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utations in the X-linked Plp gene lead to dysmyelin-
Mating phenotypes and oligodendrocyte cell death.

Here, we exploit the X inactivation phenomenon to
show that a hierarchy exists in the influence of different
mutant Plp alleles on oligodendrocyte survival. We used
compound heterozygote mice to study the long-term fate of
oligodendrocytes expressing either the jimpy or rumpshaker
allele against a background of cells expressing a Plp-null
allele. Although mutant and null oligodendrocytes were
generated in equal numbers, the proportion expressing the
mutant allele subsequently declined, but whereas those

expressing the rumpshaker allele formed a reduced but stable
population, the number of jimpy cells fell progressively.
The age of decline in the jimpy cells in different regions of the
CNS correlated with the temporal sequence of myelination. In
compound heterozygotes expressing rumpshaker and jimpy
alleles, oligodendrocytes expressing the former predominated
and were more abundant than when the rumpshaker and null
alleles were in competition. Thus, oligodendrocyte survival is
not determined solely by cell intrinsic factors, such as the
conformation of the misfolded PLP, but is influenced by
neighboring cells, possibly competing for cell survival factors.

Introduction

The highly conserved X-linked Pp gene, encodes for proteo-
lipid protein (PLP),* the major CNS myelin protein, and its
minor isoprotein DM20 (Nave et al., 1987). PLP/DM20 is
believed to regulate the structure of the intraperiod line and
may be involved in glial/axonal interactions (Nave et al., 1987;
Boison and Stoffel, 1994; Klugmann et al., 1997; Griffiths et
al, 1998b) and oligodendrocyte survival. Mutations of the
PLP/Plp gene in man and animals cause dysmyelinating diseases
ranging in severity from mild to lethal (for reviews see Griffiths
et al., 1998a; Werner et al., 1998; Garbern et al., 1999; Yool
et al., 2000). In the mouse, the disparity in phenotype is
illustrated by the jimpy (Plp) and rumpshaker (P{p’P”’h)
mutations. Plp” causes a lethal disorder with severe hypo-
myelination, premature death of many oligodendrocytes, and
astrocytosis (Knapp et al., 1986; Vela et al., 1998). On the
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other hand, Plp""’ s a relatively benign condition when
expressed in the C3H/101 strain (Griffiths et al., 1990;
Schneider et al., 1992). rumpshakers have normal longevity,
produce more myelin than jimpy mice, and have fewer numbers
of dying oligodendrocytes.

The Plp gene, like the majority of X-linked genes, is subject
to random inactivation of one allele in the female. Because
X-linked genes in glia exhibit the predicted 50% maternal/
paternal allele inactivation (Tan et al., 1995), 50% of the
oligodendrocytes in Plp mutant heterozygotes should express
the mutant allele. In reality, the defect, as assessed by the degree
of dysmyelination, never affects 50% of the total oligoden-
drocyte populadon (Skoff and Montgomery, 1981; Bartett
and Skoff, 1986; Duncan et al., 1987; Fanarraga et al., 1991).
This strongly suggests that cells expressing the mutant allele are
at a disadvantage through their expression of the mutant allele
or their failure to express the wild-type allele. Alternatively,
neighboring cells expressing the wild-type allele may hinder
the mutant cells’ development or survival. The exact fate of
these mutant cells is uncertain because they are difficult to
identify against the wild-type background.

We, therefore, used Plp knockout mice to generate P/]/)’ /=
or P[p”’ bl = compound heterozygotes in which the jimpy or
rumpshaker cells can be identified against the PLP-negative
background. This allowed us to assess the survival of oligo-
dendrocytes expressing different mutant alleles, when in
competition with those expressing the null allele. The results
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Figure 1. Heterozygote, 4-mo-old mouse CNS, expressing wild-type
and null alleles of the Plp gene, immunostained for PLP/DM20.
(A) Ventral column of spinal cord to show mosaic of wild-type
myelin (positively stained) and myelin formed by oligodendrocytes
expressing a null allele (no staining); the former predominate.

(B) Optic nerve to show mosaic of positive and negative sheaths in
conjunction with patches predominantly of one immunotype.
Bars: (A) 20 pwm; (B) 50 pm.

demonstrate that in adult compound heterozygotes, fewer
cells express the missense alleles compared with oligodendro-
cytes expressing the null allele. The number of cells express-
ing the jimpy allele decreases markedly over the first months
of life, whereas the number of oligodendrocytes expressing
the rumpshaker allele remains relatively constant for several
months. When cells expressing either the jimpy or the rump-
shaker allele are in direct competition, the latter predomi-
nate. Thus, the various alleles of the murine Plp gene dem-
onstrate a hierarchy in their influence on oligodendrocyte
survival and myelination from wild type > null > rump-
shaker > jimpy. Our results show that survival depends not
only on the “intrinsic severity” of an individual mutation
but also on the allele being expressed by neighboring cells.

Results
PLP does confer an advantage for myelination

Our previous studies established that oligodendrocytes ex-
pressing a null allele of the Pl gene survived in normal

Figure 2. In situ hybridization for Plp/ Dm20 in spinal cords of
rumpshaker male mice (rsh/Y) and female littermates expressing a
rumpshaker and a null allele of the Plp gene (rsh/—). Animals aged
P20 and P100 are shown. The affected males indicate the total
number of oligodendrocytes capable of expressing the rumpshaker
allele. At both P20 and P100 the number of positive cells in the
heterozygotes is considerably <50% of those in the male littermates.
However, the proportion of positive cells appears very similar at
both ages in the heterozygotes. The bright signal to the lower left of
the P100 heterozygote cord is an artifact. Bars, 0.5 mm.

