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Environmental exposures are likely to be a sig-
nificant factor in the etiology of several dis-
eases including neurodegenerative disease
(Kamel and Hoppin 2004), coronary heart
disease (Zhang et al. 1998), cancer (Grover
and Martin 2002; Ragavan et al. 2006), and
diabetes (Cranmer et al. 2000). Epidemiologic
studies examining demographic differences in
disease incidence and altered risk patterns
among migrant populations (Peto 2001) lends
weight to the notion that xenobiotics play an
important role in disease causation (Safe
2004). Humans are variously and continu-
ously exposed to mixtures of disease-impli-
cated xenobiotics via environment and/or diet
(Kalantzi et al. 2004c). Toxicity testing
employing high-dose treatments with individ-
ual agents may be an inappropriate means of
assessing low-dose exposures (Welshons et al.
2003). Different damage-induction mecha-
nisms at low-dose versus high-dose concentra-
tions may occur (Joosten et al. 2004; Kalantzi
et al. 2004b). Following exposures to mix-
tures, additive, synergistic, inhibitory and/or
stimulatory interactions between different
xenobiotics may occur.

Candidate and ubiquitous xenobiotics
include polycyclic aromatic hydrocarbons

(PAHs) {e.g., benzo[a]pyrene (B[a]P)}, hete-
rocyclic aromatic amines {e.g., 2-amino-
1-methyl-6-phenylimidazo[4,5-b]pyridine
(PhIP)} and persistent organic pollutants
(POPs) [e.g., lindane; γ-hexachlorocyclo-
hexane (γ-HCH)] (Kalantzi et al. 2004b).
B[a]P is a procarcinogen that requires meta-
bolic activation to 7,8-diol 9,10-oxides (Sims
et al., 1974); these ultimate carcinogenic and
electrophilic species bind covalently with the
N2 position of guanine (Cheng et al. 1989;
Rubin 2001). PhIP is a protein-derived
mutagen that appears to possess significant
estrogenic properties (Felton et al. 2004;
Gooderham et al. 2002; Lauber et al. 2004).
It is metabolically activated via a two-step
mechanism initially involving conversion to
N-hydroxy-PhIP (Crofts et al. 1998; Zhao
et al. 1994) followed by esterification to a
metabolite that binds to the C8 position of
guanine (Schut and Snyderwine 1999).
Lindane is a lipophilic pesticide that moves
through environmental compartments
(Martin and Semple 2004) and may induce
genomic alterations in the form of micro-
nuclei (Kalantzi et al. 2004b).

Biotransformation is often facilitated by
oxidative metabolism via the cytochrome

P450 (CYP) mixed-function oxidase system.
The CYP multigene family consists of consti-
tutively-expressed, inducible isoenzymes that
are found mainly in the liver but also to vary-
ing degrees in extrahepatic sites (Ragavan
et al. 2004). The proteins of the B-cell
leukemia/lymphoma-2 (Bcl-2) family regulate
the permeability of the outer mitochondrial
membrane (Vaux and Korsmeyer 1999) and
apoptosis (Adams and Cory 1998), and also
appear to be modulators of oncogenic pro-
gression (Theodorakis et al. 2002). Through
a modulation of Bcl-2:Bcl-2-associated X
(Bax), PhIP appears to delay the involution of
the rat mammary gland (Venugopal et al.
1999); dysregulation effects that may not be
dissimilar to those induced by 17β-estradiol
(E2) (Leung and Wang 1999).

In previous studies, we demonstrated the
genotoxicity of nanomolar concentrations of
endogenous estrogens (E2, estrone, or estriol)
(Yared et al. 2002) and low-dose lindane
(Kalantzi et al. 2004b). Subsequently, it was
shown that endogenous oestrogens or human
milk-fat extracts, known to contain organo-
chlorinated and brominated xenobiotics,
markedly enhanced B[a]P-induced genotoxic-
ity in clonogenic MCF-7 cells (Davis et al.
2002; Kalantzi et al. 2004a). Such exposures
were associated with an elevation in the ratio
of the anti-apoptotic Bcl-2 to the pro-apop-
totic Bax proteins (Kalantzi et al. 2004b). If
low-dose treatments (for the experiments
described herein, less than or equal to
nanomolar concentrations of test agent in
culture medium) induce genotoxic and/or
intracellular modulations, then quantifying
and modeling co-exposure effects at such
environmentally relevant levels are of utmost
importance. In this study we examined the
effects of various binary mixtures consisting
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BACKGROUND: Within mixtures, interactions between different xenobiotics may occur to give rise
to additive, synergistic, inhibitory and/or stimulatory effects in target cells. The role that xeno-
biotics individually or in mixtures, and at environmental concentrations, play in the etiology of
common human diseases often remains obscure.

METHODS: In the presence or absence of lindane, chromosomal aberrations were detected in
MCF-7 cells after 24-hr treatment with benzo[a]pyrene (B[a]P) or 2-amino-1-methyl-6-phenylimi-
dazo[4,5-b]pyridine (PhIP) using the cytokinesis-block micronucleus assay. Micronuclei were
scored in 1,000 binucleate cells/treatment. We investigated intracellular responses using quantita-
tive gene expression analyses of cyclin-dependent kinase inhibitor 1A [CDKN1A (P21WAF1/CIP1)],
B-cell leukemia/lymphoma 2 (BCL-2), BCL-2–associated X (BAX), and isoforms of cytochrome
P450 (CYP), CYP1A1, CYP1A2, and CYP1B1. Immunocytochemical analyses of p53,
p21Waf1/Cip1, Bcl-2 and Bax protein expression in MCF-7 cells were also carried out.

