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A RT I C L E

Charge Scan Reveals an Extended Region at the Intracellular End of 
the GABA Receptor Pore that Can Infl uence Ion Selectivity

Virginia E. Wotring1 and David S. Weiss2

1Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294
2Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229

Selective permeability is a fundamental property of ion channels. The Cys-loop receptor superfamily is composed 
of both excitatory (ACh, 5-HT) and inhibitory (GABA, glycine) neurotransmitter-operated ion channels. In the 
GABA receptor, it has been previously shown that the charge selectivity of the integral pore can be altered by a sin-
gle mutation near the intracellular end of the second transmembrane-spanning domain (TM2). We have extended 
these fi ndings and now show that charge selectivity of the anionic ρ1 GABA receptor can be infl uenced by the 
introduction of glutamates, one at a time, over an 8–amino acid stretch (−2′ to 5′) in the proposed intracellular end 
of TM2 and the TM1–TM2 intracellular linker. Depending on the position, glutamate substitutions in this region 
produced sodium to chloride permeability ratios (PNa+/Cl−) varying from 0.64 to 3.4 (wild type PNa+/Cl− = 0). 
In addition to providing insight into the mechanism of ion selectivity, this functional evidence supports a model 
proposed for the homologous nicotinic acetylcholine receptor in which regions of the protein, in addition to TM2, 
form the ion pathway.

I N T R O D U C T I O N

Discrimination among ions is a critical function of ligand-

gated ion channels. The Cys-loop receptor superfamily, 

which includes nicotinic acetylcholine (nACh), γ-amino-

butyric acid (GABAA and GABAC), glycine, and sero-

tonin (5-HT3) receptors, has lent itself to the study of 

selectivity because its members have similar amino acid 

sequences, but opposing charge selectivities. Examina-

tion of Cys-loop receptor sequences, and comparisons 

of permeabilities among wild-type and mutant Cys-

loop receptors, has suggested that selectivity is regu-

lated by charged amino acid residues in a few key 

positions where they interact with ions as they traverse 

the channel pore (Konno et al., 1991; Galzi et al., 1992; 

Keramidas et al., 2000; Gunthorpe and Lummis, 2001; 

Jensen et al., 2002).

After the original determination of the second trans-

membrane domain (TM2) being the major pore-form-

ing region (Giraudat et al., 1986; Hucho et al., 1986; 

Leonard et al., 1988), studies have focused on the −2, 

−1′, and 13′ residues as determinants of ionic selectiv-

ity (Cohen et al., 1992a,b; Galzi et al., 1992; Keramidas 

et al., 2000; Gunthorpe and Lummis, 2001; Jensen et al., 

2002; Thompson and Lummis, 2003). In this num-

bering scheme, 0′ would be the presumed intracellu-

lar end of TM2 (Fig. 1 A), although there is no strong 

evidence placing this arginine in the membrane or in 

the cytoplasm. Changing the −2′, −1′, and 13′ residues 

in a cationic channel to the corresponding amino acids 

found in an anionic channel (Fig. 1 B) can reverse se-

lectivity (Galzi et al., 1992). In a previous study of the 

ρ1 subunit, we examined the reverse mutations includ-

ing alanine to glutamate at the −1′ position. This mu-

tant channel did not distinguish between anions and 

cations, although we found that glutamate substitu-

tion of the 0′ residue resulted in a reversal of selectiv-

ity (Wotring et al., 2003). In MOD-1, a serotonin-gated 

chloride channel cloned from Caenorhabditis elegans, 
this same substitution caused a charge reversal in ion 

selectivity (Menard et al., 2005).

To expand on this result and to understand the im-

pact of negative charges in the pore region, we made 

mutants to systematically slide this presumed glutamate 

ring either toward the extracellular end of TM2 or in 

the opposite direction toward TM1. The permeability 

changes imparted by these mutations allowed us to lo-

cate critical elements of the selectivity fi lter at the intra-

cellular mouth of the channel pore.

M AT E R I A L S  A N D  M E T H O D S

cDNA Cloning and In Vitro Transcription
The cDNA encoding the human ρ1 wild-type subunit (accession 
no. NM 002042) was cloned into pGEMHE (Liman et al., 1991) 
for expression in Xenopus laevis oocytes. Point mutants were pro-
duced in ρ1 using the PCR overlap extension method (Kammann 
et al., 1989). Glutamate was substituted for the native amino 
acid at positions −12′ to 20′ of the TM2 numbering system 
(amino acid residues 280–312 in ρ), for a total of 33 glutamate 
mutants, 26 of which formed functional GABA-activated receptors. 
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Abbreviations used in this paper: nACh, nicotinic acetylcholine; 

SCAM, substituted cysteine accessibility method; TM2, second trans-
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In one case of a nonfunctional glutamate substitution (A288E), 
we substituted aspartate (also negatively charged) instead of 
glutamate. A neutral amino acid (alanine, glycine, or methio-
nine) was systematically substituted for most of these positions in 
an attempt to control for effects of mutagenesis at these sites. 
Additionally, the positively charged lysine was substituted for 
−5′ to 2′, to examine the effects of side chain charge at these 
particular positions. The cDNA for each construct was linear-
ized, and cRNA was synthesized using standard in vitro transcrip-
tion techniques as described previously (Amin and Weiss, 1994). 
Yield and integrity of cRNA were verifi ed by agarose gel electro-
phoresis. Unless specifi ed, all chemicals were purchased from 
Sigma-Aldrich.

