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Abstract

Background: Aging refers to a decline in reproduction and survival with increasing age. According
to evolutionary theory, aging evolves because selection late in life is weak and mutations exist
whose deleterious effects manifest only late in life. Whether the assumptions behind this theory
are fulfilled in all organisms, and whether all organisms age, has not been clear. We tested the
generality of this theory by experimental evolution with Caulobacter crescentus, a bacterium whose
asymmetric division allows mother and daughter to be distinguished.

Results: We evolved three populations for 2000 generations in the laboratory under conditions
where selection was strong early in life, but very weak later in life. All populations evolved faster
growth rates, mostly by decreasing the age at first division. Evolutionary changes in aging were
inconsistent. The predominant response was the unexpected evolution of slower aging, revealing
the limits of theoretical predictions if mutations have unanticipated phenotypic effects. However,
we also observed the spread of a mutation causing earlier aging of mothers whose negative effect
was reset in the daughters.

Conclusion: Our results confirm that late-acting deleterious mutations do occur in bacteria and
that they can invade populations when selection late in life is weak. They suggest that very few
organisms — perhaps none- can avoid the accumulation of such mutations over evolutionary time,
and thus that aging is probably a fundamental property of all cellular organisms.

Background

Aging seems paradoxical from an evolutionary perspec-
tive. Why is aging, which is detrimental for the individual,
not eliminated by natural selection? Evolutionary theory
provides an answer. Mutations that lead to aging are not
efficiently removed by selection and can thus accumulate
in populations over evolutionary time. Selection against
these mutations is weak because under natural condi-
tions, most individuals die for other, external reasons

before aging manifests itself. This explanation hinges on
two assumptions. First, such mutations must be detrimen-
tal late in life, but neutral [1] or beneficial 2] early on. If
they were also detrimental early in life, they would be
removed by selection. Second, the negative effects of age
must be confined to old parents and to the progeny of old
parents [3], while the progeny of young parents emerge
rejuvenated. Rejuvenation refers to the fact that progeny
are composed of newly synthesized organs, tissues, cells,
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and subcellular structures. As a consequence, they are less
affected by the phenotypic deteriorations experienced by
their aging parents. Without rejuvenation, negative effects
would accumulate from generation to generation, and
aging lineages would disappear [4].

Mutations with a negative effect that is specific for late age
and can be rejuvenated in the progeny play a pivotal role
in the evolution of aging. Any organism in which such
mutations occur should evolve aging, whereas organisms
in which such mutations do not occur should not age and
should be potentially immortal. Initially, it was thought
that such mutations can only occur in organisms with a
distinction between soma and germline [4] where the neg-
ative effect of age would be confined to the soma and not
be passed on to the progeny produced from the germline.
Then, as anticipated by Weismann [5] the criterion for
aging was expanded to any organism where the individu-
als emerging from reproduction are systematically differ-
ent [6,7]. Aging has now been shown in unicellular
eukaryotes [8,9] and even in bacteria [10,11]. As in other
organisms, aging manifests in bacteria as decreasing per-
formance with age. In bacteria, it is difficult to disentangle
survival and reproduction, and it is thus not possible to
use increasing mortality with age as an indicator for aging.
Aging is thus quantified as a decline in the product of sur-
vival and reproduction [12] or as a decreasing growth rate
with age [11].

According to the evolutionary explanation of aging, find-
ing aging in bacteria suggests that mutations with delete-
rious effects specific to late life do occur in bacteria, and
that they invaded populations over evolutionary times
because selection late in life is weak. However, the exist-
ence of such mutations has yet to be demonstrated. That
they do not necessarily occur is indicated by the failure to
find them in viruses [13].

A second issue with such mutations is that they tie the
evolution of aging to environmental conditions. One pre-
diction is that fast aging should evolve if the strength of
selection declines quickly with age, and slow aging if the
strength of selection declines slowly. This prediction has
been supported by a laboratory evolution experiment
with fruit flies [14]. In this experiment, the decline in the
strength of selection with age was varied by adjusting
external mortality imposed by the experimenters. Another
recent experimental study investigated the evolution of
aging in natural populations of guppies living with or
without predators [15]. The surprising outcome was that
guppies in the presence of predators evolved slower aging.
One plausible explanation for this result is that high
extrinsic mortality does not always lead to weak selection
late in life, because it may also cause a reduction in popu-
lation density. If reduced population density benefits
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older individuals more than younger individuals, then
increased extrinsic mortality might indeed improve the
prospect of older individuals and thus lead to a slower
decline in the strength of selection with age [16]. An alter-
native explanation is that if mutations with age-specific
effects are rare, extrinsic risk does not easily modulate
intrinsic aging.