numbers and elaborated sheaths so that the vast majority of
larger-diameter axons were myelinated (Klugmann et al.,
1997; Yool et al., 2001). Absence of PLP/DM20 resulted in
~26-30% of axons <2 wm remaining nonmyelinated
(Yool et al., 2001). Because of X chromosome inactivation,
heterozygotes are chimeras in which oligodendrocytes lack-
ing PLP/DM20 are in competition with those expressing the
proteins. If the presence of PLP/DM20 confers no advan-
tage or disadvantage, then 50% of cells and their myelin
sheaths should express each allotype. In fact, ~66% of
sheaths were PLP positive, a value significantly different
from 50% (Yool et al., 2001). The proportion of PLP™*
sheaths was similar throughout the CNS and was stable be-
tween postnatal day (P) 20 and 1 yr of age. In general, the
distribution of PLP* and PLP~ sheaths showed an intermin-
gling mosaic pattern throughout the CNS, with the excep-
tion of the optic nerve, where, commonly, a large number of
contiguous myelin sheaths were of a single immunotype,
thus forming a “patch” (Fig. 1).

These studies established that although oligodendrocytes ex-
pressing a Plp-null allele survive, the presence of PLP/DM20
does confer an advantage for myelination, probably in the
ability of the cell to associate with axons. The strategy for the
present studies is to allow oligodendrocytes expressing a mu-
tant allele to compete with those expressing a null allele, thus
providing a “PLP-negative” background on which the former
cells are detectable. A further benefit of this strategy is that be-
cause the null cell does not have the “advantage” conferred by
wild-type PLP, any deviation from the predicted 50% survival
can be linked to the mutant protein. If mutant alleles have a
similar influence as the null allele on cell survival and myelina-
tion, the compound heterozygotes should contain equal num-
bers of oligodendrocytes and sheaths of each allotype.
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Figure 3.  Female compound
heterozygotes expressing rumpshaker
and null alleles of the Plp gene,
immunostained for PLP/DM20. Myelin
sheaths formed by oligodendrocytes
expressing the rumpshaker allele are
positively stained, whereas those
supported by cells expressing the null
allele remain unstained. (A and B) Resin
sections of ventral columns of spinal
cord from mice aged P20 and P100,
respectively. There is a small reduction
in the number of positive sheaths
between the two ages. Bars, 20 pm.

(C and D) Resin sections of optic nerves
from mice aged P20 and P50,
respectively. Both mice show patches of
rumpshaker myelin (arrows) comprising
a minority of the myelin sheaths. Bars,
50 wm. (E and F) Paraffin sections of the
dorsal columns of spinal cord from a
heterozygote aged P200 (rsh/—) and her
male rumpshaker littermate (rsh/Y),
respectively. The affected male (F)
indicates the amount of PLP/DM20 that
can be present if all oligodendrocytes
express the rumpshaker allele. The
heterozygote contains considerably
<50% positive sheaths although their
concentration is higher in the corticospinal
tracts (CST) than elsewhere in the dorsal
columns. Bars, 50 wm. (G) Paraffin section
of cerebral cortex from a heterozygote
aged P200 to show several small regions
containing rumpshaker myelin,
suggesting single oligodendrocytes or a
small clone of cells expressing the mutant
allele. Bar, 100 wm. (H) Higher magnifica-
tion of one of the patches of rumpshaker
myelin shown in G. Bar, 20 um.

No PLP is better than misfolded PLP

The rumpshaker allele causes the least severe phenotype of
any of the murine P/p mutants and also results in a relatively
mild disorder in humans (Kobayashi et al., 1994). Oligo-
dendrocyte numbers in affected males (Plp” “/[Y) are not re-
duced compared with wild type, and, with time, the major-
ity of axons in the spinal cord acquire a PLP/DM20" myelin
sheath (Fanarraga et al., 1992, 1993).

Females heterozygous for both the rumpshaker and null al-
leles were clinically normal; lacking the tremor associated
with affected rumpshaker males. We used in situ hybridiza-
tion to identify oligodendrocytes expressing the mutant al-
lele in cervical spinal cord of compound heterozygotes and
their affected male rumpshaker lictermates at P20, P50, and
P100. By visual inspection, the number of positive cells in
the heterozygotes was <<50% of those in the male littermates
at all ages (Fig. 2). When we immunostained sections from
the compound heterozygotes (Plpy?"*'~), the majority of my-
elin sheaths throughout the CNS at ages from P20 to P200
were PLP™, indicating their origin from oligodendrocytes
expressing the null allele (Fig. 3). In the white matter, the
distribution of the PLP™ fibers varied from single isolated
sheaths through to large patches of immunopositive fibers,
the latter being particularly prominent in the optic nerves

(Fig. 3, C and D). Small islands of PLP" sheaths were
present in the cerebral cortex, suggesting their origin from a
single cell or a small cluster of oligodendrocytes expressing
the rumpshaker allele (Fig. 3, G and H). By light micros-
copy, we detected small numbers of dysmyelinated axons
with thin myelin sheaths, corresponding to the immun-
ostained sheaths (unpublished data). We quantified the pro-
portions of PLP* and PLP™ myelin sheaths in 1-pm resin
sections from the ventral columns of thoracic spinal cord in
compound heterozygotes at P20, P50, and P100. The pro-
portion of PLP" (rumpshaker) sheaths changed from 26 *
5% (mean = SEM, n = 4) at P20 to 19 * 2% at P50 to 16 *
3% at P100, values that were not significantly different (Fig. 4).
However, at all ages, the percentage of PLP" myelin sheaths
was significantly <50% (P = 0.0286) (Fig. 4).