Oocyte Preparation and Microinjection
Female Xenopus laevis (Xenopus I) were anesthetized with 0.2% 
MS-222, and several lobes of ovary were surgically removed in a 
procedure approved by the UAB Institutional Animal Use and 
Care Committee. The incision was sutured, and the animal was 
monitored during its recovery period for 1 wk, after which it was 
returned to its tank. Ovarian lobes were placed in a calcium-free 
oocyte Ringer (OR2) that consisted of (in mM) NaCl, 92.5; KCl, 

2.5; MgCl2, 1; Na2HPO4, 1; HEPES, 5; penicillin, 50 U/ml; strep-
tomycin, 50 μg/ml; pH 7.5. The ovarian lobes were cut into small 
pieces, and then digested in 0.3% collagenase A (Boehringer 
Mannheim) in the above solution. After dispersal for 	2 h, stage 
VI oocytes were selected and thoroughly rinsed and maintained 
in OR2 with CaCl2 (1 mM) at 18°C for several hours before cRNA 
injection. Typically, 60–100 nl of cRNA (25–100 ng/μl) was in-
jected into the oocyte with a Nanoject (Drummond Scientifi c), 
and then the oocytes were incubated at 16°C for 1–5 d. Oocytes 
were screened in voltage-clamp for expression of GABA recep-
tors. Low expression levels (GABA-induced currents between 200 
and 1,000 nA) were used for reversal potential experiments in or-
der to minimize the error due to series resistance (<4% with 
1,000 nA current).

Voltage-Clamp Experiments
The oocyte was placed in a small volume chamber with a continu-
ous perfusion system, as described previously (Amin and Weiss, 
1994). The normal extracellular OR2 consisted of (in mM) NaCl, 
92.5; KCl, 2.5; MgCl2, 1; CaCl2, 1; HEPES, 5; pH 7.5. Recording 
microelectrodes were fabricated from thin-walled glass micro-
pipettes (A-M Systems) on a Sutter P87 horizontal puller and fi lled 
with 3 M KCl (resistance = 1–3 MΩ). The ground electrode was 
placed in a separate 3 M KCl well connected to the bath by an agar 
bridge, in order to prevent errors due to junction potentials dur-
ing ion substitution experiments. Solutions for ion replacement 
experiments had a portion of the usual NaCl replaced with an iso-
osmotic amount of sodium isethionate or TEA chloride. For the 
determination of agonist sensitivity, dose–response relationships 
were fi tted with the following form of the Hill equation:

 
( ) H

max
n

50

I
Activation     I= ,

1+ EC /[A]
 (1)

where Imax is the maximum GABA-activated current, EC50 is the 
concentration of GABA required to reach half the maximum, and 
nH is the Hill coeffi cient.

Reversal Potential Measurements
Each oocyte was allowed to equilibrate at a holding potential of 
−70 mV in each solution for approximately 1 min before record-
ing sequences were begun. A group of fi ve voltage ramps was 
applied from −70 to +10 mV and then averaged. Each individual 
ramp lasted 1 s with 3-s intervals between ramps. The solution was 
then switched to a GABA-containing solution with the same ionic 
composition. When the GABA response reached steady state, fi ve 
more ramps were taken and averaged. This was followed by a 
third set of ramps after complete recovery from the GABA appli-
cation. Reversal potential was determined by averaging the initial 
and recovery ramps, and this average control ramp was subtracted 
from the average ramp during GABA application. The voltage at 
which this ramp crossed the abscissa was the reversal potential of 
the GABA-induced portion of the current. Reversal potentials 
were measured in OR2 at the beginning and end of each experi-
ment and were typically identical, indicating that the internal ion 
concentrations remained stable, even though the extracellular 
ion concentrations were changed many times during the course 
of the experiment. In the few cases where a difference was ob-
served, those particular experiments were discarded. In all cases, 
GABA (Calbiochem) was applied at the concentration required 
for half-maximal activation (EC50).

Data Analysis
The permeabilities (P) of other ions relative to chloride were cal-
culated using the Goldman Hodgkin-Katz equation  (Goldman, 
1943; Hodgkin and Katz, 1949) with internal ion activities used 

Figure 1. Diagram of proposed ρ1 GABA receptor subunit topol-
ogy and transmembrane domain sequences. (A) Endogenously 
charged residues are indicated by the appropriate charge sign 
and these residues were neutralized in this study to examine the 
role of endogenous charges on ionic selectivity. The TM2 num-
bering system used in the manuscript begins with the 0’ TM2 argi-
nine with increasing numbers proceeding toward the C terminus. 
Charge-scanning mutants covered the region from −12’ (intra-
cellular valine, V) to 20’ (extracellular alanine, A) and are indi-
cated with gray-fi lled circles. This fi gure is to merely show the 
extent of the residues examined in this study and the secondary 
structure or positions of these residues with respect to the mem-
brane should not be taken literally. (B) Aligned TM1–TM2 linker 
and TM2 sequences from several representative members of the 
receptor family. Anionic members are above the dashed line, 
cationic members are below. The GABA ρ1 receptor sequence is 
human, all others are rat.
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previously (Wotring et al., 2003) and the known activities for 
external chloride and replacement ions. Least squares fi tting 
was used (Igor, Wavemetrics) to calculate the ionic permea-
bility coeffi cients from the following equation, using reversal 
potentials measured at various activities of extracellular chloride 
and sodium:

 
+ +

+

+
+

Na i K i Cl o
-

Na o K o Cl i

P [Na ] P [K ] +P [x]
f(x,y) =-58log .