Here, we used experimental evolution with bacteria to test
the evolutionary theory of aging at a basic level of biolog-
ical organization: populations of unicellular organisms.
Initially clonal populations were allowed to evolve under
conditions where selection late in life was very weak. We
then tested whether those populations would evolve ear-
lier aging. This experiment is a stringent test of both the
assumptions and the predictions of the evolutionary the-
ory of aging. It tests both the assumption that mutations
with a negative effect that is specific for late age and is sub-
ject to rejuvenation do occur, and the prediction that such
mutations can increase in frequency under conditions
where selection late in life is weak. If the assumptions of
this theory are met in these asymmetrically reproducing
bacteria, one would expect them to hold in all cellular
organisms where reproduction is not completely symmet-
rical.

Results and Discussion

We worked with C. crescentus, a bacterium where the two
cells emerging from reproduction can be distinguished,
and where one can be regarded as a mother and the other
as a daughter. The life cycle of C. crescentus [17] begins
with a motile swarmer cell (Fig. 1a). After dispersal the
swarmer differentiates into a stalked cell, which can attach
to a solid surface by means of a polar holdfast. It then ini-
tiates an asymmetric cell division that results in a motile
swarmer progeny cell and in the sessile stalked mother
cell. Stalked cells of C. crescentus age, manifested as a
decrease in progeny production after many rounds of divi-
sion [10,12](Fig. 1b).

To investigate the evolution of aging, we created condi-
tions where the age-distribution was biased to young age,
and most cells died before reaching advanced age. Popu-
lations of C. crescentus were cultured in liquid medium
under conditions of exponential growth. Every 24 hours,
small aliquots of cells were transferred to a fresh batch of
medium, and the cells that were not transferred were dis-
carded. The amount transferred was adjusted so that
resources never became limiting and the populations grew
continuously. Under this demographic regime, the popu-
lation reached an age-distribution strongly biased to
young age classes with about half of the cells being new-
born, a quarter one division old, an eighth two divisions
old, and so on. The populations contained very few cells
that were several divisions old, because most cells were
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Life history of C. crescentus and selection imposed during
experimental evolution. (A) The life cycle of C. crescentus
begins with the release of a swarmer cell (at age 0). The
swarmer cell differentiates to a stalked cell and divides for
the first time at age a. The second division occurs at age a +
b. The interval between divisions, b, is nearly constant early
in life. The time axis is drawn to scale for C. crescentus strain
UJ590; (B) The reproductive output of stalked cells of strain
UJ590 decreased with increasing age (grey line, left axis; aver-
age over nine independent experiments with 30 cells; data
from [12]). During experimental evolution, selection was
very strong early in life, and decreased with increasing age.
The red line (right axis) denotes the reduction in fitness
through a mutation that leads to death at a given age, as a
function of age. Death before the onset of reproduction
leads to a reduction of fitness by 100%.

killed at transfer, and the populations were expanding
exponentially between transfers.

We used a simple mathematical model from life history
theory to calculate the strength of selection under these
conditions as a function of an individual's age (see Meth-
ods). We calculated the fitness cost of hypothetical muta-
tions that would lead to cell death at a given age, and
plotted this cost as a function of the age at death. This
analysis showed that selection was very strong early in life,
and very weak late in life (Fig. 1b). Specifically, perform-
ance after an age of about 30 hours was virtually free of
selection. Under these conditions, mutations with a dele-
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terious effect specific to late age are close to neutral. Also,
large negative effects at later age could be compensated for
by a small advantage early in life. As an example, consider
a mutation that would lead to cell death at an age of 48
hours. Under the conditions of our experiment, the fitness
cost of this mutation is so small that it could be compen-
sated for by a decrease in the age at first division of one
second (see Methods). We thus expected mutations that
improve early performance to sweep through the popula-
tions, leading to an increase in population growth rate
reflected in a decrease in doubling time. If any of the
mutations fixing in the experimental populations had
costs at later age, we would expect to observe an evolu-
tionary change towards faster aging.