Phenotypically severe mutations result in a progressive
loss of oligodendrocytes

The jimpy allele causes one of the most severe phenotypes of
any Plp gene mutation, one characteristic of which is the in-
creased apoptosis of oligodendrocytes (Knapp et al., 1986).
Indirect assessments suggest that in natural heterozygotes,
there is a progressive loss of cells expressing the mutant al-
lele, when in competition with oligodendrocytes expressing
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Figure 4. Thoracic spinal cord from compound heterozygotes
expressing a rumpshaker and a null allele of the Plp gene was
immunostained for PLP/DM20. The proportion of myelin sheaths
formed by oligodendrocytes expressing the rumpshaker allele
(PLP/DM20%) was determined in the ventral funiculi at different
ages. At all ages, the proportion of rumpshaker myelin sheaths is
significantly <50% (P = 0.0286, Mann-Whitney test). There is no
significant difference between the groups at the three ages

(P = 0.1498, ANOVA). Data are mean £ SEM, n = 4.

a wild-type allele (Skoff and Ghandour, 1995). To examine
the long-term survival and distribution of such oligodendro-
cytes, we generated compound heterozygotes in which oligo-
dendrocytes could express either a null or jimpy allele.

Cells expressing the jimpy allele were detectable by a posi-
tive in situ hybridization signal using a probe recognizing
Plp/Dm20 and the absence of any signal when hybridized
with a Plp exon 5-specific probe (unpublished data). Spinal
cords and hindbrains were examined by in situ hybridization
at P5, 20, 35, 50, and 100 to determine the approximate
proportion of positive cells (Fig. 5 A). The additional time
points at P5 and P35 were taken because preliminary studies
suggested a more dynamic change in the cell population in
the jimpy compared with the rumpshaker mouse. At P5, the
number of Plp™ cells appeared similar to those found in the
Plp™'" heterozygotes. By P20, the number of Plp™ (jimpy)
cells was reduced in the ventral and lateral columns com-
pared with P5. In the dorsal columns, the positive cells were
predominantly in the areas of the fasciculus gracilis and cor-
ticospinal tracts. At P35 and subsequently, the proportion of
Plp™ cells was markedly reduced throughout the entire
transverse section compared with earlier ages, although there
was little further change between P35 and P100. The surviv-
ing cells were present in white and gray matter and appeared
random in distribution. A similar loss of positive cells was
observed in hindbrain regions, although foci of jimpy oligo-
dendrocytes were present at P100 (Fig. 5 B).

Using PLP-specific antibodies, we immunolabeled the cell
bodies and major processes of oligodendrocytes expressing
the mutant allele. As the mutant PLP is largely retained in
the cell body (Gow et al., 1994; Gow and Lazzarini, 1996;
Jung et al., 1996), any myelin sheaths formed by these oligo-
dendrocytes remain unstained. For the purpose of quantifi-
cation, the number of jimpy (PLP") cells was expressed as a
percentage of the total number of mature oligodendrocytes
(adenomatous polyposis coli [APC] ). The results mirrored

. e
e "

Figure 5. Female compound heterozygotes expressing jimpy and
null alleles of the Plp gene hybridized for Plp/ Dm20 mRNA.

(A) Dark field autoradiograms of cervical spinal cord from mice at
P5, P20, P35, and P100. At P5 and P20, many positive cells are
present, but by P35 and P100, their numbers have reduced
considerably. Bars, T mm. (B) Brightfield autoradiogram,
counterstained with haematoxylin, from the corpus callosum of a
P100 mouse with a several positive cells present. Bar, 50 um.

those produced by in situ hybridization with an age-related
decrease in jimpy oligodendrocytes (Fig. 6). By analyzing
three different CNS regions, we showed that the age at
which the loss of cells occurred varied and appeared to corre-
late with the temporal differences in myelination pattern.
Thus, in the cervical spinal cord, which normally myelinates
early, the proportion of jimpy cells declined significantly be-
tween P10 and P20 (Fig. 6, A, B, and E), whereas in the op-
tic nerve and corpus callosum, where myelination occurs
later, differences were delayed until P50 (Fig. 6, C, D, and
E). As with the hybridization studies, jimpy cells were still
detectable in the optic nerve and forebrain at P100 and even
P280 (unpublished data). The oligodendrocytes expressing
the jimpy allele were clearly identifiable within the myelin-
ated white matter generated by the Plp-null cells (Fig. 7 A).

Foci of immunopositive oligodendrocytes were often ob-
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Figure 6. Female compound heterozygotes expressing jimpy and

null alleles of the Plp gene. (A and B) Cervical spinal cords at P10
and P20, respectively, immunostained for PLP to identify those
oligodendrocytes expressing the jimpy allele. There is a marked
decrease in cells between the two ages. Whereas at P10 most of the
positive cells are distributed in white matter, at P20, there are
relatively more in the gray matter. (C and D) Optic nerves from mice
aged P20 and P35, respectively, also immunostained to show the
oligodendrocytes expressing the jimpy allele. The P20 nerve (C)
shows two clusters of jimpy cells (arrows) together with more
dispersed cells, whereas at P35, the cells are mainly dispersed.
Bars, 0.5 mm. (E) Quantification of oligodendrocytes expressing the
jimpy allele in different regions of the CNS of the compound
heterozygotes. The results (mean + SEM) are expressed as the
percentage of PLP* cells relative to the number of APC™ cells. The
APC antigen marks mature oligodendrocytes. The age of the decline in
jimpy cells varies between regions, corresponding to the order in which
the regions normally myelinate. In the spinal cord, there is a significant
decrease between P10 and P20 (P < 0.001), in the optic nerve
between P20 and P50 (P < 0.05), and in the corpus callosum between
P35 and P50 (P < 0.05). Group sizes are between four and six.

served, particularly in the optic nerve (Fig. 7, B and C), and
in some instances, the density of jimpy cells was sufficient to
result in a focus of dysmyelination (Fig. 7 C).

Are the jimpy oligodendrocytes replaced?