P [y] P [K ] +P [Cl ]
 (2)

Permeability coeffi cients for sodium and potassium were fi t simul-
taneously (holding PCl− at one for normalization) with reversal 
potentials measured in OR2 and three different sodium concen-
trations and three different chloride concentrations. Data from 
fi ve to seven individual cells were fi t separately. The resulting per-
meability values were then averaged and the standard error was 
calculated. A Student’s t test was applied to determine signifi cant 
differences from wild type, using P < 0.05.

Estimating Pore Size
We made substitutions with a range of anions and cations of dif-
ferent dimensions to determine the cutoff and estimate pore size. 
For these experiments, 50 mM of the NaCl was replaced with 
50 mM of the test solution and reversal potentials were obtained 
as described previously. Using the permeability coeffi cients de-
termined for each mutant receptor and Eq. 2, we calculated the 
theoretical reversal potential shift expected for the 50 mM sub-
stitution of the impermeant ion. In theory, substitution by an im-
permeant ion will reduce the concentration of the permeant ion 
and shift the measured reversal potential to this predicted value. 
If the reversal potential shift is signifi cantly less than this theoreti-
cal value, the substituted ion is permeant. The cations and their 
diameters (in Å) used in this study were sodium, 1.9; rubidium, 
3.0; cesium, 3.4; imadazole, 4.8; choline, 5.6; triethanolamine, 
7.0; N-methyl-d-glucamine, 9.0; and the anions and their diame-
ters were bromide, 2.4; chloride, 2.4; formate, 3.4; bicarbonate, 
4.1; acetate, 4.5; propionate, 5.1; gluconate, 6.9; isethionate, 7.0 
(Marcus, 1997).

R E S U LT S

Recently, we have shown that glutamate substitution of 

the conserved positively charged residue at 0’ (ρ1 R292, 

Fig. 1 A) can reverse the ionic selectivity of GABA recep-

tors (Wotring et al., 2003), expanding upon previous 

studies showing the neighboring −1’ residue is critical 

for ionic charge selectivity (Galzi et al., 1992; Keramidas 

et al., 2000; Gunthorpe and Lummis, 2001; Jensen et al., 

2002; Thompson and Lummis, 2003; Menard et al., 2005). 

This result suggested that other residues, in addition to 

−1’, can affect ion selectivity. We set out to determine 

the spatial extent of the domain that can alter selectivity 

with a charge-scanning mutagenesis method, i.e., by 

making charge-substitution mutants to systematically 

scan the pore region.

Residues in and near the pore region of the ρ1 GABA 

subunit were mutated to negative (glutamate: E, or as-

partate: D), positive (lysine: K), or neutral amino acids 

(alanine: A, or glycine: G). Since the ρ1 GABA subunit 

forms functional homomeric receptors, each mutant 

homopentamer actually contained fi ve mutant resi-

dues. Of the 51 mutant GABA receptors constructed 

for this study, all but 10 responded to GABA applica-

tion and three mutants produced high baseline cur-

rents (>1 μA) independent of agonist application that 

precluded them from further experimentation. Fig. 2 

shows GABA-activated currents in the wild-type recep-

tor and four individual glutamate mutants. The dose–

response relationships are plotted in Fig. 2 B. These 

particular mutations are in the region that we will show 

has the largest impact on selectivity. Note that three of 

the mutations (P290E, V293E, and P294E) imparted a 

four- to fi vefold decrease in agonist sensitivity evident 

as a rightward shift in the dose–response relationship. 

R292E was similar in sensitivity to the wild-type recep-

tor. Table I provides the parameters determined from 

fi tting the Hill equation (see Materials and methods) to 

the dose–response relations for all the mutants in this 

study. The majority of the mutants showed functional 

characteristics (dose–response relationship, activation 

and deactivation kinetics) similar to the wild-type recep-

tor, suggesting we have likely not perturbed structures 

crucial to receptor activation.

Is the Selectivity Filter Limited to the −1’ Residue?
As seen in Fig. 3 A, the P290E mutant conducted cat-

ions better than anions. The reversal potential in a low 

Cl− solution (solid trace) is about the same as in normal 

OR2 (indicated by the arrow), but there is a large nega-

tive shift in low Na+ (dashed trace). Reversal potentials 

were determined in several sodium and chloride con-

centrations. The rightmost graphs in Fig. 3 plot these re-

versal potentials as a function of sodium (fi lled circles) 

and chloride (open circles) concentrations. For P290E 

the fi tted permeability coeffi cients were PNa+/Cl− = 

3.4 ± 1.2 and PK+/Cl− = 2.1 ± 0.7. These results are in stark 

contrast to those obtained with our two other mutations 

at the same site (Fig. 3, B and C). Substitution of neutral 

alanine for proline had a limited effect on permeability 

(PNa+/Cl− = 0.05 ± 0.06 and PK+/Cl− = 0.06 ± 0.03, n = 5). 

For comparison, the wild-type ρ1 receptor exhibits a 

PK+/Cl− of 0.03 ± 0.02 and a PNa+/Cl− of 0 (Wotring et al., 

2003). Substitution of a positively charged lysine resi-

due had a modest, but signifi cant, effect on permeabil-

ity (PNa+/Cl− = 0.09 ± 0.04 and PK+/Cl− = 0.13 ± 0.02, 

n = 5), although changes in rectifi cation were apparent. 