Evolutionary Changes

We evolved three populations of C. cresecentus under these
conditions. Every day, we determined the doubling time
of every population (as described in the methods). At reg-
ular intervals, samples were taken from these populations
and stored at -80°C. After 2000 generations, we revived
aliquots from the frozen stocks as well as from the ances-
tor and measured population doubling times. These
measurements showed that during 2000 generations of
experimental evolution, population doubling time
decreased by more than a factor of two (Fig. 2a). This find-
ing was supported by an analysis of the daily measure-
ment of population doubling time (Additional file 1). The
daily measurements showed that population doubling
time did not change substantially during the first 150 divi-
sions, and then showed a rapid, marked decrease. This
pattern is characteristic of the selective sweep of a benefi-
cial mutation in asexual populations of microorganisms
[18]. This and the fact that the changes in doubling time
were stably inherited even after freezing and reviving
strongly suggest that the decrease in population doubling
time is a consequence of mutations that fixed in the exper-
imental populations, and not simply a physiological
adaptation to the new conditions by means of gene regu-
lation.

Most of the reduction in population doubling time
occurred during the first 1000 generations and resulted
from a marked decrease in age at first division (Fig. 2b). A
decrease in the age at first division is synonymous with a
shortening of the period spent as a motile swarmer cell. In
the natural environment, the motile swarmer cells dis-
perse [17], and this might select for a long swarmer phase.
In the homogenous environment used for experimental
evolution, dispersal is no longer beneficial, and the
swarmer phase thus presumably dispensable. The interval
between two divisions of young stalked cells, in contrast,
decreased only marginally (Fig. 2b). This result confirms
that these conditions lead to the evolution of improved
performance early in life and suggests that the length of
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Life history changes during experimental evolution. (A) The
population doubling time decreased by more than a factor of
2 in the course of 2000 generations of evolution. At each
time point, five clonal isolates per population were analyzed.
Error bars denoting standard error of the mean are smaller
than the size of the symbols, except for time point 0; (B)
Age at first division, a, and the average interval between con-
secutive divisions in the 20 hours after the first division, b, of
ancestor and five isolates from each population after 1000
generations. All populations differed significantly from the
ancestor in both traits (p < 0.05). The difference between
ancestor and evolved populations is large in the age at first
reproduction, and small in the interval between consecutive
divisions. Abbreviations: Anc: ancestor; Pop| to Pop3: popu-
lation | to population 3.

the inter-division interval is constrained by cell cycle proc-
esses.

Next, we looked for changes late in life. We analyzed five
clones from each population isolated after 2000 genera-
tions of evolution. For each clone, a cohort of individual
stalked cells was followed for 60 hours with direct obser-
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vation in a microscopy flow chamber [10], and division
events were recorded. In this system survival and repro-
duction cannot be disentangled because the viability of
cells can only be assessed when they reproduce. Thus, we
cannot use measures of aging that rely on that distinction
[19]. Instead, we used a measure for age-specific perform-
ance that combines these two fitness components: the
reproductive function [20], i.e. the number of progeny
produced per member of the cohort per hour, as a func-
tion of the age of the cohort. We measured the rate of
aging as the rate at which the reproductive function
decreased with age. To extract this quantity from the divi-
sion record of individual cells, we used logistic regression
to estimate the change with age in the probability that a
member of the cohort produced a progeny per unit time.

Contrary to expectation, populations 1 and 3 evolved
slower aging than the ancestor, as indicated by a slower
decrease in the reproductive function with age (Fig. 3). A
slower decrease in the reproductive function means that
stalked cells survived better to late age or reproduced at a
higher rate late in life than the ancestor. In these popula-
tions, the number of progeny contributed by old stalked
cells, which were almost completely free of selection,
increased more than the number of progeny contributed
by young stalked cells, which were under stronger selec-
tion (Fig. 3).