RESULTS: After exposure to binary mixtures of B[a]P plus lindane or PhIP plus lindane, a 10-fold
increase in micronucleus formation resulted; these test agents individually induced 2- to 5-fold
increases. Lindane increased the ratio of Bcl-2:Bax, as did 17β-estradiol (E2). Although treatment
with B[a]P alone was found to elevate expression of P21WAF1/CIP1and CYP isoenzymes, it reduced
the ratio of BCL-2:BAX mRNA transcripts. Treatment with a binary mixture of 10–8 M B[a]P plus
10–12 M lindane or 10–10 M E2 reversed B[a]P-induced reductions in the ratio of Bcl-2– to Bax-
positive cells. In contrast, treatments with PhIP (known to possess hormonelike properties) plus
lindane or E2 resulted in profound reductions in Bcl-2:Bax ratio.

CONCLUSIONS: Our results suggest that low-dose treatments (i.e., close to environmental levels)
may increase DNA damage while influencing survival in exposed cells and that these effects may
depend on the endocrine activity of test agents.
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of a DNA-reactive procarcinogen (B[a]P or
PhIP) and hormone-like agent (E2 or lindane)
to determine whether such in vitro exposures
might markedly modulate genotoxicity
and/or survival in damaged cells. Our goal
was to determine whether low-dose exposure
to such a binary mixture might give rise to a
modulation both of genotoxicity and survival
in target cells.

Materials and Methods

Chemicals and media. Unless otherwise
stated, chemicals were obtained from Sigma
Chemical Co. (Poole, UK), cell culture con-
sumables from Invitrogen Life Technologies
(Paisley, UK), and antibodies from Dako
Cytomation (Ely, UK).

Cell culture. The estrogen-responsive
breast carcinoma MCF-7 cell line was grown
in Dulbecco’s modified essential medium sup-
plemented with 10% heat-inactivated fetal calf
serum, 100 U/mL penicillin and 100 µg/mL
streptomycin. MCF-7 cells were cultured rou-
tinely in 75-cm2 flasks at 5% CO2 in air and
37°C in a humidified atmosphere and subcul-
tured (1:10, vol/vol) twice weekly. Before sub-
culture or incorporation into experiments,
cultured cells were disaggregated, with 0.05%
trypsin/0.02% EDTA.

The cytokinesis-block micronucleus
(CBMN) assay. MCF-7 cells were treated
with B[a]P, PhIP, E2, or lindane either indi-
vidually or as a binary mixture, as indicated.
Additions of test agent(s), in dimethylsulf-
oxide (DMSO), were made to a maximum
concentration of 1% vol/vol.

After disaggregation and resuspension in
complete medium, MCF-7 cells in 3-mL
aliquots (≈ 1 × 104 cells) were seeded into
30-mm petri dishes containing 20-mm diam-
eter coverslips (Sarstedt, UK). Cells were
allowed to attach for 24 hr before the
addition of test agent(s). After 24-hr treat-
ment, the medium was replaced with fresh
medium containing 2 µg/mL cytochalasin-B.
Cultured for a further 24 hr, cells were fixed
with 70% ethanol (EtOH) after washing the
coverslips with phosphate-buffered saline
(PBS). Cells were then stained with 5%
Giemsa (in dH2O) before mounting the cov-
erslips in DPX mountant (BDH Laboratory
Supplies, Poole, UK) on microscope slides
(Yared et al. 2002).

For each treatment condition, micronuclei
(MNi) in 1,000 binucleate MCF-7 cells from
a minimum of three experiments were objec-
tively scored either as micronucleated binucle-
ate cells (MN), as the total number of

micronuclei (TMN) or as the distribution of
MNi in binucleate cells. Mitotic rate was
assessed as percentage of binucleate cells
(mean ± SD, n = 3 counts of 500 cells). In
10 separate experiments, in the population of
MCF-7 cells used in this study, ≤ 5% fluctua-
tion in the micronucleus-forming activity of
10–6 M B[a]P was observed.

The clonogenic assay. MCF-7 cells were
disaggregated and resuspended in complete
medium. Aliquots (5 mL) containing ∼ 1 ×
103 cells were seeded into 25-cm2 flasks with
or without test agent(s) (B[a]P, PhIP, E2, or
lindane) either individually or as a binary
mixture, as indicated. Cells were incubated in
5% CO2 in air at 37°C in a humidified
atmosphere for 24 hr. The medium was then
replaced with fresh medium. Cells were cul-
tured undisturbed for a further 7 days before
removal of medium, washing with PBS and
fixation with 70% EtOH. Colonies were then
stained with 5% Giemsa and counted.