These data from the −2’ site, together with our previ-

ous results from the −1’ and 0’ mutants (Wotring et al., 

2003), suggested there are a number of locations in this 

region that can infl uence selectivity. The data in Fig. 3 

also demonstrate that the addition of negative charges 

to an anionic channel at this site can impart permeabil-

ity to cations, while the presence of positive charges or 

neutral amino acids has a minimal impact on selectivity. 

The observation that neutral or positive substitutions 

do alter the selectivity profi le to some extent indicates 

that there are changes in structure that go beyond the 

electrostatic modifi cations.
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What Is the Spatial Range of the Region Where Ion Charge 
Selectivity Can Be Reversed?
Continuation of the glutamate scan shows that while the 

−2’ and 0’ sites are the most cation selective when mu-

tated to glutamate, fi ve additional glutamate substitu-

tions (−1’, 1’, 2’, 3′, and 5′) produced receptors that 

were essentially nonselective (Fig. 4). The permeability 

profi les in Fig. 4 show an alternating pattern from −2’ 

to 2’. This pattern is more evident in Fig. 5 where the so-

dium (Fig. 5 A) and potassium (Fig. 5 B) permeabilities 

(shown as a ratio to chloride) are plotted for the gluta-

mate scan. This result prompted us to extend the gluta-

mate scan away from this region in both directions, but it 

was evident that only glutamate mutations from −2’ to 5′ 
resulted in cation or nonselective pores (Fig. 5).

Since substitution of negatively charged residues re-

sulted in increased permeability to cations, we substi-

tuted positively charged lysine to examine the effect of 

the reverse charge at the same sites. Most of the lysine 

mutants showed little to no difference in permeability 

from wild type. (Fig. 5, gray symbols). Neutralization 

of the same residues by alanine substitution also had 

a limited effect on ionic permeabilities (Fig. 5, open 

symbols). The reversal of ionic selectivity was unique to 

glutamate substitutions.

Do Endogenous Charged Residues Play a Role in 
Selectivity?
Examination of the wild type ρ1 sequence shows a num-

ber of charged residues near the intracellular mem-

brane interface (Fig. 1), possibly in a position to interact 

with permeating ions. We systematically neutralized 

these charged residues to test their role in selectivity. 

Neutralization of individual sites had little to no effect 

on ionic permeabilities (PK+/Cl− < 0.10; Fig. 6). No ad-

ditional cationic permeability was seen when multiple 

substitutions were made in the same subunit. These results 

demonstrate that these endogenous charged residues 

Figure 2. Dose–response relationships for 
selected glutamate scan mutants. (A) GABA-
gated currents at a range of agonist concen-
trations in oocytes expressing the indicated 
mutants are shown. (B) Maximum current 
amplitudes were plotted as a function of 
GABA concentration and fi tted with the Hill 
equation (Eq. 1 in Materials and methods). 
Parameters from these fi ts are provided in 
Table I. In general, the mutations had a 
modest effect on agonist sensitivity.
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TA B L E  I

Wild-Type and Mutant GABA Concentration–Response Relationships

E Mutants K Mutants Neutral Mutants

Mutant EC50 Hill slope n Mutant  EC50 Hill slope n Mutant  EC50 Hill slope n

ρ1 0.8 ± 0 3.4 ± 0.1 8

V280E 

(−12’)

4.7 ± 0.5 1.1 ± 0.1 5

S281E 

(−11’)

1.0 ± 0.1 1.6 ± 0.1 5

F282E 

(−10’)

NFE 30

W283E 

(−9’)

NFE 30

I284E 

(−8’)

2.8 ± 0.2 2.0 ± 0.1 5

D285E 

(−7’)

1.0 ± 0.1 2.3 ± 0.3 5 D285N 1.8 ± 0.4 1.8 ± 0.2 6

R286E 

(−6’)

0.3 ± 0.0 2.5 ± 0.3 5 R286M 0.6 ± 0.1 2.9 ± 0.1 6

R287E 

(−5′)
1.0 ± 0.1 3.0 ± 0.3 4 R287K 24.0 ± 2.6 2.4 ± 0.8 5 R286Q/R287Q 0.4 ± 0.03 2.8 ± 0.5 6

A288D 

(−4’)

1.5 ± 0.2 2.4 ± 0.2 5 A288K  2.3 ± 0.4 2.3 ± 0.3 5 A288G 2.6 ± 0.3 1.4 ± 0.1 5

V289E 

(−3′)
1.3 ± 0.1 2.1 ± 0.1 5 V289K  4.4 ± 0.5 1.1 ± 0.1 5 V289A 4.8 ± 0.3 2.1 ± 0.1 5

P290E 

(−2’)

4.1 ± 0.3 1.8 ± 0.2 6 P290K 19.4 ± 1.9 1.4 ± 0.3 5 P290A 2.8 ± 0.1 1.1 ± 0.1 6

A291E 

(−1’)