In population 2, the five clones isolated after 2000 gener-
ations showed striking variation in the rate of aging (Fig.
3). We repeated the measurements with each clone, and
found that one clone showed slower aging and three
showed faster aging than the ancestor (Fig. 4a). This result
suggested that in population 2 at least one mutation that
led to faster aging had become frequent, either because it
conferred a benefit early in life and was thus selected for,
or because it was neutral early in life and drifted into the
population. The first scenario corresponds to the evolu-
tion of earlier aging by means of antagonistic pleiotropy
[2], the second by means of mutation accumulation [1].

A mutation that leads to decreased performance in older
cells can only reduce its negative impact if its deleterious
effect is confined to a mother cell whose progeny is born
rejuvenated. We tested for rejuvenating reproduction in
one of the clonal isolates from population 2 that showed
earlier aging. We recorded the reproductive output of
stalked cells at the beginning of life and at an age of 18
hours, when they already showed a declining reproductive
function. We then measured the reproductive output of
daughters born to these aging mothers (this was possible
because a mutation that fixed in this population led to an
increased level of attachment in the microscopy cham-
ber). The daughters had a higher reproductive output than
their aging mothers, indicating that they were rejuvenated
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Changes in aging after 2000 generations of evolution. Popula-
tion | (top panel) and population 3 (bottom panel) showed a
slower decline in the reproductive function with age than the
ancestor (grey line). The difference to the ancestor is signifi-
cant (at p < 0.001) for both populations. Population 2 (middle
panel) shows variation in the decline of the reproductive
function with age. From each population, 30 or more cells
from 5 independent clones were assayed, and each line rep-
resents the moving average of measurements from one
clone, standardized to an intercept of |. Statistic analysis was
performed on the non-transformed data with logistic regres-
sion.
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Faster aging and rejuvenating reproduction in population 2
after 2000 generations of evolution; (A) Rate of decrease in
the reproductive function with age for the ancestor (grey
symbol and hatched line) and five clonal isolates from popula-
tion 2. The rate of decrease in the reproductive function
with age (y-axis) was determined by logistic regression as
described in the Methods. Isolate 2.2 declined slower and
isolates 2.1, 2.3 and 2.4 declined faster than the ancestor (sig-
nificant at p < 0.05. After correction for multiple testing, iso-
late 2.1 is significantly different from the ancestor); (B)
Reproductive output (average number of progeny produced
per hour over a period of twelve hours) of 204 pairs of
mothers and daughters from isolate 2.1. While young moth-
ers (2.1 young) reproduced quickly, their reproductive out-
put at an average age of |18 hours (2.1 old) was lower.
Daughters born to these mothers (2.1 daughters) repro-
duced quickly again. Old mothers were significantly different
from young mothers and daughters (p < 0.001, after correc-
tion for multiple testing). Young mothers were not signifi-
cantly different from daughters; (C) Population doubling time
for the ancestor and the five isolates from population 2. The
five isolates were not significantly different from one another.
All error bars are standard error of the mean.
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(Fig. 4b). There was a tendency for the reproductive out-
put of the daughters to be lower than the reproductive
output of their mothers measured early in life, but the dif-
ference was not statistically significant (a power analysis
showed that a difference in reproductive output of at least
10% would have been recognized as significant with a
probability of 80%). Such a fitness reduction in progeny
born to old parents has been reported for organisms rang-
ing from bacteria [11] to humans [21] and can be under-
stood as consequence of weak selection on old parents
[3]. As long as this effect only manifests in old parents and
does not accumulate over generations, it does not lead to
a successive deterioration of the aging lineage [3].

Because the negative effect of this mutation that led to ear-
lier aging in population 2 was confined to late age, and
performance at late age was inconsequential for fitness
under these conditions, we expected that this mutation
would not have an adverse effect on the growth rate. We
measured the growth rate of the five isolates from popula-
tion 2 and found no evidence for a fitness difference
between the isolates with faster aging and the one isolate
with slower aging (Fig. 4c). Importantly, these isolates all
grew much faster than the ancestor, indicating that the
isolates that showed faster aging were not generally defec-
tive. The fact that the growth rates were indistinguishable
means that we cannot tell whether the mutant with faster
aging was in the process of rising to fixation, or whether it
was close to or at fixation and about to be replaced by
another mutant with slower aging.