Immunohistochemical staining. Cells were
disaggregated and resuspended in com-
plete medium before seeding aliquots (5 mL;
∼ 1 × 105 cells) into 60-mm petri dishes con-
taining 24-mm glass coverslips. After allowing
24 hr for attachment, cells were treated for
24 hr with test agents, as indicated. Medium
was then removed and the cells washed with
PBS before immediate fixation with CytoFixx
fixative (CellPath plc, Skelmersdale, UK).
The following antisera in bovine serum albu-
min (0.2%) diluted with Tris-buffered saline
(pH 7.6) (BSAT) were used: cyclin-dependent
kinase inhibitor 1A (CDKN1A (P21Waf1/Cip1)
mouse monoclonal (SX118, Isotype: IgG1) in
a 1:20 dilution; Bcl-2 mouse monoclonal
(124, Isotype: IgG1) in a 1:100 dilution and
Bax rabbit polyclonal in a 1:50 dilution.
Fixative was removed by soaking coverslips in
95% industrial methylated spirits (IMS) for
30 min. After a 5-min wash with tap water,
coverslips were incubated in 1:5 normal goat
sera in Tris-buffered saline (TBS) (0.05 M,
pH 7.6) for 15 min in a humidified environ-
ment. After removal of excess sera, the cover-
slips were incubated with primary antibody
for 1 hr at room temperature. Using the
StreptABComplex duet kit (DakoCyto-
mation), coverslips were then washed for
5 min with TBS, incubated for 30 min with
secondary anti-sera (goat anti-mouse/rabbit)
in BSAT and washed again for 5 min with
TBS. Then coverslips were incubated with
tertiary anti-sera (avidin-biotin complex) in
BSAT for 30 min and washed with TBS for
5 min. 3,3´-Diaminobenzidine (DAB) chro-
mogen in Tris/HCl buffer (0.05 M, pH 7.6)
with hydrogen peroxide (0.1%) was applied
to preparations for 15 min followed by
another 5-min tap water wash. Finally, slides
were transferred to a rack and stained (1 min)
with hematoxylin (50%), rinsed with tap
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Table 2. Micronucleus formation in MCF-7 cells treated with B[a]P and/or lindane.

Micronuclei/1,000 No lindane Lindane (γ-HCH) (M)
B[a]P (M) binucleate cells co-addition 10–12 10–11 10–10

Background MN 21 67 64 78
TMN 24 86 90 108

10–8 MN 28 86 77 123
TMN 33 118 103 186

10–7 MN 45 120 115 159
TMN 56 193 177 244

10–6 MN 91 167 135 139
TMN 138 293 217 252

10–5 MN 110 170 132 200
TMN 183 273 198 330

Abbreviations: MN, the number of micronucleated binucleate cells scored per treatment; TMN, the total number of
micronuclei scored per treatment. MCF-7 cells were treated for 24 hr in the presence or absence of test agents, as indi-
cated, before cytokinesis block with cytochalasin-B. After further 24-hr incubation, cells were fixed and stained with 5%
Giemsa as described in “Materials and Methods.”

Table 1. Primers used for quantitative real-time RT-PCR analyses.

GenBank accession no. Gene symbol Primer Sequence (5´→3´)

NM_078467 P21WAF1/CIP1 P21WAF1/CIP1-F GAC CAG CAT GAC AGA TTT CTA CCA
P21WAF1/CIP1-R TTC CTG TGG GCG GAT TAG G

NM_000633 BCL-2 BCL-2-F GGC TGG GAT GCC TTT GTG
BCL-2-R GCC AAA CTG AGC AGA GTC TTC AG

AF007826 BAX BAX-F CCT GGG TTC AAG CGA TTC AC
BAX-R GTG CAC AGG GCC TGT AAT CC

BC023019 CYP1A1 CYP1A1-F ACT TCA TCC CTA TTC TTC GCT ACC T
CYP1A1-R CGG ATG TGG CCC TTC TCA

NM_000761 CYP1A2 CYP1A2-F GAC ATC TTT GGA GCA GGA TTT GA
CYP1A2-R CTT CCT CTG TAT CTC AGG CTT GGT

NM_000104 CYP1B1 CYP1B1-F GTA CCG GCC ACT ATC ACT GAC A
CYP1B1-R CAC ATC AGG ATA CCT GGT GAA GAG

AK222925 β-ACTIN β-ACTIN-F CCT GGC ACC CAG CAC AAT
β-ACTIN-R GCC GAT CCA CAC GGA GTA CT

Abbreviations: F, forward primer; R, reverse primer. Nucleotide sequences were obtained from GenBank (2006). 



water, blued in Scott’s tap water for 15 sec
and rinsed again. Preparations were stained
for 1 min with eosin (0.1% in 0.1% calcium
chloride), rinsed with tap water, and dehy-
drated with graded alcohol solutions through
to xylene. Cell preparations were then
mounted on microscope slides with Pertex
mountant (CellPath plc, Newtown, UK). The
percentage of positive cells was determined as
the mean ± SD of five separate counts.

Quantitative real-time reverse transcrip-
tase polymerase chain reaction (RT-PCR).
Routinely cultured cells were disaggregated
and resuspended in complete medium before
seeding aliquots (5 mL; ∼ 1 × 105 cells) into
60-mm petri dishes. After 24 hr, attached
cells were treated for an additional 24 hr.
Cells were then washed twice with PBS before
lysis and total RNA extraction using the QIA-
GEN RNeasy Kit in combination with the
QIAGEN RNase free DNase kit (QIAGEN
Ltd, Crawley, UK). DNase was incorporated
into the extraction procedure to remove resid-
ual DNA, for example, pseudogene. RNA
quality was routinely assessed in a 1.2%
formaldehyde agarose gel; yield and purity
were checked using a BioPhotometer
(Eppendorf, Hamburg, Germany). RNA
(0.4 µg) was reverse transcribed in a final vol-
ume of 20 µL containing Taqman reverse
transcription reagents (Applied Biosystems,
Warrington, UK): 1 × Taqman RT buffer;
MgCl2 (5.5 mM); oligo d(T)16 (2.5 µM);
dNTP mix (dGTP, dCTP, dATP, and dTTP;
each at a concentration of 500 µM); RNase
inhibitor (0.4 U/µL); reverse transcriptase
(1.25 U/µL; Applied Biosystems, Warrington,
UK); and RNase-free water. Reaction mix-
tures were then incubated at 25°C (10 min),
48°C (30 min), and 95°C (5 min).