2.0 ± 0.1 1.9 ± 0.1 5 A291K  2.0 ± 0.1 1.9 ± 0.1 5 A291G 1.6 ± 0.2 2.7 ± 0.2 5

R292E (0’) 1.3 ± 0.1 1.4 ± 0.2 5 R292K 11.9 ± 1.3 0.7 ± 0.1 5 R292M 1.8 ± 0.1 1.0 ± 0.1 6

V293E (1’) 3.9 ± 0.3 1.4 ± 0.1 5 V293K  0.6 ± 0.1 1.3 ± 0.1 5 V293A 2.3 ± 0.2 2.1 ± 0.2 5

P294E (2’) 3.3 ± 0.2 1.2 ± 0.1 5 P294K 0.07 ± 0.01 1.0 ± 0.1 5 P294A 2.4 ± 0.6 2.0 ± 0.3 5

L295E (3′) 1.6 ± 0.2 1.9 ± 0.4 5 L295A 1.6 ± 0.2 1.6 ± 0.2 5

G296E (4’) 1.4 ± 0.1 2.1 ± 0.2 5 G296K NFE 30 G296A 2.4 ± 0.1 1.6 ± 0.2 5

I297E (5′) 4.7 ± 0.2 1.0 ± 0.1 5 I297K NFE 30 I297A 1.5 ± 0.1 2.1 ± 0.1 5

T298E (6’) NFE 30 T298K NFE 30 T298A 1.4 ± 0.2 1.9 ± 0.2 5

T299E (7’) 1.2 ± 0.1 1.8 ± 0.2 5 T299K NFE 30 T299A 2.2 ± 0.2 1.7 ± 0.1 5

V300E (8’) NFE 30

L301E (9’) 2.1 ± 0.4 1.5 ± 0.4 5 L301K HL 30

T302E (10’) HL 30 T302K HL 30

M303E (11’) 0.7 ± 0.1 2.4 ± 0.2 5

S304E (12’) 1.2 ± 0.1 2.3 ± 0.2 5 S304A 0.9 ± 0.1 2.7 ± 0.3 5

T305E (13’) 0.06 ± 0.008 2.7 ± 0.3 5 T305A 0.2 ± 0.05 2.7 ± 0.3 5

I306E (14’) NFE I306A 0.3 ± 0.1 2.3 ± 0.2 5

I307E (15’) NFE I307A 0.1 ± 0.01 1.4 ± 0.2 5

T308E (16’) 0.7 ± 0.1 3.1 ± 0.1 5

G309E (17’) 0.02 ± 0.003 1.46 ± 0.1 5

V310E (18’) 0.06 ± 0.01 1.84 ± 0.1 5 V310A 1.9 ± 0.1 2.3 ± 0.1 5

N311E (19’) 0.6 ± 0.05 2.3 ± 0.3 5 N311A 0.7 ± 0.1 2.8 ± 0.3 5

A312E (20’) 0.2 ± 0.01 3.1 ± 0.3 5 D285N/R286Q/

R287Q/R292M

1.6 ± 0.2 2.0 ± 0.2 6

Values are mean ± SEM with n equal to the number of oocytes tested. Note that most charge neutralization or glutamate substitutions had little effect on 

the agonist dose–response curve, while some lysine mutations resulted in modest increases in the GABA EC50. Constructs that failed to exhibit currents 

upon application of GABA are indicated by NFE (no functional expression). Constructs that exhibited small (<100 nA) currents with a concomitant high 

background (>1 μA) are labeled HL (high leak). The glutamate substitution mutant A288E was nonfunctional; results from an aspartate substitution 

mutant (A288D) are reported for this position.
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were not among the primary determinants of ion selec-

tivity in the wild-type ρ1 receptor.

Do the Mutations Alter the Pore Diameter?
The fi nding that, via site-directed mutagenesis, we could 

create a receptor that was equally permeant to both an-

ions and cations, suggested that we may have produced 

a permeation pathway of larger than normal physical di-

mensions. To test this possibility, we estimated the pore 

diameter by probing with a range of anions and cations 

of different dimensions. Fig. 7 A shows data from the 

wild-type receptor. The fi lled symbols represent cation 

substitutions and the open symbols represent anion sub-

stitutions. For all the graphs in Fig. 7, the dotted and 

dashed lines are the predicted “ideal” reversal potentials 

from the calculated relative permeabilities presented 

earlier, assuming the substituted anion or cation was to-

tally impermeant. From Fig. 7 A, we see that the shift in 

reversal potential reaches its maximum with an anion 

diameter between 4 and 6 Å. This agrees with the previ-

ous estimation of 6 Å determined by fi tting anion per-

meabilities as a function of size (Wotring et al., 1999). 

Except for an apparent anomalous effect with cesium 

(3.4 Å), cation substitution did not shift the observed re-

versal potential in the wild-type receptor. Fig. 7 (B–F) 

shows substitution experiments for glutamate mutations 

from positions P290 through P294. Remember that posi-

tions 290, 292, and 294 showed the greatest permeation 

of cations, while 291 and 293 were less cation permeant. 

From these approximations it seems that, in all cases, 

reversal potential shifts approach their maximum with 

an ionic diameter between 4 and 6 Å. These fi ndings 

suggest that the glutamate substitutions do not alter the 

diameter of the pore to any signifi cant degree.

D I S C U S S I O N

The Cys-loop superfamily offers a unique opportunity 

for investigating selectivity structure and mechanisms 

since there is substantial sequence homology, yet mem-

bers of this receptor family include both cationic- and 

anionic-selective pores. To date, several charged resi-

dues at the cytoplasmic, intermediate, and extracellular 

locations of TM2 have been implicated in ion selectivity 

(Konno et al., 1991; Galzi et al., 1992; Keramidas et al., 

2000; Gunthorpe and Lummis, 2001; Jensen et al., 2002; 

Thompson and Lummis, 2003; Menard et al., 2005). In a 

previous report, we expanded the mutagenesis studies 

to include the ρ1 homomeric GABA receptor (Wotring 

et al., 2003). Here, we extend the potential determi-

nants of ionic selectivity to include a seven–amino acid 

stretch near the intracellular end of the pore.

