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Network Inference, Analysis, and Modeling in Systems Biology

Cells use signaling and regulatory pathways connecting numer-

ous constituents, such as DNA, RNA, proteins, and small mol-

ecules, to coordinate multiple functions, allowing them to adapt

to changing environments. High-throughput experimental meth-

ods enable the measurement of expression levels for thousands

of genes and the determination of thousands of protein–protein

or protein–DNA interactions. It is increasingly recognized that

theoretical methods, such as statistical inference, graph anal-

ysis, and dynamic modeling, are needed to make sense of this

abundance of information. This perspective argues that theo-

retical methods and models are most useful if they lead to novel

biological predictions and reviews biological predictions arising

from three systems biology topics: graph inference (i.e., recon-

structing the network of interactions among a set of biological

entities), graph analysis (i.e., mining the information content of

the network), and dynamic network modeling (i.e., connecting

the interaction network to the dynamic behavior of the system).

The methods and principles discussed in this perspective are

generally applicable, and the examples were selected from plant

biology wherever possible.

INTRODUCTION

To understand the function of a cell or of higher units of bio-

logical organization, often it is beneficial to conceptualize them

as systems of interacting elements. For such a systems-level

description (which represents the main goal of systems biology),

one needs to know (1) the identity of the components that

constitute the biological system; (2) the dynamic behavior of

these components (i.e., how their abundance or activity changes

over time in various conditions); and (3) the interactions among

these components (Kitano, 2002). Ultimately, this information

can be combined into a model that is not only consistent with

current knowledge but provides new insights and predictions,

such as the behavior of the system in conditions that were

previously unexplored.

The origins of systems biology can be traced back to systems

theory, a line of inquiry based on the assumptions that all

phenomena can be viewed as a web of relationships among

elements, and all systems can be handled by a common set of

methods (von Bertalanffy, 1968; Weinberg, 1975; Bogdanov,

1980; Heinrich and Schuster, 1996; Francois, 1999; Voit, 2000).

Early attempts at systems-level understanding of biology suf-

fered from inadequate data on which to base the theories and

models; however, the recent advent of high-throughput tech-

nologies brought an abundance of data on system elements and

interactions, leading to a revival of systems biology.

In some cases, the organization of the network of interactions

underlying a biological system is straightforward (e.g., a linear

chain of interactions), while in other cases a more formal

representation, offered by mathematical graph theory (Bollobás,

1979), is required. The simplest possible graph representation

reduces the system’s elements to graph nodes (also called

vertices) and reduces their pairwise relationships to edges (also

called links) connecting pairs of nodes (Figure 1). The nodes of

(sub)cellular systems may be genes or mRNA, protein, or other

molecules. Directed edges (also called arcs) have a specified

source (starting) node and target (end) node and are most suited

to represent chemical transformations and regulatory relation-

ships. Nondirected edges are most appropriate for mutual

interactions, such as protein–protein binding or for relationships

whose source and target are not yet distinguishable. Depending

on the availability of information, edges are characterized by

signs (positive for activation and negative for inhibition) or

weights quantifying confidence levels, strengths, or reaction

speeds. As the abundance of cellular constituents spans a large

range and varies in time, nodes also need to be characterized by

quantitative information describing the concentration of the

corresponding molecules or the copy number of the corre-

sponding mRNAs; this information is usually denoted as node

state (or status).

This essay focuses on the biological predictions arising from

three related topics of importance in systems biology: graph

inference, graph analysis, and dynamic network modeling.

Graph inference refers to the problem in which the information

on the identity and the state of a system’s elements is used to

infer interactions or functional relationships among these

elements and to construct the interaction graph underlying the

system. Graph analysis means the use of graph theory to

analyze a known (complete or incomplete) interaction graph and

to extract new biological insights and predictions from the

results. Dynamic network modeling aims to describe how known

interactions among defined elements determine the time course

of the state of the elements, and of the whole system, under

different conditions. A dynamic model that correctly captures

experimentally observed normal behavior allows researchers to

track the changes in the system’s behavior due to perturbations.

