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Epidemiological studies of zoonotic influenza and other

infectious diseases often rely upon analysis of levels of antibody

titer. In most of these studies, the antibody titer data are

dichotomized based on a chosen cut-point and analyzed with a

traditional binary logistic regression. However, cut-points are

often arbitrary, particularly those selected for rare diseases or for

infections for which serologic assays are imperfect. Alternatively,

the data can be left in the original form, as ordinal levels of

antibody titer, and analyzed using the proportional odds model.

We show why this approach yields superior power to detect risk

factors. Additionally, we illustrate the advantages of using the

proportional odds model with the analyses of zoonotic influenza

antibody titer data.
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Introduction

Antibody titer is often an important diagnostic tool in

epidemiologically assessing infections, especially in retro-

spective and prospective studies where infection may be

sub-clinical. Such is the case for epidemiological studies of

influenza infection where laboratory methods such as

microneutralization and hemagglutination inhibition are

used.1 Although the concentration of antibodies in sera is

actually continuous, the use of some methods based on

titers often produces data that are categorized into ordinal

levels. For example, if the antibody concentration is so low

that antibodies cannot be detected at a dilution of 1:10, then

the concentration is recorded as ‘<1:10’. If the antibody is

detected at a dilution of 1:10 but not at a dilution of 1:20,

then the concentration is recorded as ‘1:10’. Thus, data are

recorded in a sequence of titer categories (e.g. <1:10, 1:10,

1:20, 1:40, etc.), composing an ordinal response.

Often in examining titer data, a cut-point is selected to

dichotomize the response into a simple classification of dis-

ease vs. non-disease. In outbreak situations, cut-points are

useful in estimating the number of cases or in searching

for risk factors for infection. However, cut-points are often

arbitrary, particularly those selected for rare diseases or for

infections for which serologic assays are imperfect. For

example, considering serologic testing for a H1N1 avian

influenza virus, antibody detection may be influenced by a

subtle mismatch in wild vs. assay virus, cofounded by pre-

vious exposure to a human H1N1 virus or vaccine, or

masked by some inhibition of immune response. For this

reason, some scientists conduct risk factor analyses by fit-

ting logistic regression models based on several different

cut-points.2 Although this type of a sensitivity analysis has

some merit, it has the disadvantage of providing several

different answers which may be difficult to reconcile if they

are inconsistent with each other. In addition, for disease

such as avian influenza in humans, where it is difficult to

identify symptomatic cases, it is hard to verify classification

accuracy performed with any optimal cut-point technique,

with available methods such as receiver operating charac-

teristic (ROC) curve.3 This paper illustrates how the pro-

portional odds model can provide a single answer that

summarizes the information from analyses based on several

possible cut-points, and that this modeling approach has

advantages over using logistic regression models that use

only one cut-point.

The proportional odds model

The proportional odds model is a type of cumulative

model that enables logistic regression to be generalized to

ordinal outcomes. It is similar to the concept proposed by
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Aichinson and Silvey in 1957, developed and popularized

by Walker and Duncan in 1967 and by McCullagh in

1980.4–6 The motivation of the models is the existence of

an underlying continuous and perhaps unobserved random

variable.6

Consider a situation where the response Y is binary (0

and 1). The odds of disease, Pr(Y = 1) ⁄ Pr(Y = 0) can be

related to a linear function of a predictor variable X

through the inverse log function, i.e.

PrðY ¼ 1Þ
PrðY ¼ 0Þ ¼ eaþbX

where a represents the intercept and b the slope.

If data are ordinal with K + 1 levels, then Y can take on

values 0, 1, 2,…, K. For k = 1, 2,…, K, the odds of Y being

at least equal to k (considered to be ‘cumulative odds’),

can be related to a predictor X in a similar fashion as with

binary data, namely

PrðY � kÞ
PrðY<kÞ ¼ eakþbX

The ‘proportional odds’ assumption is that all bk are

equal to a common b, which means that the odds of being

above any cut-point is the same for all cut-points. In other

words, instead of having several different odds ratio for a

predictor such as exposure status, a single odds ratio is cal-

culated. Figure 1 illustrates this constraint, showing the

perfect situation where equal odds ratios can be found at

any cut-point, and there is no violation of the proportional

odds assumption.