Inference of the stage-specific risk encountered by the
ancestors in nature

In the Caulobacter wild-type strain used as ancestor for the
evolution experiment, the performance of stalked cells
declines only slowly with age; some cells produced up to
130 divisions in 300 hours [10]. This indicates that the
ancestor does not contain alleles leading to aging as early
as observed in population 2. What prevents such alleles
from invading natural populations of C. crescentus? To
answer this question, one has to try to understand how
selection acts in the natural environment of these bacteria.

The age-specific strength of selection in nature depends on
extrinsic risks of mortality for juvenile swarmer and adult
stalked cells. If extrinsic risk in the wild is exactly equal for
swarmer and stalked cells, then most stalked cells would
die before dividing many times. This is a consequence of
the fact that, due to density regulation, natural popula-
tions do not grow without limit; in the long run, out of
two cells that arise through division, one will die before
dividing again (see also additional file 2). If swarmer and
stalked cells were equally likely to die, then only about
one in 1030 stalked cells would reach an age of 100 divi-
sions (2100~ 1030). As the total number of bacteria (all
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species combined) on earth has been estimated to be
around 1030 [22], such great age would never be realized
by C. crescentus. It would therefore be surprising that,
when measured in the laboratory, stalked cells can still
function at ages of 100 divisions and more if their mortal-
ity rate in the wild had been as high as that of swarmer
cells.

One explanation for this puzzle is therefore that extrinsic
risk in nature is much higher for juvenile swarmer cells
than it is for adult stalked cells. Under those conditions,
many cells would die during their swarmer phase; the few
that would survive to become a stalked cell, however,
would live a relatively safe life. Consequently, a substan-
tial fraction of the cells that survive the swarmer phase
would continue to survive for many divisions and reach a
relatively high age. This would increase the importance of
the stalked phase and would select for cells that are still
able to reproduce even at an advanced age. This would
explain why stalked cells of C. crescentus have such a long
maximal lifespan [10].

Quantitative estimates of extrinsic risk in the natural envi-
ronment of C. crescentus are not available, and it is thus
not possible to quantify the scenario described above.
However, observational data suggests that it might be
qualitatively correct. Direct observation [23] and micro-
cosm studies [24] indicated that stalked cells are resistant
to protozoan grazing, while swarmers presumably are sus-
ceptible [23]. We used a simple mathematical model to
investigate how differences in extrinsic risk between
swarmers and stalked cells determine the age-specific
strength of selection in the wild (additional file 2). This
analysis confirms that if external risk is higher for swarm-
ers than for stalked cells, the strength of selection
decreases only slowly with age, and mutations with a del-
eterious effect that manifests after a few dozen divisions
would be eliminated by selection. If this view is correct, it
would mean that we shifted C. crescentus from the natural
environment where stalked cells were relatively safe, and
selection against early aging thus substantial, to an artifi-
cial environment where most stalked cells were killed
early on, and selection against early aging was thus weak.

The two main insights

Our results lead to two main insights. The first concerns
the question, which organisms should age? Aging should
evolve in any organism where mutations can negatively
affect performance late in life without correlated costs
early in life. Here, we show that a mutation with such an
effect occurred in an experimental population of bacteria
and rose to high frequencies under conditions where
selection late in life was weak. While our results indicate
that such mutations might be rare, the fact that they do
occur in bacteria suggests that they might occur in all cel-
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lular organisms. This raises the question whether any cel-
lular organism is immune to the accumulation of such
mutations over evolutionary time, and thus to aging.

The second insight from this study pertains to how aging
and lifespan evolve in response to external conditions. We
tested the central prediction of the evolutionary theory of
aging, that fast aging should evolve under conditions
where selection late in life is weak. While we did find
faster aging in one population, the dominant response
was slower aging: the part of the life history under strong
selection improved less than the part of the life history
where selection was almost absent (Fig. 3). Similar dis-
crepancies have been reported earlier [25,26]. Interest-
ingly, here the reasons previously advanced to explain
such discrepancies - that increased extrinsic mortality
does not necessarily lead to weak selection late in life
[16,27] - do not apply. The simplicity of our experimental
system allows us to calculate the strength of selection as a
function of age directly, and this analysis shows that dur-
ing our evolution experiment the strength of selection
indeed dropped very quickly with age (Fig. 1b).