These three lines of inquiry are often combined in the literature

since they provide three facets of the same objective: to

understand, predict, and if possible control (tune toward a

desired feature) the dynamic behavior of biological interacting

systems. The possible predictions obtained from these methodswww.plantcell.org/cgi/doi/10.1105/tpc.107.054700
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Figure 1. Hypothetical Network Illustrating Network Analysis and Dynamic Modeling Terminology.

(A) The interaction graph formed by nodes A to F consists of directed edges signifying positive regulation (denoted by terminal arrows), such as AB and

ED, directed edges signifying negative regulation (denoted by terminal filled circles), such as FE and autoinhibitory (decay) edges (denoted by terminal

filled circles) at nodes B to F. The graph contains one feed-forward loop (ABC; both A and B feed into C) and one negative feedback loop, EDF, which

also forms the graph’s strongly connected subgraph. The in-cluster of this subgraph contains the nodes A and B, while its out-cluster is the node C.

(B) The node in-degrees (kin) that quantify the number of edges that end in a given node range between 0 (for node A) and 4 (for node C). The node out-

degrees (kout), quantifying the number of edges that start at a given node, range between 1 (for C) and 3 (for B and E). The graph distance (d) between

two nodes is defined as the number of edges in the shortest path between them. For example, the distance between nodes E and D is one, the distance

between nodes D and E is two (along the DFE path), and the distance between nodes C and A is infinite because no path starting from C and ending in A

exists. The betweenness centrality (b) of a node quantifies the number of shortest paths in which the node is an intermediary (not beginning or end)

node. For example, the betweenness centrality of node A is zero because it is not contained in any shortest paths that do not start or end in A, and the

betweenness centrality of node B is three because it is an intermediary in the ABD, ABDF, and ABDFE shortest paths. The in-(out-)degree distribution,

[P(kin) and P(kout)] quantifies the fraction of nodes with in-degree kin (out-degree kout). For example, one node (C) has an out-degree of one; two nodes (E

and F) have an out-degree of two and three nodes (A, B, and D) have an out-degree of three; the corresponding fractions are obtained by dividing by the

total number of nodes (six). The distance distribution P(d) denotes the fraction of node pairs having the distance d. The betweenness centrality

distribution P(b) quantifies the fraction of nodes with betweenness centrality b.

(C) Hypothetical time courses for the state of each node in the network (denoted by SA to SE). The node states in this example can take any real value

and vary continuously in time. The initial state (at t ¼ 0) has state 1 for node A and 0 for every other node. Each node state approaches a steady state (a

state that does not change in time), indicated in the last column (at t ¼N) of the time course. Network inference methods presented in section 2 use

expression knowledge (such as the logarithm of relative expression with respect to a control state) such as this state time course to infer regulatory

connections between nodes (i.e., the interaction network shown in [A]). State time courses like this also arise as outputs of continuous models.

(D) The transfer functions of a hypothetical continuous deterministic model based on the interaction network (A) that leads to the time course under (C).

Each transfer function indicates the time derivative (change in time) of the state of a node (denoted by a superscript # on the node state) as a function of

3328 The Plant Cell



range from prediction of new interactions (from graph inference

and analysis), identification of key components and pathways

(from graph analysis and dynamic network modeling), determi-

nation of key parameters (from dynamic modeling), and distil-

lation of key features, such as interaction or functional motifs

(from all three methods combined).

INFERENCE OF INTERACTION NETWORKS FROM

EXPRESSION INFORMATION

The most prevalent use of graph inference is using gene/protein

expression information to predict network structure (i.e., to

predict which gene/protein influences which other genes/

proteins through transcriptional, posttranscriptional, transla-

tional, or posttranslational regulation). A predicted regulatory

relationship among two genes can be verified by experimental

testing of the interactions and regulatory relationships among

the two genes/proteins.

Genes with statistically similar (highly correlated) expression

profiles in time or across several experimental conditions can be

grouped using clustering algorithms (Wen et al., 1998; Tavazoie

et al., 1999). Clustering tools such as the Arabidopsis coex-

pression tool, based on microarray data from the Nottingham

Arabidopsis Stock Centre (Craigon et al., 2004), allow users to

quantify gene coexpression across selected experiments or the

complete data set (Jen et al., 2006). These methods give insight

into groups of genes that respond in a similar manner to varying

conditions and that might therefore be coregulated (Qian et al.,

2001); however, that two nodes belong to the same group does

not imply a causal relationship among them. The ability to

extract meaning from clustering depends on the user’s prior

biological understanding of the objects that are organized. Most

applications derive biological insight through ‘‘guilt by associ-

ation;’’ that is, they predict the function of unknown gene prod-

ucts by their association with recognized clusters (Schuldiner

et al., 2005; Bjorklund et al., 2006).