The age-related decrease in the number of jimpy oligoden-
drocytes in the compound heterozygotes suggested that many
were dying, as evidenced by examples of PLP" (jimpy) oligo-
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dendrocytes with pyknotic nuclei in brain and optic nerve at
P20 (Fig. 7, D and E). Cells in white matter tracts, with a
similar distribution to jimpy oligodendrocytes, immuno-
stained for caspase 3 (Fig. 7 F), a key effector caspase in the
apoptotic pathway (Casaccia-Bonnefil, 2000). As our anti-
caspase and anti-PLP antibodies were raised in the same spe-
cies, we were unable to double label for both markers.

To determine whether jimpy cells were continuing to be
generated in mice older than 1 mo, we injected animals with
BrdU between P30 and P32 and immunostained for PLP at
P34. Only a small minority of cells in brain white matter
were PLP"/BrdU" (Fig. 7 G). In the optic nerve, for exam-
ple, 2.8 £ 1.5% (mean = SEM, n = 3) of jimpy oligoden-
drocytes had incorporated BrdU. Numerous PLP~/BrdU™
cells were present throughout the CNS (Fig. 7 G); in the op-
tic nerve, 51 = 10% (mean *= SEM, z = 2) of BrdU-labeled
cells immunostained for NG2 (Fig. 7 H), 26 = 6% for APC,
and 12.7 = 5% stained for CD45. We were unable to iden-
tify any BrdU-labeled cells costained for caspase 3.

A hierarchy in the survival of oligodendrocytes
expressing different Plp alleles

The results from the various compound heterozygotes indi-
cated that oligodendrocytes expressing the rumpshaker allele
fared better than those expressing the jimpy allele when in
competition with PLP-deficient cells. This suggested a possi-
ble hierarchy for survival of oligodendrocytes expressing
these Plp alleles. To test this further, we generated com-
pound heterozygotes whose oligodendrocytes could express
either rumpshaker or jimpy alleles, with the expectation that
the former cells would survive better. Female mice (P/pi'/’/f;” by
developed a marked tremor that persisted for at least 100 d
(the longest time point used in the study) and appeared
more severe than that seen in rumpshaker female homozy-
gotes (Pl})’?’"‘h/fp"‘h). The prolonged survival of these com-
pound heterozygotes expressing jimpy and rumpshaker alleles
is in marked distinction to jimpy males (Plp?/Y), which die
at around P30; this provides further evidence for the domi-
nance of the rumpshaker allele in the heterozygotes. Tissue
from mice aged from P20 to P100 was immunostained with
a PLP COOH-terminal antibody that recognizes the rump-
shaker, but not the jimpy, products. At all ages and locations,
the vast majority of the myelin sheaths and oligodendrocyte
processes were positively stained, indicating a rumpshaker or-
igin (Fig. 8 A), and contrasted markedly with the paucity of
rumpshaker cells and myelin when they competed with those
expressing a null allele (Fig. 8 B).

Competing alleles are generated in equal proportions
but have nonuniform distribution

The above data obtained from juvenile and adult animals
suggest that the various Plp alleles affect oligodendrocyte sur-
vival differentially in competitive situations. To confirm that
cell survival and not cell production was compromised, we
determined whether the initial populations of oligodendro-
cytes expressing the competing alleles were equal in the het-
erozygotes. To achieve this, we examined the PLP™ cell pop-
ulation in the ventral cervical spinal cord, the earliest region
to myelinate, on the first day of life (P1) in compound het-
erozygotes expressing null and rumpshaker alleles and com-
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Figure 7. Female compound
heterozygotes expressing jimpy and null
alleles of the Plp gene. (A) Dorsal column
from P20 mouse immunostained for PLP
(green) to show oligodendrocytes
expressing the jimpy allele and for MOG
(red). Scattered jimpy oligodendrocytes
are present in the white matter, although
they represent considerably <50% of
the expected total oligodendrocyte
population. The base of the dorsal
columns is outlined by arrows. Bar, 50
wm. (B) Optic nerve from P20 mouse
immunostained for PLP to show clusters
of oligodendrocytes (arrows) expressing
the jimpy allele. Bar, 100 pm. (Inset)
Higher magnification of individual jimpy
oligodendrocyte showing immunostained
cell body and processes but no obvious
labeling of any myelin sheaths.

Bar, 20 pm. (C) Optic nerve from P20
mouse stained for PLP (green) and MOG
(red) to show a small dysmyelinated
region (arrows) of deficient MOG staining,
associated with oligodendrocytes
expressing the jimpy allele. Other jimpy
cells are scattered through the myelinated
region of the nerve. Bar, 50 pum.

(D and E) Optic nerve from P20 mouse
immunostained for PLP (green) to identify
oligodendrocytes expressing the jimpy
allele and DAPI (blue) to show three
jimpy cells with pyknotic nuclei indicating
apoptosis. Bars, 10 um. (F) Corpus
callosum from P20 mouse immunostained
for caspase 3 (green) to show two dying
putative jimpy oligodendrocytes. Nuclei
are stained with DAPI. Bar, 10 pm.

(G) Corpus callosum from P34 mouse
that was injected with BrdU on three
successive days from P30 to P32 and the

PLP & MOG

tissue was immunostained for PLP (green) and BrdU (red). Many PLP* jimpy oligodendrocytes are present, only two of which have incorporated
BrdU into their nuclei (arrows). One of these (larger arrow) is shown at higher magnification in the inset. Many other cells of unknown
phenotype have also incorporated BrdU. Bar, 50 pm. Inset bar, 10 wm. (H) Optic nerve from P34 mouse injected with BrdU, as above, and
coimmunostained for NG2; two double-labeled cells (large arrows) are present and an NG2* cell with an unlabeled nucleus (small arrow).
A BrdU-labeled nucleus from another cell type (*) is also evident. Bar, 10 pm.