cDNA samples were stored at –20°C
before use. Primers (Table 1) for P21WAF1/CIP1,
BCL-2, BAX, CYP1A1, CYP1A2, CYP1B1
and endogenous control or housekeeping gene
cytoplasmic ACTB (β-ACTIN) were chosen
using Primer Express software 2.0 (Applied
Biosystems) and designed so that one primer
spanned an exon boundary. Specificity was
confirmed using the National Center for
Biotechnology Information BLAST search
tool (http://www.ncbi.nlm.nih.gov/blast/
index.shtml). Quantitative real-time PCR was
performed using an ABI Prism 7000 Sequence
Detection System (Applied Biosystems).
Reaction mixtures contained 1 × SYBR Green
PCR master mix (Applied Biosystems); for-
ward and reverse primers (Invitrogen) at a
concentration of 300 nM (P21WAF1/CIP1,
BCL-2, BAX, CYP1A1, CYP1A2, CYP1B1 or
β-ACTIN); for P21WAF1/CIP1, BCL-2, BAX,
CYP1A1, CYP1A2, or CYP1B1 amplification
20 ng cDNA template cDNA template or for
β-ACTIN amplification 5 ng cDNA template;
made to a total volume of 25 µL with sterile

H2O. Thermal cycling parameters included
activation at 95°C (1 min) followed by
40 cycles each of denaturation at 95°C
(15 sec) and annealing/extending at 60°C
(1 min). Each reaction was performed in trip-
licate and “no-template” controls were
included in each experiment. Dissociation
curves were run to eliminate nonspecific
amplification, including primer dimers.

Results

Table 2 shows the micronucleus-forming activ-
ity of B[a]P, lindane, or a binary mixture of
both test agents in MCF-7 cells. Dose-related
increases in the number of MN and the TMN
were observed following treatment with either
B[a]P or lindane alone. Induction of MNi
following B[a]P treatment at concentrations
of 10–7 M, 10–6 M, or 10–5 M resulted in
approximately 2-, 3-, and 5-fold increases in
micronucleus-forming activity, respectively.
Lindane-induced increases were also observed
following treatment with 10–12 M (~ 3-fold),
10–11 M (~ 3-fold), or 10–10 M (~ 4-fold). After

treatment with a binary mixture, a marked ele-
vation in micronucleus formation was induced
compared with the effect of a single-agent expo-
sure. In the presence of 10–12 M or 10–11 M
lindane, clear dose-related increases in micronu-
cleus formation were observed in the presence
of B[a]P up to a concentration of 10–6 M; in
combination with 10–6 M or 10–5 M B[a]P,
these increases appeared to plateau (Table 2;
Figure 1). Figure 1 shows that the micro-
nucleus-forming effects of B[a]P treatment, in
the absence or presence of 10–12 M lindane,
were a consequence both of elevations in MN
and TMN, namely, the summation of MNi in
binucleate cells. In combination with 10–10 M
lindane, dose-related increases in micronucleus
formation in the presence of all B[a]P concen-
trations tested occurred; in the presence of
10–5 M B[a]P, approximately 10-fold increases
in MNi compared with background control
levels were observed (Table 2). Of note was the
observation that micronucleus formation fol-
lowing treatment with 10–11 M lindane, in the
absence or presence of B[a]P, was less than that
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Binary mixtures enhance micronucleus formation
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Figure 1. Micronucleus-forming activity of B[a]P with (A,C,E) or without lindane (B,D,F). Cell suspensions
(3 mL, 1 × 104 cells) in 30-mm petri dishes were prepared and treated in the CBMN assay as described in
“Materials and Methods.” Micronucleus formation was scored in 1,000 binucleate cells. (E,F) Number of MNi
in binucleate MCF-7 cells were scored from 1 to 5, with 5 representing the maximum score for this study.



observed with corresponding 10–12 M–induced
effects; however, further increases in induced
MNi were observed at the higher 10–10 M con-
centration (Table 2).

The effects of lindane on mitotic rate (per-
centage of binucleate cells) and clonogenic
survival (percentage of plating efficiency) in
B[a]P-treated cells are shown in Figure 2A,B.
Treatment for 24 hr with B[a]P, in the
absence of lindane, resulted in dose-related
reductions in the percentage of binucleate cells
from a background control level of 12.2% ±
0.7 to 6.6% ± 0.5 (10–5 M) (Figure 2A). In
the presence of 10–12 M, 10–11 M, or 10–10 M
lindane, concentration-dependent reductions
in mitotic rate of approximately 20, 30, and
45%, respectively, were observed with or with-
out B[a]P. Seven-day incubation, subsequent
to a 24-hr treatment, resulted in B[a]P-
induced reductions in the percentage of plat-
ing efficiency from a background control level
of 35.4% ± 3.5 to 32.8% ± 4.7 (10–8 M),
28.1% ± 6.4 (10–7 M), 14.9% ± 4.2 (10–6 M),
and 0 (10–5 M) (Figure 2B). Lindane, at the
concentrations employed in this study, was
not found to markedly alter clonogenic sur-
vival of MCF-7 cells in the absence or pres-
ence of B[a]P (Figure 2B).