Glutamate Scan Suggests a β-Strand Structure
Within the seven amino acid domain, an intriguing pat-

tern emerged, and is shown in Fig. 5. At roughly every 

other site, glutamate substitution resulted in cation-pre-

ferring receptors. These cation mutants alternated with 

Figure 3. A negatively charged substitution at 
P290 (−2’) results in cation-preferring receptors. 
(A) Amplitudes of GABA-induced currents from P290E 
were measured at a continuously varying membrane 
potential using the ramp protocol described in the 
Materials and methods. Ramps obtained in low so-
dium OR2 are the dashed lines and those in low-
chloride OR2 are the solid lines. The normal OR2 
ramp is omitted for clarity, but the reversal potential 
is indicated with an arrow. For the graph on the 
right, reversal potentials were measured at different 
concentrations of sodium (solid) or chloride (open) 
and fi t with the GHK equation (Eq. 2) to determine 
the relative permeability coeffi cients. Substitution of 
negatively charged glutamate for the native proline 
at position 290 (−2’) resulted in cation-preferring 
receptors, but receptors were chloride selective 
when this site was mutated to neutral alanine (B) or 
positively charged lysine (C).
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mutants exhibiting a charge nonspecifi c or unchanged 

selectivity. This alternating pattern is consistent with a 

β-strand structure. Mutagenesis-induced cation perme-

ability peaked at the −2’ position, tapering off as the 

charged residue was moved up into the channel lumen 

toward the extracellular space. Our functional assay 

demonstrates that each residue from −2’ to 5′, exclud-

ing 4’, is capable of altering ionic permeability when 

mutated to glutamate.

It has long been assumed that most ion channel trans-

membrane domains are helical, but there is some evi-

dence to the contrary. Molecular modeling using several 

structural prediction algorithms and incorporating data 

from many Cys-loop receptor subunits has suggested 

that the intracellular end of TM2 may form a β-strand 

(Le Novere et al., 1999). More specifi cally, based on an 

alignment between the α7 examined in that study with ρ1, 

their β-strand would extend from 0’ to 6’ with the struc-

ture of the upstream sequence not defi ned. In another 

recent modeling study, it was proposed that the TM2 he-

lix of GABA α1 begins at the 3′–4’ residues, leaving the 

more intracellular portion nonhelical (Bertaccini and 

Trudell, 2002). However, the computer algorithms that 

form the basis of most structural modeling or prediction 

programs make specifi c, and ill-defi ned, assumptions 

about the immediate environment (protein, aqueous, 

lipid). Our conclusion that this region is a β-strand will 

therefore remain a working hypothesis.

Comparison with Other Cys-Loop Receptors
One might expect that charge substitution of amino ac-

ids that line the lumen of the ion pathway would have a 

greater infl uence on ion permeation and selectivity com-

pared with those residues that face away from the pore. 

This assumption depends upon the local architecture 

(e.g., diameter) and electrostatics. In addition to these 

assumptions, alignment between the TM1–TM2 linker 

and TM2 regions can be problematic, especially between 

cationic and anionic members of this receptor family, 

Figure 4. Glutamate scanning reveals a pattern that alternates 
between cation and nonspecifi c permeability. (A–H) For each 
indicated glutamate mutant, reversal potentials were measured in 
solutions with different concentrations of sodium (solid) or chlo-
ride (open). Lines are GHK fi ts to the data. Reversal potentials 
were nearly unaffected by chloride concentration in mutants that 
are cation preferring (A, C, and E), while for nonselective mu-
tants the reversal potentials were shifted by changes in sodium or 
chloride concentration (B, D, G, and H). Systematic substitution 
of glutamate for each amino acid from −2’ to 5′ exhibited a 
nearly alternating pattern of cation-preferring receptors and non-
selective receptors.

Figure 5. Alternate glutamate mutants at the intracellular end of 
TM2 are cation preferring. (A) Relative potassium permeability 
plotted against amino acid number shows the alternating pattern 
of cationic glutamate mutants (solid circles). Substitutions by pos-
itive lysine residues (gray circles) resulted in only small increases 
in potassium permeability. Substitution by neutral alanines (open 
circles) had no signifi cant effect on ionic permeabilities. (B) Same 
as A, showing relative sodium permeability of mutant receptors.
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since the −2’ proline in the GABA receptor is deemed 

missing in the cationic Cys-loop receptors. And lastly, the 

ρ1 GABA receptor differs from other members of this 

family in that it also contains a proline at the 2’ position 

rather than the more typical serine or threonine.