pared this with the male rumpshaker littermates. This age is
before when apoptosis of mutant oligodendrocytes occurs;
the rumpshaker PLP is partially retained in the cell bodies,
making them easy to distinguish from myelin sheaths or cell
processes. The number of PLP™ cells in the compound het-
erozygote was 125 = 25 cells/mm?* (mean = SEM, n = 4), a
value not significantly different from 50% of the population
in male littermates, 112 = 16. We used the same method to
show that the number of PLP™ cells in wild-type/null het-
erozygotes was not different from the 50% value in wild-type
male lictermates at P1. Visual appraisal of tissue from early
myelinating optic nerve (Fig. 9, A—F) and spinal cord (Fig.
9, G-I) of compound heterozygotes expressing null and
rumpshaker alleles also suggested that starting cell popula-
tions were approximately equal. We also examined the spinal
cord of compound heterozygotes expressing jimpy or null al-
leles at P5 (jimpy cells are detected with a PLP-specific anti-
body [Table I] as opposed to wild-type or rumpshaker cells,
which are detected with an anti-PLP/DM20 antibody; the

low level of the PLP isoform in the cells at P1 precluded
quantification of the jimpy cells at this age). The number of
PLP" jimpy cells was 133 = 13 (mean *= SEM, n = 3),
compared with 121 = 5, which represented 50% of the total
APC™ cells; these values are not significantly different.
Although the populations of competing oligodendrocytes
are generated equally, their final pattern of distribution is
clearly uneven, particularly in relation to the patches in the
optic nerve. To determine whether the basis for this was es-
tablished early in development or subsequently, we exam-
ined optic nerve and spinal cord from compound heterozy-
gotes, expressing null and rumpshaker alleles, at various time
points through the initial myelination process. In the optic
nerve at P9 and subsequently, definite PLP" patches were
present in the heterozygotes. In contrast, the deposition of
the myelinating PLP™ cells was uniform in male rumpshaker
littermates, and the myelin basic protein (MBP) staining,
which represents both mutant and null cells, was uniform in

the heterozygotes (Fig. 9, A-D). In the heterozygote spinal
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Figure 8. Female compound
heterozygotes expressing either
rumpshaker and jimpy alleles or
rumpshaker and null alleles of the Pil
gene. (A) Compound female heterozygote
mouse aged P50 expressing rumpshaker
and jimpy alleles of the Plp gene (rsh/jp).
A section of spinal cord showing the
dorsal and ventral columns and central
gray matter is immunostained with an
antibody against the COOH terminus of
PLP/DM20. As this region of the protein
is deleted in the jimpy product, the
staining detects only the myelin sheaths
and oligodendrocytes expressing the
rumpshaker allele. The vast majority of
the cells and myelin are of rumpshaker
origin. (B) Similarly stained section from
a P50 compound heterozygote expressing
rumpshaker and null alleles (rsh/=). In
contrast to the previous animal, the
majority of cells and sheaths express the
null allele. Bar, 100 pm.

cord at P1, an indication of smaller patches was present, al-
though less consistent than in the optic nerve (Fig. 9, G-I).

Discussion

Female heterozygotes associated with most missense muta-
tions of the X-linked Plp gene exhibit few, if any, clinical
signs, suggesting that the majority of oligodendrocytes ex-
press the wild-type, rather than the mutant, allele. A pro-
gressive loss of oligodendrocytes expressing the mutant allele
in jimpy heterozygotes has been proposed, based indirectly
on total cell counts or levels of the jimpy transcript (Kagawa
et al., 1994; Skoff and Ghandour, 1995). By generating
compound heterozygotes, we can identify the mutant cells
unequivocally. This approach demonstrates that oligoden-
drocytes expressing the jimpy allele are indeed lost over time
and introduces the concept of a competitive hierarchy be-
tween cells expressing different alleles of the Plp gene.

The starting populations of mutant cells in the
heterozygotes are not reduced

Odur results show that in compound heterozygotes, oligoden-
drocytes expressing rumpshaker or jimpy alleles of the Plp
gene are generated in approximately equal numbers as those
expressing the null allele. Similarly, in heterozygotes express-

ing wild-type or null alleles, the number of wild-type cells is
normal; so from this we infer that those expressing the null
allele are not reduced. This finding is not unexpected, as
studies of affected male animals with Plp mutations indicate
that the generation and inital populations of oligodendro-
cytes are normal (Pringle et al., 1997; Thomson et al., 1999).
Because the starting populations of mutant oligodendrocytes
are not reduced, subsequent cell loss is likely to account for
the diminished proportions of mutant cells in the older mice.

A hierarchy in survival of oligodendrocytes expressing
different Plp alleles

Spontaneous missense mutations of the Plp gene are associ-
ated with increased numbers of dead oligodendrocytes in af-
fected males. The magnitude of cell death varies between
different mutations, being greater in those associated with
severe phenotypes (Knapp et al., 1986; Schneider et al.,
1992). Misfolded PLP is retained within the RER and has
been implicated in the death of oligodendrocytes (Gow and
Lazzarini, 1996; Gow et al., 1998), although formal proof is
currently lacking. Abnormal oligodendrocyte death is not a
feature of PLP-deficient mice, suggesting that this protein is
not essential for cell survival (Klugmann et al., 1997; Yool et
al., 2001) and cell death in the mutants is not due to a lack
of functional PLP. However, in adult P[p” " heterozygotes,

Table I. Strategy for detecting oligodendrocytes expressing different alleles of the Plp gene in the various heterozygotes

Genotype of heterozygotes Riboprobe or antibody
ISH Immunostain
Plp/Dm20 Plp/ Dm20 exon 5 PLP-CT PLP specific
WT null WT* ND WT* ND
null rumpshaker rumpshaker* ND rumpshaker* ND
null jimpy jimpy* Both negative jimpy~ jimpy*
rumpshaker jimpy ND ND rumpshaker* ND

