus (Wattiau et al.,



1996). Namely, they are both small proteins (<20 kD) with
an acidic isoelectric point that are not themselves secreted by
Legionella (Zuckman et al., 1999; Coers et al., 2000). Im-
portantly, phagosomes containing icmS or icmW mutants of
Legionella fuse with late endosomes and lysosomes, indicat-
ing that the putative secreted substrates that are guided by
these chaperones are essential for blocking endocytic matu-
ration (Fig. 1, step B).

The IemR protein is another chaperone required for Dot/
Icm secretion system function (Coers et al., 2000; Dumenil
and Isberg, 2001). Approximately half of the phagosomes
containing icmR mutants of Legionella manage to evade im-
mediate endocytic maturation after macrophage uptake;
however, these phagosomes do not support robust replica-
tion of Legionella and are transported to lysosomes eventu-
ally (Coers et al., 2000). Thus, the phagosome transport
phenotype of an 7e7nR mutant is quite different than that of
iemS or iemW mutants, suggesting that formation of a repli-
cative vacuole by Legionella requires evasion of endocytic
maturation and a second event that requires at least one ad-
ditional protein that the Dot/Icm secretion system injects
into host cells (Fig. 1, step C).

Host vesicles associate rapidly with

Legionella phagosomes

Marcus Horwitz made the initial observation in 1983 that
young phagosomes containing Legionella are surrounded by
smooth vesicles (Horwitz, 1983a). Recently, this phenome-
non was examined more closely (Tilney et al., 2001). It was
found that shortly after uptake host vesicles come in contact
with Legionella phagosomes. As host vesicles make contact
with phagosomes containing Legionella they begin to flatten
along the surface of the phagosome membrane (Fig. 2 A).
Periodic threads that bridge the space between the phago-
some and host vesicle membranes are clearly visible by EM,
suggesting that a receptor-mediated “zippering” event may
be driving this intimate interaction.

Host vesicles begin to associate with the basal surface of
phagosomes containing Legionella within 5 min of uptake,
and >90% of the phagosome surface is covered by host ves-
icles within 15 min (Fig. 1, step D). Initially, the host vesi-
cles have a lipid bilayer that is noticeably thinner than that
of the plasma membrane-derived phagosome harboring Le-
gionella. However, the membrane surrounding wild-type Le-
gionella rapidly thins and becomes the same thickness as the
bilayer of the host vesicles that have become attached. This
membrane conversion event suggests that the interaction
with host vesicles results in a flux of either lipids or proteins
from the phagosome membrane surrounding Legionella.

After 4 h, as Horwitz reported initially, there are fewer
host vesicles associated with vacuoles containing Legionella.
Instead, there are ribosomes attached to the exposed regions
of the vacuole membrane where host vesicles were found
earlier (Fig. 2 B). Thus, at this time Legionella have estab-
lished residence in an ER-like organelle.

Host vesicles do not attach to phagosomes containing
most dot/icm mutants of Legionella, indicating that host vesi-
cle attachment requires a factor secreted by the Dot/Icm ap-
paratus. Interestingly, phagosomes containing icmS or icmW
mutants of Legionella still recruit host vesicles and their pha-
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gosomal membrane thins. The fact that these phagosomes
fuse with late endosomes and lysosomes indicates that the
ability of Legionella to evade immediate endocytic matura-
tion cannot be explained simply by attached host vesicles re-
modeling these phagosomes or constructing a barricade that
prevents endocytic maturation.

In support of the hypothesis that evasion of lysosome fu-
sion by Legionella occurs independently of host vesicle re-
cruitment, it was found that phagosomes containing iemR
mutants that have evaded endocytic maturation remain na-
ked, and due to the absence of host vesicles attached to their
surface, the phagosomal membrane does not thin. These
data indicate that the protein(s) injected into host cells that
mediate evasion of endocytic maturation are distinct from
those that recruit host vesicles. Thus, the delay in endocytic
maturation observed for phagosomes containing Legionella is
an event that buys precious time necessary for these bacteria
to remodel their phagosome by a slower process that in-
volves subverting the transport of host vesicles.

Legionella inject a protein into host cells that activates
ADP ribosylation factor

Ribosomes can be seen on many of the host vesicles attached
to phagosomes containing Legionella. These vesicles also
stain positive for protein disulfide isomerase (unpublished
data), which is a soluble protein that resides primarily in the
ER lumen but can also be found in vesicles that cycle be-
tween the ER and Golgi (Ferrari and Soling, 1999). Thus,
the vesicles being recruited to phagosomes containing Le-
gionella are ER derived.