Figure 3 shows the micronucleus-forming
activities, in MCF-7 cells of 24-hr treatments
with PhIP (0.5 µM), lindane (10–12 M) or a
binary mixture of both test agents. Both

agents individually induced 2- to 4-fold
increases in MNi. However, treatment with a
binary mixture resulted in levels of MN and
TMN of 87 and 130 (a 5- to 8-fold increase)
compared with a background control level of
15 and 16, respectively (Figure 3).

The effects of E2 (10–9 M), lindane
(10–12 M) or of a binary mixture of both test
agents on the immunocytochemical detection
of p53, p21Waf1/Cip1, Bcl-2, and Bax proteins
after 24-hr treatment are shown in Figure 4.
E2 induced a modest increase in p53- and
p21Waf1/Cip1-positive MCF-7 cells (17.8% ±
3.3 and 13.2% ± 1.5 compared with back-
ground control levels of 8.4% ± 1.5 and
8.2% ± 2.8, respectively). Lindane appeared
to reduce levels of p21Waf1/Cip1-positive cells
both in the absence (7.2% ± 1.5) or presence
(5.6% ± 1.5) of E2. However, marked
increases in Bcl-2–positive cells were induced
by either E2 or lindane; the binary mixture
elevated the percentage of both Bcl-2– and
Bax-positive cells (Figure 4). From back-
ground control levels of 33.8% ± 3.1 (Bcl-
2–positive) and 12.8% ± 1.9 (Bax-positive)
cells, E2, or lindane treatment gave rise to per-
centages of cells staining positive for Bcl-2 of
58.8% ± 6.5 or 67.0% ± 4.3 and for Bax of
9.8% ± 2.8 or 6.4% ± 2.3, respectively. A
binary mixture gave rise to levels of 74.6% ±
5.6 Bcl-2–positive cells and 55.0% ± 4.5 Bax-
positive cells (Figure 4).

The effects of different treatments on the
quantitative expression of six genes
(P21WAF1/CIP1, BCL-2, BAX, CYP1A1,
CYP1A2, and CYP1B1) were examined. To
assess background fluctuation, we examined
the variability in gene expression within con-
trol cell cultures (n = 6). Taking one control
as the calibrator, marked intraexperimental
variability was observed for relative levels of
quantitative expression of CYP1A1 (0.7–1.5),
CYP1A2 (0.5–1.7), and CYP1B1 (0.6–1.5).
In contrast, calibrator-controlled quantitative
expression levels for P21WAF1/CIP1 (1.1–1.4),
BCL-2 (0.9–1.0), or BAX (0.9–1.3) appeared
to be less variable.

In a panel of experiments (listed 1–5), the
effects of a genotoxin (B[a]P or PhIP) in the
absence or presence of 10–9 M E2 or 10–11 M
lindane, on the quantitative gene expression of
P21WAF1/CIP1, BCL-2, or BAX were examined
(Table 3). Although 24-hr treatment with E2
or lindane (with or without 10–8 M B[a]P or
0.5 µM PhIP) was associated with a reduction
in P21WAF1/CIP1 expression in experiments 1, 3,
and 5, this was not apparent in experiments 2
and 4. In contrast, 24-hr treatment with
10–6 M B[a]P resulted in 36.1- and 56.3-fold
elevations in P21WAF1/CIP1 expression in experi-
ments 2 and 4, respectively; in the presence of
E2 or lindane, small reductions in these
increases in gene expression were observed
(Table 3). No marked alterations in BCL-2 or
BAX expression were observed following 24-hr
treatment with 10–9 M E2 or 10–11 M lindane.
However, 10–6 M B[a]P was observed to
reduce the ratio of BCL-2:BAX expression to
approximately 0.1 as observed in experiments
2 and 4; effects that were not markedly altered
in the presence of a binary mixture (Table 3).

Figure 5A,B shows the effects of 24-hr
treatment with B[a]P (10–8 M or 10–6 M), in
the absence or presence of E2 (10–10 M or
10–9 M), on the immunocytochemical detec-
tion of p53, p21Waf1/Cip1, Bcl-2, and Bax pro-
teins in MCF-7 cells. Although treatment
with B[a]P was associated with dose-related
increases in the percentage of p53- and
p21Waf1/Cip1-positive cells, no such E2-induced
alterations were observed. However, marked
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E2-induced alterations in the percentages of
Bcl-2– and Bax-positive cells were observed.
Treatment with 10–8 M B[a]P or 10–10 M E2
resulted in marked elevations in the percent-
age of Bcl-2–positive cells (52.4% ± 4.7 and
72.0% ± 4.0, respectively, compared with a
background control level of 31.2% ± 3.7); E2
also reduced the percentage of Bax-positive
cells from a background control level of
23.2% ± 4.1 to 6.2% ± 1.5 (Figure 5A).
Similar modulations in the levels of Bcl-2–
(47.8% ± 7.9) and Bax-positive (7.4% ± 3.0)
cells were apparent after exposure to a binary
mixture. The resulting ratios of Bcl-2–posi-
tive:Bax-positive cells were 1.3, 1.8, 11.6, and
6.5 in control, B[a]P-treated, E2-treated and
binary mixture–treated cells, respectively
(Figure 5A). In contrast, the ratio of
Bcl-2–positive:Bax-positive cells following
24-hr treatment with 10–6 M B[a]P (58.0% ±
3.0 and 82.2% ± 1.9 Bcl-2– and Bax-positive
cells, respectively) was observed to be 0.7
compared with a background control level of
2.4 (37.8% ± 5.1 and 16.0% ± 2.3 Bcl-2–
and Bax-positive cells, respectively)
(Figure 5B). The ratio of Bcl-2– positive:Bax-
positive cells was again markedly elevated
(8.4; from 78.6% ± 5.8 and 9.4% ± 2.1
Bcl-2– and Bax-positive cells, respectively)
following 24-hr treatment with 10–9 M E2,
whereas with a binary mixture (E2 plus
B[a]P), a ratio of 0.9 (82.2% ± 2.8 and
87.0% ± 2.9 Bcl-2– and Bax-positive cells,
respectively) was observed (Figure 5A).