The genotype indicates the two alleles at the X-linked Plp locus. The riboprobe for Plp/Dm20 detects the majority of the coding region for the two transcripts.
Exon 5 of the Plp/Dm20 transcript is deleted in jimpy. When used in conjunction with the Plp/Dm20 probe, it provides confirmation that jimpy cells are
being detected. The PLP-CT antibody detects both PLP and DM20. The PLP-specific antibody is specific for that isoform and is used to detect jimpy cells.
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Figure 9. Distribution of competing cell
populations in compound heterozygotes
expressing null and rumpshaker alleles
during early myelination of the optic
nerve and spinal cord. (A and B) Optic
nerves at P9 from compound heterozygote
(rsh/—) and affected male littermate (rsh/Y)
stained for PLP/DM20, showing non-
uniform distribution of PLP* (rumpshaken
cells in the heterozygote. (C-F) Optic
nerves from compound heterozygotes at
P10 and P14, respectively, showing the
patches of PLP* rumpshaker cells
compared with the uniform MBP staining
of the same nerve. (G-I) Spinal cords from
compound heterozygotes and an affected
male littermate at P1, stained for PLP. The
heterozygotes show small clumps
(arrows) of rumpshaker oligodendrocytes
and myelin, in contrast to the male, in
which the distribution is relatively uniform
in the ventral white matter. The size and
number of patches are less marked than in
the optic nerves. Bars, 200 um.

wild-type oligodendrocytes always predominate when in
competition with those expressing a null allele, suggesting
that the presence of PLP/DM20 confers a definite advan-
tage. In similar competitive situations, the cells expressing a
null allele always predominate over those with a mutant al-
lele, and rumpshaker cells fare better than jimpy oligodendro-
cytes. Using the amount of rumpshaker myelin as an indica-
tor, <25% of cells expressing the rumpshaker allele survive
when competing with PLP-deficient oligodendrocytes, whereas
a majority survive when matched against jimpy cells. Thus,
the survival of the cell appears to depend not only on the in-
trinsic severity of a particular mutation but also on the allele
being expressed by competitor cells. This variability in cell
survival strongly suggests that oligodendrocyte death must
be influenced by factors additional to any intrinsic toxicity
of the misfolded PLP or the absence of normal PLP.

Why do some mutant oligodendrocytes survive?

The proportion of jimpy oligodendrocytes decreased over
time in the compound heterozygotes expressing jimpy and
null alleles. The age at which a significant reduction oc-
curred varied according to the region of CNS and corre-
lated with the temporal pattern of myelination. A similar
regional variation in cell death has been reported in male
jimpy mice (Knapp et al., 1986), although such mice sur-
vive for only ~4 wk. The use of the long-surviving com-
pound heterozygotes demonstrated that a small number of
jimpy cells was present at P100 or older. The low number
and scattered distribution of such cells suggested that they
had survived from the period of postnatal gliogenesis. We
attempted to address this aspect by labeling compound het-
erozygotes with BrdU between embryonic day (E) 17 and
P9, when gliogenesis is taking place, and then detecting the
label in the mature mice. We were, however, unable to de-
tect any BrdU-labeled oligodendrocyte nuclei after this
lengthy period and formal proof of prolonged survival is
still lacking. We did show by BrdU labeling that some

jimpy oligodendrocytes are generated in mice older than 1
mo and that half of the BrdU-labeled cells were NG2" and
therefore potentially competent to give rise to oligodendro-
cytes. This finding is not unexpected, as the normal adult
CNS contains a population of slowly proliferating oligo-
dendrocyte progenitors (Levison et al., 1999; Nishiyama et
al., 1999; Horner et al., 2000; Levine et al., 2001) and a
marginal increase in proliferation rate occurs in older jimpy
heterozygotes (Rosenfeld and Friedrich, 1986). The present
study did not distinguish which Plp allele was activated in
these progenitors, but presumably only 50% are potential
jimpy oligodendrocytes.

Assuming that a small proportion of jimpy oligodendro-
cytes is capable of a prolonged survival raises the question as
to what differentiates such cells from those that die. As sur-
viving cells express readily detectable amounts of misfolded
PLP, their longevity cannot be due to an absence of this po-
tentially damaging product. One possible reason could relate
to an association with axons. During normal myelinogene-
sis, in excess of 50% of oligodendrocytes generated may die,
probably as a result of failure to associate with axons and se-
cure necessary survival factors (Barres et al., 1992; Barres
and Raff, 1994, 1999). Mature oligodendrocytes appear
much less dependent on axonal contact (Ludwin, 1990;
McPhilemy et al., 1990). We suggest that the surviving mu-
tant oligodendrocytes may have established sufficient axonal
support during the critical early period. This hypothesis
would not require such cells to maintain axonal contact to
ensure their survival indefinitely.

A Darwinian model explains the differential survival of
oligodendrocytes and the optic nerve patches

Our data fit well with a “Darwinian” model in which devel-
oping oligodendrocytes expressing the various Plp alleles
compete to survive. Those cells more adept at associating
with axons gain the essential survival factors, whereas the less
competent die. This model readily explains the differential