Data analysis methods, such as principal component analysis

and the partial least-squares method, aim to highlight the global

patterns in the expression of a large number of genes/proteins

by condensing the multivariate data into just two or three

composite variables that capture the maximal covariation

between all the individual patterns. The partial least-squares

method is also able to test a proposed causal relationship by

splitting variables into independent variables and dependent

variables, simultaneously identifying the principal components

of the dependent and independent block and relating them by a

linear relationship (Janes and Yaffe, 2006). This method was

used to link the level of 19 proteins involved in apoptotic

signaling in human colon adenocarcinoma cells to four quanti-

tative measures of apoptosis, leading to the prediction of cell

death responses to molecular perturbations and of the roles of

key signaling intermediaries (Janes et al., 2005). A study

combining principal component analysis with a number of

machine learning algorithms applied to a comprehensive

Arabidopsis thaliana gene expression data set identified 50

previously unannotated genes that are potentially involved in

plant response to abiotic stress (Lan et al., 2007). Preliminary

experimental validation of the predicted function of one of these

genes was presented by Lan et al. (2007).

Bayesian methods aim to find a directed, acyclic (i.e.,

feedback loopless) graph describing the causal dependency

relationships among components of a system and a set of local

joint probability distributions that statistically convey these

relationships (Friedman et al., 2000). The starting edges are

established heuristically based on an initial assessment of the

experimental data and are refined by an iterative search-and-

score algorithm until the causal network and posterior proba-

bility distribution best describing the observed state of each
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Figure 1. (continued).

the states of the nodes that are sources of edges that end in the node, including the node itself if it has an autoregulatory edge. The transfer functions in

this hypothetical example are linear combinations of node states, with a positive sign for activating edges and negative sign for inhibitory edges, and all

coefficients (parameters) are equal to unity. In general, transfer functions are nonlinear and have parameters spanning a wide range.

(E) Hypothetical discrete time courses for each node in the network, where the node states can only take one of two values: 0 (off) and 1 (on). Discrete

states such as this are obtained using a suitable threshold and classifying expression values as below threshold (0) and above threshold (1). The initial

state (at t¼ 0) has state 1 for node A and state 0 for all other nodes. As in (C), each node reaches a steady state, indicated in the last column (at t¼N) of

the time course. Binary time courses such as this form the basis of Boolean network inference methods presented in section 2. State time courses like

this also arise as outputs of Boolean models.

(F) The transfer functions of a hypothetical Boolean model based on the interaction network (A) that leads to the time course in (E). Each transfer

function indicates the state of the node at the next time instance (t 1 1), denoted by a superscript asterisk on the node state, as a logical (Boolean)

combination of the current (time t) states of the nodes that are sources of edges that end in the node. In this case, the autoinhibitory edges are not

incorporated explicitly, assuming that positive regulation, when active, can overcome autoinhibition. Decay (switching off) after the positive regulators

turn off is taken into account implicitly by not including the current state of the regulated node in its transfer function. It is assumed that the state of the

node A does not change in time. The inhibitory edge FE is taken into account as a ‘‘not SF’’ clause in the transfer function of node E. More than one

activating edge incident on the same node in general can be combined by either an ‘‘or’’ or ‘‘and’’ relationship, depending on whether they are closer to

being independent (in case of ‘‘or’’) or conditionally dependent or synergistic (in case of ‘‘and’’). In this example, the edges AC and BC are assumed to

be synergistic and independent of EC, and the edges BD and ED are assumed to be independent of each other.

November 2007 3329



node are found (Yu et al., 2004). Bayesian inference was recently

used to infer the signaling network responsible for embryonic

stem cell fate responses to external cues based on measure-

ments of 28 signaling protein phosphorylation states across 16

different factorial combinations of stimuli. The inferred network

predicted novel influences between ERK phosphorylation and

differentiation as well as between RAF phosphorylation and

differentiated cell proliferation (Woolf et al., 2005).