It is tempting to compare our fi ndings with stud-

ies using the substituted cysteine accessibility method 

(SCAM) that can identify putative pore-lining amino 

acids (Karlin and Akabas, 1998). The ρ1 GABA recep-

tor residues that showed the greatest propensity to 

conduct cations when mutated to glutamate were the 

proline, arginine, and proline at the −2, 0’, and 2’ po-

sitions, respectively. As discussed above, the nACh and 

5-HT3 receptors do not have the proline at the −2 posi-

tion, but rather have a glycine present. SCAM studies 

in which reagents were added extracellularly demon-

strated that only the 2’ position (among the −2, 0, and 

2’ positions) was accessible (Akabas et al., 1992, 1994; 

Reeves et al., 2001). However, SCAM studies of the nACh 

receptor in which reagents were added intracellularly, 

revealed modifi cation at the −2’ and 0’ positions in 

the presence of agonist (Wilson and Karlin, 1998). In the 

present study, the introduction of a glutamate at the 

2’ position did increase the cation permeability, although 

to a lesser extent than at positions deeper into TM2 

(−2’). Early mutagenesis experiments in the nACh 

receptor suggested the 2’ position may be the narrow-

est portion of the pore (Konno et al., 1991; Villarroel 

et al., 1991; Cohen et al., 1992a,b), so one might have 

expected a greater electrostatic interaction with the 

permeant ion and hence a greater effect on selectivity. 

Previous SCAM studies in the ρ1 receptor, however, re-

vealed modifi cation of the −2’ position, demonstrating 

differences in accessibility profi les even between GABA re-

ceptors (Filippova et al., 2004). The −2’ position has 

also been implicated as a contributor of pore diameter and 

ion selectivity in the glycine receptor (Lee et al., 2003).

Glutamate substitutions at the −1’, 0’, 3′, and 5′ posi-

tions produced more modest changes in selectivity, re-

sulting in essentially comparable degrees of cation and 

anion permeation. None of these positions were ac-

cessible in the α1 subunit of α1β1γ2 GABA receptors 

(Xu and Akabas, 1996), but the 1’ position was accessible 

in the ρ1 receptor (Filippova et al., 2004). If this region 

were a β-strand as suggested above, then perhaps it fol-

lows that charges in side chains that face away from the 

pore have less of an impact on selectivity than those 

that face the lumen. In this study, we are examining the 

ability of the pore to select between ions that differ in 

charge but exist over a limited size range, and there-

fore one must be cautious when extrapolating these 

data to pore architecture. SCAM analysis, on the other 

hand, is comparing the ability of modifying reagents to 

reach and react with introduced cysteines. In this case, 

the absence of modifi cation might refl ect inaccessibil-

ity of the reagent (size selection) rather than position 

of the side chain with respect to the pore. That is, the 

reagents may not be able to access the narrowest re-

gions of the pore.

Our data also indicated minimal, if any, changes in 

pore diameter regardless of the charge selectivity. For 

example, the −2E’ and 0E’ mutants (the most cation-

permeant receptors in the present study) demonstrated 

a wild-type pore diameter when probed with cations 

of different sizes (Fig. 5, B and C). This was surprising 

since cationic-selective members of the Cys-loop family 

(Dwyer et al., 1980; Yang, 1990; Cohen et al., 1992b) ap-

pear to have larger pore diameters than the anionic-

selective members (Bormann et al., 1987; Fatima-Shad and 

Barry, 1993; Wotring et al., 1999; Keramidas et al., 2002), 

although the degree of cation selectivity in our mutants 

is less than that of the “true” cationic receptors. In ad-

dition, studies in the glycine receptor indicated an 

apparent increase in the pore diameter concomitant 

with the increased cation selectivity imparted by muta-

genesis (Keramidas et al., 2002). The extent to which 

these differences between glycine and ρ1 GABA re-

ceptors refl ect differences in pore structure, or rather 

the methodology for estimating the pore diameter, is 

presently unclear.

In any mutagenesis study, one must proceed with cau-

tion when interpreting the impacts of a structural change. 

In an effort to address this possibility, we did follow up 

our glutamate substitutions with alanine mutations to 

Figure 6. Endogenous charged residues in the wild-
type receptor have little effect on ionic permeability. 
Charged amino acids at the intracellular membrane 
interface were neutralized to examine the role of 
 native charges on ionic permeability. Although small 
elevations in relative cation permeability were evident, 
none of the constructs increased relative cation per-
meability to more than 0.15, in stark contrast to the 
previously described deletion of P290 and muta-
tion of A291 to E (∆P290/A291E), shown for 
comparison (Wotring et al., 2003). RRR/QQM is 
R286Q/R287Q/R292M, DRRR/NQQM is D285N/
R286Q/R287Q/R292M, and DRR/PAD is D285P/
R286A/R287D. For the latter case, the mutations were 
to the corresponding sequence in nAChR rather 
than a simple neutralization.
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assess a structural perturbation, and lysine mutations 

to assess the introduction of a charge, but to a sign op-

posite that of glutamate (Fig. 5). While the alanine 

substitutions in our region of interest had either mini-

mal, or no, impact on selectivity, the lysine substitutions 

showed a signifi cant increase in cation permeability. 

This increase in cation permeability was still much less 

than that of the glutamate substitutions at these posi-

tions. For example, in all cases, the lysine substitutions 

were still more permeable to anions than cations. Fur-

ther mutagenesis would have to be performed in an 

attempt to dissect out the contributing factor(s) (e.g., 

charge versus size) and the extent to which the effects 

on selectivity for the glutamate mutations represent 

electrostatic interactions with the permeating ions. Finally, 

at physiological pH, glutamate would be deprotonated 

and hence negatively charged. However, without knowing 

the “microclimate” around the side chain with such com-

plicating factors as surface charge and hydrophobicity, 

it is unknown how many of the fi ve glutamates would 

be deprotonated.