The proportional odds model illustrated above can be gen-

eralized to several predictors (X1, X2,…), for example assess

the effect of exposure while adjusting for cofounders, namely

PrðY � kÞ
PrðY<kÞ ¼ eakþb1X1þb2X2þ���:

In standard practice, the null hypothesis of equal slopes

(proportional odds) is tested with the score test for propor-

tional odds. This test is provided by most of the standard

statistical packages. A statistically non-significant test is

considered sufficient evidence that the proportional odds

assumption was not violated. Because this test is sensitive

to sample size and may be significant in cases with mini-

mum deviation from proportionality, some authors recom-

mend plotting the log odds generated by each cut-point as

a complementary analysis for proportionality of odds.7

An illustration with avian and swine
influenza

We used existing influenza serological titer data to compare

the binary logistic model and the proportional odds mod-

els. Titer results were reported as the reciprocal of the

highest dilution of serum that inhibited virus-induced

hemagglutination of red blood cells. Data included anti-

bodies against: swine H1N1 and H1N2 viruses among 788

agricultural workers (687 exposed and 87 non-exposed),

avian H1 virus among 73 avian-exposed veterinarians and

94 non-avian-exposed controls, and swine H1N1 viruses

among 49 swine confinement workers and 78 non-swine-

exposed controls.8–10

For the binary logistic model, we adopted the antibody

titers of 1:40 as cut-point for swine influenza viruses8 and

1:10 for avian influenza viruses,1 and compute unadjusted

odds ratios, as well as odds ratios adjusted for gender

alone, and for gender and age. When the standard algo-

rithm for fitting this method was unsuccessful (which hap-

pens, for example, when all the exposed subjects have a

positive response or when all the non-exposed are nega-

tive), a computer-intensive algorithm known as the exact

method was used.

We used SAS version 9.1 (SAS, Cary, NC, USA) for these

statistical analyses. The binary logistic model and the pro-

portional odds model were both fit using Proc Logistic.

This procedure employed the standard computing algo-

rithm to fit the model or the exact method, as necessitated

by the data. A number of other statistical packages can also

be used to fit these models, although not all of them can

employ the exact method.
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Figure 1. Schematic illustration of the proportional odds assumptions using serological response levels as example.

Capuano et al.

ª 2007 The Authors

88 Journal Compilation ª 2007 Blackwell Publishing Ltd, Influenza and Other Respiratory Viruses, 1, 87–93



Comparison of theoretical power

We used Whitehead’s formulae for calculations of sample

size for the proportional odds model.11 After rearrange-

ments, the power can be written as:

1� b ¼ Uðj logðhÞ
ffiffiffiffi
V
p
j � probitð1� a=2ÞÞ

where U is the standardized normal cumulative distribu-

tion function, h is the expected odds ratio, a is the signifi-

cance and V is the Fisher’s information.

The proportional odds Fisher’s information, Vp, is

defined by:

Vp ¼
nencn

3ðnþ 1Þ2
1�

XK

i¼0

ni

n

� �3
 !

where ne is the exposed group sample, nc is the non-

exposed group sample, n is the total sample and ni ⁄ n is the

hypothetical anticipated proportion of the total sample

expected to be in the level i of the ordinal outcome (where

i = 0 to K).

Considering the binary logistic as a special case of the

proportional odds for a number outcome with only two

levels (j = 0 or 1), we can write the Fisher’s information of

the binary logistic Vb as:

Vb ¼
nencn

3ðnþ 1Þ2
1�

X1

j¼0

nj

n

� �3
 !

When an ordinal data set is dichotomized at a cut-point

L, these two levels formed are the sum of the sample in the

level equal or above L and the level lower than L. In this

case, we can also represent the binary logistic Vb as:

Vb ¼
nencn

3ðnþ 1Þ2
1�

XL�1

i¼0

ni

n

 !3

þ
XK

i¼L

ni

n

 !3 ! !
:

To demonstrate that the power of the proportional odds

model is greater than the binary logistic, we have to show

that:

Uðj logðhÞ
ffiffiffiffiffiffi
Vp

p
j � probitð1� a=2ÞÞ > Uðj logðhÞ

ffiffiffiffiffiffi
Vb

p
j

� probitð1� a=2ÞÞ:

Considering the significance a to be fixed, and the

expected odds ratio h to be common between models, we

can simplify the inequality to:

Xl�1

i¼1

ni

 !3

þ
XL

i¼l

ni

 !3

>
Xl�1

i¼1

n3
i þ

XL

i¼l

n3
i :

Hence, the power for the proportional odds model will

always be greater than the power of the binary logistic.

To illustrate, we performed power calculations under a

variety of hypothetical scenarios: different odds ratios,

number of serological titer levels, sample sizes (at an expo-

sed ⁄ non-expose rate of 1:4) and hypothetical anticipated

proportions of subjects per serological titer response. As a

relative measure of the performance of these models, we

also calculated the relative asymptotic efficiency,12 defined

as the limit of the sample size ratio required for two meth-

ods to reach the same power.