The most likely explanation for our result is different,
namely that mutations had unexpected phenotypic
effects. We can draw two conclusions about the pheno-
typic effects of the mutations associated with the evolu-
tionary changes in these populations. First, the mutations
that increased growth rates by improving early life did not
typically entail costs later in life. Second, some of the
mutations that went to fixation had the correlated effect of
leading to slower aging, even though selection late in life
was very weak. These results echo conclusions drawn from
experiments on fruit flies, which suggest that deleterious
mutations with age-specific effects might be rare [28] and
that in novel environments mutations can improve sev-
eral fitness components simultaneously [29]. Our results
go a step further. That the reproductive function shows a
slower decrease with age in populations 1 and 3 than in
the ancestor suggests the fixation of mutations that
improved performance of stalked cells late in life even
more than their performance early in life. It remains pos-
sible that continued selection in this novel environment
might eventually reveal trade-offs between performance
early in life and longevity, and lead to the evolution of
faster aging in all populations.

Conclusion

We conclude that mutations that contribute to aging can
occur in bacteria, and that they can reach high frequencies
if selection late in life is weak, as predicted by the evolu-
tionary theory of aging. This suggests that this theory is
generally valid for all cellular organisms. And we support
previous findings that the evolution of aging can take
unanticipated turns when mutations have unexpected
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phenotypic effects. Theory cannot reliably predict what
kind of mutations should occur; it only predicts the fate of
mutations with given effects. Understanding the evolu-
tion of aging requires experiments that provide informa-
tion about mutational effects on aging. The experimental
evolution of aging in a bacterium demonstrates that such
model systems yield insights into fundamental aspects of

aging.

Methods

Strains and growth media

The evolution experiment was initiated with C. crescentus
UJ590 [10]. This strain derived from the wild-type strain
CB15 ([17], ATCC 19089) by introduction of an in-frame
deletion in the pilA gene (without this deletion, the aging
assay in the microscopy flow chamber is not possible;
presence of the adhesive pili prevents progeny cells from
being removed from the flow chamber, so that they
quickly accumulate). CB15 is a natural isolate that has
been stored in the freezer and that is less adapted to the
laboratory conditions than the common laboratory
strains. The evolution experiment and all assays were
done in M2G glucose minimal medium [30] supple-
mented with 25 mM CaCl2. PYE agar plates [30] were
used where indicated.

Evolution experiment
Populations were evolved in agitated cultures of 100 ml
M2G at 30°C in Erlenmeyer flasks. In liquid culture, C.
crescentus maintains its life cycle with the asymmetric cell
division into a motile swarmer and a stalked cell, even
though most cells do not attach, but float in the medium.
Every 24 hours, the optical density (OD 660) was deter-
mined and the growth rate and population doubling time,
dt, during the previous 24 hours calculated. Then, an alig-
uot of cells was transferred to a new batch of medium. The
quantity of cells transferred was adjusted so that if the cul-
ture would continue to grow with the same doubling
time, it should reach on OD 660 of 0.25 (about 2*1010
cells) after another 24 hours of growth. The quantity to be
transferred, ¢t (in ml), was determined as

t=0D

*100/(OD g * 224/1)

goal current

where OD,,,; is the goal optical density prior to the next
transfer, chosen to be 0.25, and OD,,,,.,, is the optical den-
sity of the culture from which an aliquot was transferred.
The factor 100 in the numerator accounts for the fact that
the aliquot is transferred to 100 ml of medium. With this
protocol, the population were always kept in exponential
growth and never reached stationary phase. As population
doubling time was measured every day, the decrease in
population doubling time that occurred during the evolu-
tion experiment (Fig. 2a) could be compensated for by
transferring smaller aliquots at the later stage of the exper-
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iment. The minimal population size that as transferred
was about 10° cells.