Treatment with 0.5 µM PhIP and/or
10–9 M E2 did not result in marked alterations
in the levels of p53- or p21Waf1/Cip1-positive
MCF-7 cells (Figure 6). However, both agents
induced marked modulations in the levels of
Bcl-2– and Bax-positive cells when tested
either individually or in a binary mixture.
Treatment with PhIP or E2 elevated the per-
centage of Bcl-2–positive cells (73.0% ± 22.0
and 78.6% ± 4.0, respectively, compared with
a background control level of 14.2% ± 4.9);

PhIP also increased the percentage of Bax-
positive cells from a background control level
of 3.4% ± 1.7 to 22.0% ± 4.8. Exposure of
MCF-7 cells to a binary mixture (0.5 µM
PhIP plus 10–9 M E2) resulted in increases in
both Bcl-2– (55.0% ± 3.9) and Bax-positive
(54.0% ± 4.6) MCF-7 cells. The resulting
ratios of Bcl-2–positive:Bax-positive cells were
4.2, 3.3, 19.7, and 1.0 in control, PhIP-treated,
E2-treated, and binary mixture–treated cells,
respectively (Figure 6).

Treatment with 10–8 M B[a]P, 10–12 M
lindane, or 0.5 µM PhIP was not observed to
alter levels of p53- or p21Waf1/Cip1-positive
cells; however, a binary mixture of lindane

plus PhIP induced marked increases in 
p53- (41.4% ± 5.0) and p21Waf1/Cip1-positive
(33.0% ± 4.4) cells compared with back-
ground control levels of 20.0% ± 1.9 and
20.2% ± 2.6, respectively (Figure 7A,B).
Despite these observations, the low-dose
treatments employed markedly altered levels
of Bcl-2– and Bax-positive cells. B[a]P
increased the levels of both Bcl-2– (37.6% ±
3.6) and Bax-positive (13.8% ± 3.5) cells
giving rise to a ratio of 2.7 compared with a
background control ratio of 7.5 (16.6% ± 2.7
and 2.2% ± 1.3 Bcl-2– and Bax-positive
cells, respectively) (Figure 7A). In contrast,
lindane-induced alterations in the ratio of
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Figure 4. Immunocytochemical analysis of MCF-7
breast cells treated with E2 and/or lindane. Cells
were treated as indicated for 24 hr on coverslips,
after which they were analyzed for protein expres-
sion as described in “Materials and Methods.” The
percentages of cells staining positive were deter-
mined after five separate counts of 100 cells and are
presented as mean ± SD.

Figure 5. Immunocytochemical analysis of MCF-7 breast cells treated with B[a]P with or without E2. Cells
were treated with 10–8 M B[a]P and/or 10–10 M E2 (A) or 10–6 M B[a]P and/or 10–9 M E2 (B) for 24 hr on cover-
slips, after which they were analyzed for protein expression as described in “Materials and Methods.” The
percentages of cells staining positive were determined after five separate counts of 100 cells and are
presented as mean ± SD.
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Table 3. Relative gene expression measured by quantitative real-time RT-PCR.

Relative expression levels in MCF-7 cells
Treatment P21WAF1/CIP1 BCL-2 BAX

Experiment 1 (mean ± SD, n = 5)
Control 1 (c) 1 (c) 1 (c)
10–8 M B[a]P 1.2 ± 0.4 0.9 ± 0.3 1.1 ± 0.2
10–9 M E2 0.6 ± 0.1 0.9 ± 0.3 1.2 ± 0.2
Binary mixture 0.9 ± 0.2 0.9 ± 0.3 0.6 ± 0.6

Experiment 2
Control 1 (c) 1 (c) 1 (c)
10–6 M B[a]P 36.1 0.2 1.5
10–9 M E2 1.0 1.3 1.3
Binary mixture 35.5 0.1 1.4

Experiment 3
Control 1 (c) 1 (c) 1 (c)
10–8 M B[a]P 1.1 1.3 1.0
10–11 M lindane 0.7 1.2 1.0
Binary mixture 0.9 1.0 1.0

Experiment 4
Control 1 (c) 1 (c) 1 (c)
10–6 M B[a]P 56.3 0.3 2.1
10–11 M lindane 1.9 2.0 2.9
Binary mixture 47.9 0.3 2.2

Experiment 5
Control 1 (c) 1 (c) 1 (c)
0.5 µM PhIP 1.4 1.2 1.4
10–9 M E2 0.8 1.0 1.6
Binary mixture 0.6 0.7 1.1

(c), calibrator, which for the purposes of these experiments were untreated controls. Relative gene expression levels fol-
lowing 24-hr treatment in the presence or absence of test agents, as indicated. Reverse transcription of total RNA and
subsequent amplification was carried out using primers as described in “Materials and Methods.” Within each experi-
ment, reactions were performed in triplicate and “no-template” controls were included. Averaged threshold cycle (CT)
values for each reaction were normalized to β-ACTIN values thus giving ∆CT values. Alterations in gene expression were
determined by comparing treatment groups with the calibrator, giving ∆∆CT values. Finally, relative gene expression was
calculated using the formula 2–∆∆CT.