survival of both the rumpshaker and null oligodendrocytes
when set against disparate competitor cells and can account
for the disproportionate patches of allotypes in the optic
nerve. In the early neonatal period, there are clearly areas in
the optic nerve, and to a lesser extent in the spinal cord, with
clusters of mutant cells adjacent to zones where these cells
are absent. Equally, there are areas in both regions where the
two cell populations are intermingled. To generate a patch
of mutant cells suggests prolonged clonal expansion from a
common progenitor or the fortuitous contiguous settlement
of progenitors expressing the mutant allele or a combination
of both processes. If clonal expansion is the sole reason for a
patch, it is difficult to envisage why the entire length of both
optic nerves is not involved. To determine the extent of
clonal expansion will require the recognition of progeny of
individual progenitors, possibly through retroviral labeling
before their migration into the nerve. Whatever process
leads to a patch of cells with a single allotype, there appears
to be a difference between the optic nerve and the remainder
of the CNS in that the former region is more markedly af-
fected. Once a patch of mutant oligodendrocytes has been
laid down, we propose that there are two likely fates. Mutant
cells capable of establishing an association with axons survive
and generate thin myelin sheaths, as evidenced by the
patches of rumpshaker myelin in the optic nerves of the com-
pound heterozygotes. In contrast, mutant cells failing to es-
tablish this contact will be eliminated. If the two competing
populations of cells are initially intermingled, as in the ma-
jority of the CNS, the more dominant cell will largely take
over the territory of the “less fit” oligodendrocyte. Evidence
for such a repair mechanism is found in the spinal cord and
brain stem of heterozygotes with spontaneous mutations of
the Plp gene (Knapp et al., 1986; Cuddon et al., 1998). If
mutant cells originally forming a patch are eliminated, as in
the optic nerves, there appears to be minimal repair and the
end result is a zone of amyelinated axons, as found in het-
erozygotes with the jimpy and myelin-deficient mutations
(Skoff and Montgomery, 1981; Duncan et al., 1993).

Implications for heterozygotes of spontaneous
mutations of the Plp gene

Large amyelinated patches are a feature of the optic nerve of
animals heterozygous for the jimpy, myelin-deficient, and
shaking mutations of the Plp gene (Skoff and Montgomery,
1981; Duncan et al., 1987, 1993), whereas patches of naked
axons are much rarer in spontaneous rumpshaker heterozy-
gotes (Fanarraga et al., 1991). The patches appear random
and show marked variation in number and size, even be-
tween the two nerves of a single heterozygote (Duncan et al.,
1993). The basis of this phenotype is revealed by our stud-
ies, as discussed above. However, it is not clear why there is
little repair of the amyelinated patches in the optic nerve in
contrast to other regions of the CNS. Recent studies have
emphasized the large number of oligodendrocyte progeni-
tors that populate the CNS in normal adults (Levison et al.,
1999; Nishiyama et al., 1999), and our study has demon-
strated numerous proliferating NG2 " cells in the compound
heterozygotes. One might anticipate that such progenitors
expressing the wild-type (or null) allele would myelinate the
bare axons. Why this does not occur is a topic we are cur-
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rently pursuing and has relevance to remyelination in disor-
ders, such as Multiple Sclerosis.

One prediction from the present study is that female pa-
tients heterozygous for a mutant allele associated with a
“mild” Pelizacus-Merzbacher disease phenotype in affected
males may be more severely affected than those heterozy-
gotes with an allele causing a “severe” phenotype in the re-
spective male patients. The cells expressing the mild allele
survive in competition with wild-type cells, whereas those
with the severe allele die and are replaced by normal cells
or myelin. There is indeed evidence for this in some cases
of Pelizacus-Merzbacher disease/Spastic Paraplegia type 2
(Garbern et al., 1999; Sivakumar et al., 1999). Similarly, in
the animal mutants shaking pup and jimpy, there is evidence
for progressive replacement of mutant oligodendrocytes in
the spinal cord and brain stem by wild-type cells (Knapp et
al., 1986; Cuddon et al., 1998).

Materials and methods

Generation of and characterization of mice

Female jimpy heterozygotes (PIpP*) were maintained on a C3H/101 back-
ground without the tabby linkage. Female rumpshaker heterozygotes (Plp**)
or homozygotes (PIpP*"P"h) were on an identical background (the benign
nature of the rumpshaker mutation allows generation of homozygous fe-
male mutants). The derivation and characterization of the Plp-null mu-
tants, which are maintained on a C57BL6 background, has been previ-
ously described (Klugmann et al., 1997; Griffiths et al., 1998b). The Plp
knockout mice do not express Plp mRNA, as detectable by in situ hybrid-
ization, nor PLP protein, as detectable by Western blotting and immunocy-
tochemistry (Klugmann et al., 1997; Yool et al., 2001). Female mice carry-
ing the jimpy or rumpshaker mutation were crossed with Plp™/Y to
generate compound heterozygotes carrying null and mutant alleles (Pip#~
and PIpP™h7). jimpy heterozygotes were mated with rumpshaker males to
generate female mice expressing both mutant alleles (PjpPPsh).

Mice were genotyped by PCR, as described previously (Schneider et al.,
1992; Klugmann et al., 1997; Thomson et al., 1999), using DNA derived
from tail biopsies, or identified by immunostaining of cryosections of spi-
nal cord with a PLP COOH-terminal antibody (see below).

BrdU labeling

BrdU (Sigma-Aldrich) was used to identify mitotic cells. Mice aged 30 d
were injected intraperitoneally with 50 wg/g BrdU in 0.9% saline at mid-
day on three consecutive days and tissues were sampled on the fifth day.

Tissue sampling

Animals were killed at various ages between P1 and 12 mo. Mice were
perfused by intracardiac injection of paraformaldehyde—glutaraldehyde
mixture (Griffiths et al., 1981), and cervical spinal cord and optic nerve
were processed for resin embedding or perfused with buffered neutral
formalin and processed for paraffin embedding. For double staining with
BrdU and NG2, APC, or CD45, mice were perfusion fixed with perio-
date-lysine-paraformaldehyde fixative (McLean and Nakane, 1974) and
cervical cord, brain, and optic nerves were transferred to 20% sucrose
and then embedded in OCT compound (Sakura Fintek), snap frozen, and
prepared for cryosectioning. Cervical and thoracic spinal cord, brain,
and optic nerve from other mice were embedded, unfixed in OCT com-
pound, snap frozen in isopentane cooled in liquid nitrogen, and pre-
pared for cryosectioning.