A critical assumption of the evolution experiment was
that the age-structure in the population was not altered at
transfer. This required that a cell's chance of being trans-
ferred was independent of its age. This could be violated if
a substantial fraction of cells would attach to the walls of
the culture container. Such cells would then not have a
chance of being transferred; if they were not representative
of the population in terms of age, the age-structure in the
population would be changed at transfer. To test whether
this was a problem, we measured the number of cells that
attached to glass under conditions of the selection experi-
ment. We counted the number of cells attaching to glass
slides that were immersed in the cultures during the 24
hour growth cycle, and extrapolated this number to the
surface area of the flask. We estimated that less than
0.01% of all cells in the flask attached to the wall (fewer
than two million cells were estimated to be attached to the
walls at the time of transfer, while the total number of
cells in the flask was about 2*1010 cell). Even in the case
that the cells that were attached were not representative
for the population in terms of their age, their number is so
small that the age distribution of the population would
remain basically unaffected.

Measuring growth rate and life history parameters

Phenotypic changes in the course of experimental evolu-
tion were measured on clonal isolates. To obtain clonal
isolates, we streaked out aliquots of frozen samples (-80°)
harvested from the evolving populations at regular inter-
vals on PYE agar plates and isolated individual colonies.
Growth rates (Fig. 2A) were measured in multiwell plates
for five clonal isolates per population and time point,
with three replicate cultures per clonal isolate. Compari-
sons of growth rates among clonal isolates from popula-
tion 2 after 2000 generations (Fig. 4C) were based on 20
independent replicates per isolate. To measure the interval
between two consecutive divisions early in life, b (Fig. 2B),
five isolates from each population isolated after 1000 gen-
erations of evolution were analyzed. For each isolate, 30
stalked cells were observed from differentiation to an age
of 20 hours in a microscopy flow chamber (see below).
Cell division events were recorded, and b was defined as
the average interval between two cell divisions in the 20
hours after the first division. The age at first division for
each clonal isolate, a (Fig 2B), was determined by solving
the Euler-Lotka equation numerically [20], based on the
measured growth rate r and the interval between two con-
secutive divisions b early in life for that isolate. The rela-
tionship between the growth rate r, the age at first
division, a, and the interval between divisions, b, is
approximately defined as 1 = >, _; ,, .e"(@"*™?). This is a
simplified version of the Euler-Lotka equation for discrete

http://www.biomedcentral.com/1471-2148/7/126

time. Age-specific output is equal to one for all ages where
a cell divides, and zero otherwise. This approximation
assumes that cells continue to produce progeny at a con-
stant rate throughout their life, thereby ignoring a
decrease in the rate of progeny production and an increase
in intrinsic mortality with age. However, these changes
only manifest at later age, and performance late in life has
only a very small effect in the Euler-Lotka equation
because of the discounting factor e(@+7*b), This simplified
form of the Euler-Lotka equation gives therefore a very
good approximation for the growth rate during the condi-
tions of exponential growth encountered during the evo-
lution experiment.

Direct observation of individual cells and determination of
the reproductive function

We used a method described in [10] to determine the
reproductive output of individual stalked cells by means
of direct observation in a microscopy flow chamber. In
contrast to the procedure described in [10], cells were not
synchronized prior to inoculation. Visual inspection sug-
gested that the cells attaching during inoculation were
swarmer cells, so that the experiment started with a cohort
of cells of equal age. The physical condition in the micro-
scopy flow chamber corresponded to the conditions dur-
ing the evolution experiment; aerated M2G medium
(30°C) flowed through the chamber, removing most of
the progeny swarmer cells produced in the chamber,
while the stalked cells remained attached. The number of
progeny produced per individual of the cohort was deter-
mined every 10 minutes for 60 hours.

The number measured at a given age x corresponds to the
product of the probability of surviving to that age, 1(x),
and the rate of reproduction at that age, m(x). This prod-
uct is referred to as reproductive function k(x)[20]. In this
experiment, it is not possible to determine whether cells
that do not divide are dead or rather alive but not repro-
ducing. As a consequence, it is not possible to divide the
reproductive function k(x) into its two components, sur-
vival 1(x) and reproduction m(x). However, how this divi-
sion is done has no effect on the estimate of the age-
specific contribution to progeny production, and we thus
used changes in the reproductive function k(x) with age x
as measure for the rate of aging. In the clonal isolates from
population 2 after 2000 generations of evolution, a larger
fraction of swarmer cells remained in the chamber (this
population evolved increased adhesion). For these iso-
lates it was thus possible to compare the reproductive out-
put (defined as the progeny produced in a time interval)
of pairs of mother and daughter cells. The reproductive
output of 121 mothers was determined at the beginning
of their life cycle and at an advanced age of on average 18
hours. These quantities were compared to the reproduc-
tive output of 204 daughter cells born to these mothers at
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an average of 18 hours. Reproductive output for young
mothers, old mothers, and the daughters born to old
mothers was measured during 12 hours, starting 4 hours
after birth. This analysis is based on the assumption that
the daughter cells that remain in the chamber are a repre-
sentative sample of all daughter cells produced.