Bcl-2–positive:Bax-positive cells were 13.4
(37.4% ± 2.9 and 2.8% ± 1.3 Bcl-2– and Bax-
positive cells, respectively) (Figure 7A) and 6.1
(65.8% ± 2.8 and 10.8% ± 3.6 Bcl-2– and
Bax-positive cells, respectively) (Figure 7B).
The background control ratio of Bcl-2–posi-
tive:Bax-positive cells was 4.7 (40.8% ± 4.0
and 8.6% ± 1.8 Bcl-2– and Bax-positive cells,
respectively) in Figure 7B. Exposure to a
binary mixture resulted in ratios of Bcl-2–
positive:Bax-positive cells of 4.2 (39.6% ± 3.8
and 9.4% ± 3.7 Bcl-2– and Bax-positive cells,
respectively) (Figure 7A) and 0.6 (56.0% ± 4.9
and 89.6% ± 0.9 Bcl-2– and Bax-positive cells,
respectively) (Figure 7B).

Table 4 shows the results of a panel of
experiments (listed 1–4) examining the effects
of B[a]P (10–8 M or 10–6 M), E2 (10–10 M or
10–9 M), lindane (10–12 M, 10–11 M or
10–9 M), and various binary mixtures on the
quantitative gene expression of CYP1A1,
CYP1A2 or CYP1B1. Interexperimental varia-
tions in the ability of low-dose treatments to
alter CYP expression were observed; in experi-
ment 1, 10–8 M B[a]P and/or 10–9 M E2 did
not induce the CYP isoenzymes examined,
whereas in experiment 4, 3- to 4-fold
increases in the CYP1A1 expression were
observed. Similarly, lindane-associated inter-
experimental variation was noted; in experi-
ment 3, 10–11 M lindane treatment was
associated with reductions in CYP expression,
whereas in experiment 4, 24-hr treatment
with either 10–12 M or 10–9 M lindane
induced a 2- to 4-fold increase in CYP1A1.
Treatment with 10–6 M B[a]P consistently
induced marked elevations in CYP1A1,
CYP1A2, and CYP1B1 expression in MCF-7
cells (Table 4).

Discussion

Humans may be exposed to different combina-
tions of exogenous factors, including xenobi-
otics; evaluating only the toxicity of individual
exposures might underestimate mixture effects

(Culp et al. 2000; Maier et al. 2002; Marston
et al. 2001; McLuckie et al. 2004). Apparently
innocuous components of a mixture may sig-
nificantly modulate underlying susceptibility of
target cells to more toxic constituents (Slaga
et al. 1979). Modulating effects may occur
through ligand-activated, receptor-mediated
mechanisms (Eltom et al. 1998) or interference
with cell cycle control (Oikawa et al. 2001).
Some xenobiotics may not only induce DNA
damage but also may drive clonal expansion,
often at low-dose levels not dissimilar to typical
human exposures; such effects may explain the
target-organ specificity of some procarcinogens
(Lauber et al. 2004; Plíšková et al. 2004).

Endocrine-active properties of xenobiotics may
play a role in the etiology of much human
pathology (Safe 2004) in hormone-responsive
tissues (Ragavan et al. 2004).

B[a]P, PhIP, or lindane individually
induced 2- to 5-fold increases in MNi; treat-
ment with a binary mixture gave rise to
approximately 10-fold increases (Table 2,
Figures 1 and 3). Consistent with previous
findings (Kalantzi et al. 2004b) that lindane
(γ-HCH) induces a cell cycle arrest in MCF-7
cells, dose-related reductions in mitotic rate
were observed following treatment with this
agent (Figure 2A). However, in a binary
mixture lindane was not observed to alter
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Figure 7. Immunocytochemical analysis of MCF-7 breast cells treated with (A) B[a]P and/or lindane or
(B) PhIP and/or lindane. Cells were treated as indicated for 24 hr on coverslips, after which they were
analyzed for protein expression as described in “Materials and Methods.” The percentages of cells stain-
ing positive were determined after five separate counts of 100 cells and are presented as the mean ± SD.

Table 4. Relative gene expression measured by quantitative real-time RT-PCR.