The calculations were the ‘hmisc’ procedure13 of R soft-

ware (R: A Language and Environment for Statistical Com-

puting, Vienna, Austria). Additionally, a SAS macro for

computing the power for the proportional odds model is

provided (Table 1).

Results

In some data sets, the sparseness of the sample in some

titer categories led us to group adjacent categories together.

This resulted in acceptable (non-significant) tests of the

proportional odds assumption. The proportional odds

model revealed equal or greater evidence of risk factors and

outcome associations compared with the binary logistic

model (Table 2). This increased evidence is seen in higher

chi-squared values, lower P-values, and narrower confi-

dence intervals. The odds ratios were very compatible

between models.

In accordance with the mathematical demonstration, the

power calculations illustrate the superiority of the propor-

tional odds model over the binary logistic model. For the

same power, the proportional odds require a smaller sample

compared with binary logistic model (Figure 2A). A loss of

power is noticed when response categories are collapsed

(Figure 2B). Changes in hypothetical anticipated propor-

tions of subjects per serological titer response and adoption

of different cut-points were responsible for most of the vari-

ation in efficiency (data not shown). The highest relative

efficiency of the proportional odds model compared with

the binary logistic model was obtained when differences

between risk groups are hidden by data dichotomization.

Discussion

In previous studies, we successfully used the proportional

odds model, which allowed us, sometimes with a small sam-

ple size, to determine risk factors for zoonotic influenza.8,9

However, our search of the medical literature indicates that

the use of the proportional odds model is infrequent. The

loss of information observed when ordinal data were

grouped into two categories (dichotomization) has been

previously reported.7 Recently, in other fields, the superior-

ity of the proportional odds model over the binary logistic

model has been explored analytically, yet without compari-

sons of power.14 We provide infectious disease epidemiolo-

gists with a more definitive argument.

Maximizing power in seroepidemiological studies
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Our data show that, when the proportional odds

assumption is met, the odds ratio calculated with propor-

tional odds will be within the confidence interval of the

binary logistic odds ratio. With this observation we raise

the question: should we ever dichotomize the ordinal data?

Perhaps we should do so when there is strong data sup-

porting that a specific cut-point provides definitive evi-

dence of protection against infection (e.g. vaccine titer

data). Such might justify the loss of power.

The proportional odds model provides an intermediate

approach between the cut-point approach and identifica-

tion of the actual underlying continuous distribution of

serological responses. The interpretation of the propor-

tional odds model is easy because it is similar to the bin-

ary logistic, and is unaffected by the direction chosen to

model (higher to lower titer vs. lower to higher titer).15

However, because of the proportional odds assumption

constraint, this model is not appropriate for all data.

Brender and Groven demonstrated that the use of POM

can lead to invalid results if the proportional odds

assumption is violated.16 When the proportional odds

score test is statistically significant with graphical evidence

of non-proportionality, the investigator may choose to fit

a partial proportional odds model. This revised model

loosens the constraint that all variables must have propor-

tional odds.

Table 1. A macro for calculation of power for the proportional odds model with SAS
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Inferences based on odds ratios are often used in show-

ing a relationship between a predictor and an outcome. In

our illustrations, the predictors are environmental expo-

sures and the outcomes are antibody response levels. In

other situations, the predictors could be the results of a

screening test and the outcomes could be the presence or

severity of a disease. Pepe et al.3 emphasize the use of ROC

curves and other classification tools in evaluating the use-

fulness of screening programs, as seemingly high odds

ratios (e.g. in the range of 3–9) may yield very poor classi-

fication properties in low-risk populations. However, these

authors discuss only dichotomous outcomes (e.g. presence

vs. absence of a disease), which could be analyzed with

logistic regression, rather than ordinal outcomes (e.g.

severe vs. moderate vs. mild vs. no disease), which lend

themselves to the proportional odds model. In fact, as stan-

dard ROC analyses are based specifically on dichotomous

outcomes, it is not clear how to use them to measure the

classification properties of the proportional odds model.

Conceptually, a researcher could do a logistic regression

analysis based on each possible dichotomization of the out-

come and then use ROC criteria to choose the dichotomi-

zation which appears to be optimal. However, the

theoretical comparisons illustrated in this report imply that

even an optimal dichotomization would have less statistical

power than inferences based on the proportional odds

model.

In summary, these analyses illustrate the advantages of

examining the entire spectrum of serological response in an

epidemiological study by using the proportional odds

method. Because of its superior power, the proportional

odds model may identify risk factors that would be other-

wise remain undetected by the more often used dichotomi-

zation of serologic data. The proportional odds model

allows epidemiologists to use smaller sample sizes, which

ultimately offers a more economical analysis.
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