Calculating the strength of selection as a function of age

To quantify the strength of selection, one first needs to
identify the appropriate measure for fitness. In competi-
tion among clonally reproducing genotypes, the genotype
with the highest population growth rate r will out-com-
pete the rest [31] unless there are direct interactions
between cells, for example through chemical inhibition.
There is no indication that such direct interactions might
play a role in this system, and we therefore used r as the
measure for fitness. During experimental evolution, the
effective long-term growth rate of the population was
adjusted to zero by a density-dependent reduction in the
population size during the daily transfer. However, as this
reduction did not change the age-distribution of the pop-
ulation (see above), the evolutionary dynamics was deter-
mined by competition during the phases of exponential
growth between transfers, and was unaffected by the pop-
ulation culling during transfers. The fitness sensitivity dur-
ing exponential growth is thus the relevant measure for
the strength of selection during experimental evolution.

We used the Euler-Lotka equation [20] to determine the
fitness cost, in terms of a reduction in r, of a mutation
leading to death after m divisions (Fig. 1B). Under the
conditions during the evolution experiment, the fitness r
of a strain is approximately defined by 1 = ¥, _, , €
r(a+n*b), where n is a counter for divisions, m is the maximal
number of divisions that a cell achieves, a is the age at first
division, and b is the interval between consecutive divi-
sions. As above, this is a simplified version of the Euler-
Lotka equation for discrete time, where age-specific out-
put is equal to one for all ages where a cell divides, and
zero otherwise, and where a decrease in the rate of repro-
duction and an increase in intrinsic mortality with age are
not included. Evaluating the equation numerically for dif-
ferent m reveals how r depends on m, and thus the fitness
cost of a mutation that leads to death after m divisions
(the fitness cost was calculated relative to a reference with
m = 100. Using larger m as reference did not have an effect
that was large enough to be detectable numerically). For
plotting the age-specific strength of selection, we used
chronological age rather than the number of divisions; in
this approximation, the age at n divisions is a+n*b). To
estimate the reduction in the age at first division required
to compensate for death at a certain age m, we numerically
determined the reduction in a (the age at first division)
that was necessary to compensate for a fitness loss caused
by death at age m.

http://www.biomedcentral.com/1471-2148/7/126

Statistical analysis

Statistical analysis was done with SPSS [32]. Changes in
the reproductive function with age (Fig. 3 and Fig. 4A)
were analyzed with logistic regression. The slope parame-
ter beta of the logistic regression was used as a measure for
changes in the division probability per unit time of a cell
with age. Larger betas, indicating a faster decline in the
reproductive function with age, were interpreted as faster
aging. Each microscopy experiment yielded a separate
measure of beta for the respective strain. The betas meas-
ured for different strains (Fig. 3 and Fig. 4A) were com-
pared with ANOVAs. Fig. 4A is based on four independent
experiments for isolates 2.1, 2.2 and 2.3, and three exper-
iments for isolates 2.4 and 2.5. Where indicated, p-values
were adjusted for multiple testing with Bonferroni-correc-
tions in SPSS. For plotting (Fig. 1B and Fig. 3), the age-spe-
cific reproductive output was smoothed by calculating
moving averages over 6 hours. Reproductive output of
young mothers, old mothers, and daughters (Fig. 4B) was
compared with ANOVA. For many mother cells, more
than one daughter was analyzed. To account for the fact
that daughters from the same mother were not statistically
independent, we introduced a random factor in the anal-
ysis denoting the mother from which each daughter orig-
inated. Power analysis for the comparison between young
mothers and daughters was done as described in [33] p.
164. For the power analysis, we calculated the average dif-
ference in the reproductive output between each mother
and all of her daughters, and tested the sample of these
differences for deviation from zero.
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