Relative expression levels in MCF-7 cells
Treatment CYP1A1 CYP1A2 CYP1B1

Experiment 1
Control 1 (c) 1 (c) 1 (c)
10–8 M B[a]P 0.8 1.0 0.9
10–9 M E2 0.7 0.8 1.5
Binary mixture 0.9 0.5 1.8

Experiment 2
Control 1 (c) 1 (c) 1 (c)
10–10 M E2 1.4 0.3 0.9
10–8 M B[a]P 1.6 1.2 1.4
Binary mixture1 2.5 1.0 1.8
10–6 M B[a]P 462.7 5.6 28.6
Binary mixture 2 430.5 3.7 26.5

Experiment 3
Control 1 (c) 1 (c) 1 (c)
10–6 M B[a]P 370.9 15.4 41.6
10–11 M lindane 0.6 0.4 0.6
Binary mixture 183.9 12.0 23.3

Experiment 4
Control 1 (c) 1 (c) 1 (c)
10–9 M E2 3.6 0.9 1.6
10–8 M B[a]P 3.6 1.4 1.3
10–6 M B[a]P 457.7 9.4 23.9
10–12 M lindane 2.0 0.8 1.0
10–9 M lindane 3.6 1.3 1.4

(c), calibrator, which for the purposes of these experiments were untreated controls. Where indicated binary mixture 1 =
10–10 M E2 + 10–8 M B[a]P; binary mixture 2 = 10–10 M E2 + 10–6 M B[a]P. Relative gene expression levels after 24-hr treat-
ment in the presence or absence of test agents, as indicated. Reverse transcription of total RNA and subsequent amplifi-
cation was carried out using primers as described in “Materials and Methods.” Within each experiment, reactions were
performed in triplicate and “no-template” controls were included. Averaged threshold cycle (CT) values for each reaction
were normalized to β-ACTIN values, thus giving ∆CT values. Alterations in gene expression were determined by compar-
ing treatment groups with the calibrator, giving ∆∆CT values. Finally, relative gene expression was calculated using the
formula 2–∆∆CT.
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Figure 6. Immunocytochemical analysis of MCF-7
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treated as indicated for 24 hr on coverslips, after
which they were analyzed for protein expression as
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B[a]P-induced reductions in clonogenic sur-
vival (Figure 2B). At micromolar concentra-
tions, B[a]P markedly altered gene expression
by inducing up-regulation of P21WAF1/CIP1

and CYP isoenzymes and down-regulation of
BCL-2 (Tables 4 and 5). However, with
24-hr treatment, no marked modulations in
gene expression were apparent following
low-dose treatments (less than or equal to
nanomolar range) with either individual-
agent or binary-mixture treatments (Tables 4
and 5). This was despite observations that
10–9 M E2 or lindane did induce a 3-fold ele-
vation in CYP1A1 expression in one experi-
ment (Table 4). Such observations suggest
that modulations in expression of the candi-
date genes examined may be transient follow-
ing low-dose treatment or that other factors
are responsible for the effects observed, for
example, oxidative damage (Jiao et al. 2007;
Rajapakse et al. 2005).

Pleiotropic induction of unrelated pheno-
typic effects appears to be a feature of oestro-
gens, endocrine disruptors and PAHs (Jeffy
et al. 2002; Moggs and Orphanides 2001;
Mueller et al. 2004). Endogenous hormones
facilitate cell growth/proliferation, differentia-
tion, behavior, and activity in many tissues.
In responsive cells, stimulatory effects are
observable at less than or equal to nanomolar
concentrations (Yared et al. 2002). Different
xenobiotics may also induce effects through
receptor-mediated processes (Kalantzi et al.
2004b; Lauber et al. 2004), for example, E2
appears to increase the percentage of Bcl-2–
positive cells (Figures 4–6). A binary mixture
of E2 and lindane induced a marked reduc-
tion in the ratio of Bcl-2–positive to Bax-pos-
itive cells (Figure 4); this was due to an
apparently induced increase in Bax-positive
cells while the percentage of Bcl-2–positive
cells remained unchanged. 2,3,7,8-Tetra-
chlorodibenzo-p-dioxin is cytostatic in
MCF-7 cells through an ability to function as
an antiestrogen and down-regulate a battery
of E2-induced proliferative responses (Döhr
et al. 1995; Wang et al. 1998); whether lin-
dane may induce a similar effect through a
reduction in Bcl-2:Bax ratio remains to
be determined.

In a dose-related fashion, B[a]P elevated
the percentage of p53-positive cells (Kaspin
and Baird 1996) and the downstream cyclin-
dependent kinase inhibitor, p21Waf1/Cip1

(Figure 5). PhIP (0.5 µM) apparently failed to
increase the percentage of p53-positive or
p21Waf1/Cip1-positive MCF-7 cells (Figures 6
and 7); at higher concentrations and after
metabolic activation, PhIP has been shown to
elevate these intracellular factors in MCF10A
cells (Creton et al. 2005). However, PhIP
markedly elevated the percentage of Bcl-2–
positive cells while the levels of Bax-positive
cells remained relatively low; although B[a]P

also increased levels of Bcl-2–positive cells,
marked increases in Bax-positive cells were also
apparent (Figures 5–7). In a binary mixture
with E2 or lindane, a reversal in B[a]P-induced
reductions in the ratio of Bcl-2–positive to
Bax-positive cells was observed (Figures 5 and
7). However, E2 or lindane in combination
with PhIP appeared to reverse potential hor-
mone-driven survival characteristics observed
as marked reductions in the ratio of Bcl-2–
positive to Bax-positive cells (Figures 6 and 7).

In this study we investigated whether
binary mixtures of DNA-reactive procarcino-
gens and hormonelike compounds at environ-
mentally relevant low-dose concentrations
give rise to markedly elevated DNA damage
in target cells while also modulating survival.
Our results suggest that this might indeed be
the case.
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