In addition to ER vesicles, a recent study found that the
host protein ADP ribosylation factor (ARF)*1 is recruited to
phagosomes containing Legionella (Nagai et al., 2002). ARF
proteins are highly conserved small GTP-binding proteins
that regulate several membrane transport processes in eukary-
otic cells (Donaldson and Jackson, 2000). ARF1 stimulates
the formation of COPI-coated vesicles, which are essential for
vesicular transport of cargo proteins between the ER and
Golgi (Barlowe, 2000). Although a role for ARF1 in the trans-
port of endocytic vesicles has been described (Gu and Gruen-
berg, 2000), phagosomes containing do#/icm mutants of Le-
gionella do not stain positive for ARF1 as they are transported
through the endocytic pathway. Thus, ARF1 is observed only
on Legionella phagosomes in transit to the ER, and recruit-
ment of ARF1 requires the Dot/Icm secretion system.

From these data it was predicted that wild-type Legionella
may encode an ARFl-interacting protein that is injected
into macrophages by the Dot/Icm secretion system. This hy-
pothesis was correct. Analysis of the Legionella genome re-
vealed a protein that has a 200 amino acid region homolo-
gous to the catalytic domain found in all eukaryotic proteins
that function as guanine nucleotide exchange factors (GEFs)
for ARF (Nagai et al., 2002). This conserved catalytic region
is known as the Sec7 homology domain (Jackson and
Casanova, 2000). Like eukaryotic proteins that contain Sec7
homology domains, this Legionella protein activates ARF in
vitro by stimulating the exchange of GDP for GTP.

*Abbreviations used in this paper: ARF, ADP ribosylation factor; GEF,
guanine nucleotide exchange factor.
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Figure 2. The Legionella-containing
phagosome is converted from a vacuole
surrounded by host vesicles to a
replicative organelle that resembles
the ER. Electron micrographs of phago-
somes containing Legionella show host
vesicles intimately attached to the
surface of phagosomes 15 min after
bacterial internalization (A). A portion
of a replicative organelle identified 19 h
after infection shows that the cytoplasmic
surface of the vacuole membrane is at
this time covered with ribosomes (B).

This Legionella ARF—GEF was called RalF because it was
found to be required for the recruitment of ARF to the Le-
gionella phagosome. As predicted, the RalF protein is in-
jected into macrophages by a process requiring the Dot/Icm
secretion system. Even though Legionella ralF mutants are
transported in phagosomes that do not stain positive for
ARF1, these phagosomes still evade fusion with lysosomes
and mature into vacuoles that support intracellular replica-
tion. Thus, the RalF protein is not essential for transport of
Legionella to the ER.

So why would Legionella inject an exchange factor for
AREF into eukaryotic hosts during infection? It is likely that
the function of RalF is to stimulate normal host processes
that Legionella subvert during biogenesis of an ER vacuole.
Accordingly, RalF may play a role in the creation or trans-
port of ER vesicles that associate with Legionella phagosomes
shortly after uptake. The reason RalF function is not re-

quired by Legionella during infection of host cells cultured in
the laboratory may be because ER vesicles that transport
cargo to the Golgi are created constitutively in healthy cells
growing in nutritionally rich medium. However, in nature
Legionella is likely to encounter protozoan hosts that are
conserving energy and are less active metabolically. Under
these conditions, host ARF-GEFs are likely down-regulated,
reducing vesicular transport between the ER and Golgi. By
injecting their own ARF exchange factor during infection,
Legionella may be able to stimulate the creation of the ER-
Golgi transport vesicles these bacteria require to remodel
their phagosomes.

Future directions

In conclusion, these data provide evidence that in addition
to RalF Legionella must be injecting additional proteins into
macrophages that bind ER vesicles and promote phagosome



remodeling. One possibility is that these undiscovered bacte-
rial proteins function similar to SNARE proteins that medi-
ate tethering and fusion of ER vesicles with downstream
secretory organelles such as the ER Golgi intermediate com-
partment or the cis-Golgi (Guo et al., 2000). Curiously, the
studies in which ER vesicles were found attached to Le-
gionella phagosomes also showed ER vesicles attached to the
plasma membrane of uninfected macrophages by periodic
threads similar to those seen at the ER—Legionella phago-
some interface (Tilney et al., 2001). Perhaps what these data
are telling us is that Legionella are subverting a host pathway
to the ER that is not well understood or appreciated—a road
less traveled. There have been recent studies suggesting that
ER membrane may contribute to the formation of vacuoles
formed during phagocytosis (Garin et al., 2001; Muller-
Taubenberger et al., 2001). Thus, investigations on Le-
gionella phagosome transport could provide important
details on a process by which plasma membrane-derived ves-
icles can be transported to the ER. Regardless of the mecha-
nism, one thing is certain: determining the function of pro-
teins injected by the Dot/Icm secretion system will further
our knowledge on normal vesicular transport pathways that
lead to the ER.
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