Is Part of the Permeation Pathway in an Intracellular 
Portion of the Protein?
It is generally assumed that the amino acids that form 

the pore, and thus the ionic permeation pathway, lie 

within the cell membrane. Hydropathy plots and se-

quence alignments indicate that at least part of the –2’ 

to 5′ span lies in the intracellular loop between TM1 

and TM2, and therefore would not be expected to be 

part of the “classic” TM2 pore. Structural models of a 

nicotinic acetylcholine receptor show that a portion of 

the ion pathway is formed by an intracellular part of the 

channel protein, referred to as a fenestrated hanging 

gondola (Miyazawa et al., 1999) and later termed the 

intracellular vestibule (Unwin, 2005). Lateral windows 

in this structure provide several openings that permeat-

ing ions can pass through, and there are many negatively 

charged residues near these openings in the cation-

selective nACh channel. In a previous study, we used cys-

teine mutants and charged sulfhydryl reagents to show 

that portions of the TM1–TM2 linker, and even TM1 it-

self, lie within the permeation pathway (Filippova et al., 

2004), and this was confi rmed in the nACh structural 

model. The results we describe here are in agreement 

with Cys-loop structural models that incorporate an in-

tracellular extension of the pore formed by cytoplasmic 

portions of the protein. That our charge scanning up-

stream from −2’ did not alter ion selectivity suggests 

that if this region does form an extension of the pore, 

it is likely not a narrow segment.

The wild-type ρ1 receptor exhibited a permeability 

ratio of 33 (PCl−/K+), while the mutation that imparted 

the greatest permeability for cations (P2’E) exhibited a 

permeability ratio of only 3.4 (PNa+/Cl−). Although cat-

ion preferring, this is less stringent of a selectivity then 

wild-type cationic members of this Cys-looop family. For 

example, the 5-HT3A receptor displays a PNa+/Cl− value 

of 53 (Thompson and Lummis, 2003) and the α7 nACh 

receptor has a reported PK+/Cl− value of ≈20 (Bertrand 

et al., 1993). In all cases where mutations have been 

produced in this region in an effort to invert the selec-

tivity, the degree of inverted selectivity has fell short of 

wild-type anionic and cationic members of this family 

and comparable to what we observed here (Galzi et al., 

1992; Keramidas et al., 2000; Gunthorpe and Lummis, 

2001; Keramidas et al., 2002; Thompson and Lummis, 

2003; Wotring et al., 2003). A likely interpretation of 

this observation is that other regions contribute to ion 

Figure 7. Glutamate substitutions do not alter the apparent 
pore size. (A–F) Reversal potentials were measured after substi-
tution with anions (open symbols) and cations (closed symbols) 
of different diameters. The dashed and dotted lines indicate 
the calculated reversal potential shift for an impermeant anion 
or cation, respectively, and were based on the determined rela-
tive permeabilities for that particular mutant. For the wild-type 
receptor, the reversal potential shift approaches its maximum 
value for anions between 4 and 6 Å. Using this approximation, 
the data indicate that for all cases, the pore size was between 
4 and 6 Å. The cations and their diameters (in Å) were as fol-
lows: cations, sodium, 1.9; rubidium, 3.0; cesium, 3.4; imadazole, 
4.8; choline, 5.6; triethanolamine, 7.0; N-methyl-d-glucamine, 
9.0; anions, bicarbonate, 4.1; acetate, 4.5; propionate, 5.1; glu-
conate, 6.9; isethionate, 7.0. Under the particular mutation, 
we provide the difference in side chain volume imparted by 
the substitution.
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selectivity, and specifi c regions have been proposed 

(Galzi et al., 1991; Cohen et al., 1992b; Unwin, 2005). 

Even if the region investigated here was the sole de-

terminant of charge selectivity for permeating ions, 

there are sequence (and hence structural) differences 

in neighboring regions making it unlikely that site-

directed mutagenesis would recapitulate the proper pore 

structure necessary for the exquisite selectivity of wild-

type receptors.

Comparing Mechanisms that Control Cation and 
Anion Selectivity
The experimental observation that substitutions at 

homologous positions can infl uence the selectivity of 

anionic or cationic members of this Cys-loop superfamily 

argues that the position of the region(s) that deter-

mines ion selectivity is well conserved (Galzi et al., 1992; 

Corringer et al., 1999; Keramidas et al., 2000; Keramidas 

et al., 2002; Thompson and Lummis, 2003; Wotring 

et al., 2003). The experiments described here show that 

one can confer cation permeability to an anion-selective 

channel by introducing negatively charged residues 

at key locations. It might then follow that positively 

charged residues in the same region would result in an-

ion permeability, but our charge neutralization exper-

iments refute this hypothesis, at least for the −2’ to 5′ 
domain. If the ancestral Cys-loop receptor was indeed 

an anion channel (Ortells and Lunt, 1995), relatively 

small mutations like the glutamate substitutions de-

scribed in this report could have resulted in cation-

 selective channels.

Although it is diffi cult to elucidate the mechanism of 

ion selectivity in the absence of defi nitive structural 

information, the experiments described above provide 

some leads. The effects of glutamate substitution on ionic 

selectivity support an electrostatic mechanism rather 

than a molecular sieve model. In addition, the alternat-

ing pattern of mutagenesis-induced cation permeability 

suggests a β-strand structure toward the intracellular 

end of the pore. Finally, the observation that the muta-

tions in this domain did not alter the estimated pore 

size suggests that the region of the permeation pathway 

that defi nes the minimal pore diameter is either located 

elsewhere or is highly constrained by neighboring protein 

segments (i.e., held rigid).
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