In situ hybridization

Cryosections (15 wm) of transverse cervical spinal cord or saggital sections
of the brain were hybridized with the **S-labeled or DIG-labeled PLP-T ri-
boprobe detecting both Plp and Dm20 transcripts as previously described
(Griffiths et al., 1989; Vouyiouklis et al., 2000). Exon 5 is deleted from the
final transcript of jimpy Plp mRNA; a riboprobe specific to exon 5 was gen-
erated for studies involving these mutants. Autoradiograms were counter-
stained with haematoxylin and examined using darkfield and transmitted
light. DIG was detected using an alkaline phosphatase conjugate and
BCIP/NBT or HRP and diaminobenzidine. A summary of the riboprobes
used and the alleles they detect is shown in Table I.
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Immunostaining

Antibodies. PLP/DM20 was detected using a polyclonal antibody to
COOH-terminal residues 271-276, which are common to both isoforms
(N.P. Groome, Oxford Brookes University, Oxford, UK). PLP was identi-
fied with an antibody raised against the PLP-specific region, residues 117—
129 (E. Trifilieff, University of Strasbourg, Strasbourg, France). A summary
of the PLP antibodies used and the alleles they detect is shown in Table I.
MBP was detected using a rat monoclonal (clone 12; N.P. Groome). My-
elin oligodendrocyte glycoprotein (MOG) was identified with a mouse
monoclonal antibody (S. Piddlesden, University of Wales, Cardiff, Wales).
Caspase 3 was detected with a rabbit polyclonal antibody (R&D Systems).
BrdU was labeled with a mouse monoclonal antibody (Sigma-Aldrich).
The APC antigen, which marks mature oligodendrocytes, was identified
with a mouse monoclonal antibody (CC-1 clone; Oncogene Research
Products). NG2 was detected with a rabbit polyclonal antibody (Chemicon
International Ltd.) and CD45 with a rat polyclonal antibody (Serotec Ltd.).

Immunostaining. Resin sections (1 um) and paraffin wax sections (8 wm)
were immunostained with the anti-PLP COOH-terminal antibody using
the peroxidase antiperoxidase technique (Sternberger et al., 1970; Trapp et
al., 1981). Cryosections (15 wm) were stained with antibodies to the PLP
COOH-terminal and the PLP-specific region and with the caspase 3 and
MOG antibodies, using indirect immunofluorescence. Sections were fixed
in 4% paraformaldehyde in PBS for 20 min followed by 0.5% Triton X-100-
PBS for 30 min at room temperature, and blocked in 0.1% Triton X-100,
0.2% pig skin gelatin in PBS for 30 min at room temperature. Primary anti-
bodies were applied overnight at 4°C, and the secondary conjugates for 30
min at room temperature in the blocking buffer.

Sections labeled with BrdU were treated with 50% HCI/1% Triton X-100
for 10 min at room temperature, after the paraformaldehyde fixation. The
anti-BrdU antibody was applied for 2 h at room temperature in 0.2% Tri-
ton X-100/PBS. After labeling with the secondary conjugate, the sections
were immunostained for PLP or caspase 3. For NG2, APC, or CD45 dou-
ble label with BrdU, cryostat sections were incubated overnight with ap-
propriate antibodies, followed by the secondary conjugate. Sections were
then fixed in 50% acetic acid/50% ethanol before continuing with the
BrdU stain, as described.

Some cryosections were labeled with 2.2 pug/ml DAPI in H,O for 1 min at
room temperature. Cryosections were mounted in Citifluor antifade medium.

Quantification of PLP* myelin sheaths and cells

To determine the proportion of PLP* and PLP™ myelin sheaths in P[p/*"™"~
mice, resin sections of thoracic spinal cord were immunostained for PLP/
DM20. Two regions of the ventral columns on each side of the ventrome-
dian fissure were photographed and printed at a final magnification of
2,800. A lined grid was placed on the prints and all fibers touching the
lines were scored for their PLP status. Over 1,000 fibers were counted per
animal and groups of four mice were analyzed at each age.

The numbers of PLP* cells were determined in various regions of the
CNS in PIp”~ mice. The optic nerve and corpus callosum were sectioned
longitudinally and the cervical cord cut transversely. Cryosections were
immunostained with a PLP-specific antibody (to detect the oligodendro-
cytes expressing the jimpy allele) and with an anti-APC antibody to label
mature oligodendrocytes. Nuclei were labeled with DAPI. Images of anti-
body and DAPI-stained cells were merged (Adobe Photoshop® 6.0; Adobe
Systems) and all immunopositive cell bodies containing a nucleus, within
a defined area, were counted (Image-Pro Plus; Media Cybernetics). As
PLP* cells occurred randomly, the fields for imaging were selected under
phase optics (X20 objective) to avoid bias. Fields were selected along the
lengths of the optic nerve and corpus callosum and in the ventral columns
of the spinal cord. Groups of four to six animals were analyzed at various
ages from P10 to P100.

Quantification of PLP* cells in the spinal cord of compound heterozy-
gotes aged P1 was performed as above, except that comparisons were
made with affected male littermates. We found that the APC reaction was
capricious at this age and could not be used to quantify the total oligoden-
drocyte count, which was estimated from the male littermates.

Statistical analysis

In compound heterozygotes expressing a null or a rumpshaker allele, each
allele should be expressed in 50% of the oligodendrocytes and their my-
elin sheaths, if neither allele confers an advantage. To test the hypothesis
that cells expressing the rumpshaker allele are at a disadvantage, we deter-
mined whether the percentage of PLP-positive rumpshaker myelin sheaths,
as determined above, was less than the theoretical 50% value (represented
by the total number of PLP-positive and PLP-negative sheaths X 0.5) using
a one-tailed Mann-Whitney test. Comparison of the proportions of PLP-

positive myelin sheaths or PLP-positive cells at different ages was per-
formed using ANOVA with Bonferroni’s Multiple Comparison Test as the
post-test. Significance was P = 0.5. Analyses were performed using the
GraphPad Prism software (GraphPad Software).
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