Model-based methods of regulatory network inference from

time-course expression data seek to relate the rate of change in

the expression level of a given gene with the levels of other

genes. Continuous methods postulate a system of differential

equations (Chen et al., 1999), while discrete methods assume a

logical (Boolean) relationship (Shmulevich et al., 2002). Exper-

imental data on gene expression levels is substituted into the

relational equations, and the ensuing system of equations is

then solved for the regulatory relationships between two or more

components (Figure 1). Because often there are far more

biochemical components in the network than there are exper-

imental time points, multiple networks will be possible solutions;

these are filtered by making plausible assumptions on the

objectives of the underlying system, such as economy of

regulation (reflected by having the fewest edges that satisfy

the conditions) or maximal biomass production flux (Gupta et al.,

2005). A recent plant biology application of this method used

microarray data to infer circadian regulatory pathways in

Arabidopsis. The resulting network (Figure 2) was supported

by agreement with known regulatory relationships between

biological clock components and photoperiodic genes and was

used to predict novel putative relationships between crypto-

chrome and phytochrome genes (Chang et al., 2005).

Metabolic pathway reconstruction from known reaction stoi-

chiometric information is usually performed by constraint-based

deterministic methods, such as flux balance analysis (Reed and

Palsson, 2003) or S-systems, power-law approximations of

enzyme-catalyzed reactions (Irvine and Savageau, 1990). For

example, a constraint-based optimization method allowed

identification of changes in an Escherichia coli genome-scale

metabolic model that were needed to minimize the discrepancy

between model predictions of optimal flux distributions and

experimentally measured flux data (Herrgard et al., 2006).

Several types of experimental results are best interpreted as

indirect causal evidence that indicates the involvement of a

protein or molecule in a certain process or pathway. Differential

responses to a stimulus in wild-type organisms versus an

organism where the respective protein’s expression or activity is

disrupted is an example of such indirect causal evidence

connecting the stimulus, protein, and response. These observa-

tions can be represented by two intersecting paths (successions

of adjacent edges; see below) in the underlying interaction net-

work: one connecting stimulus to response and the other con-

necting the protein to response. Graph-based inference algorithms

integrate indirect causal relationships and direct interactions to

find the most parsimonious network consistent with all available
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Figure 2. Illustration of Network Inference: The Predicted Pathway of

the Circadian Regulatory System of Arabidopsis According to Chang

et al. (2005).

The network nodes (ovals) represent genes and are differentiated by

color into cryptochrome (yellow), phytochrome (light blue), clock genes

(orange), light-dependent downstream genes (light green), and other

relevant genes (gray). The edges (lines) represent inferred causal

relationships in a spectrum between activation (red) and repression

(blue). Edges corresponding to activation are additionally marked by

terminating arrows, and inhibitory edges are marked by terminating blunt

segments. Combinatorial regulation is indicated by edge junctions

shown as filled squares or circles. A filled square attached to a line

indicates where an edge starting from a regulatory node bifurcates to

affect several downstream nodes. A filled circle attached to a line

indicates the case when several upstream nodes regulate the same

target node. Figure reproduced from Chang et al. (2005).
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experimental observations (Li et al., 2006; Albert et al., 2007b).

This method was used to reconstruct the signal transduction

network corresponding to stomatal closure in plants in response

to the stress hormone abscisic acid (ABA; Li et al., 2006) and is

implemented in the software NET-SYNTHESIS (Albert et al., 2007a).

NETWORK ANALYSIS

Depending on the types of interaction or regulatory relationships

incorporated as edges of the biological interaction graph,

several distinct network types have been defined. In protein

interaction graphs, the nodes are proteins, and two proteins are

connected by a nondirected edge if there is strong evidence of

their association. The full representation of transcriptional

regulatory maps associates two separate node classes with

transcription factors and mRNAs, respectively, and has two

types of directed edge, which correspond to transcriptional

regulation (which can be positive or negative) and translation

(Lee et al., 2002). Metabolic networks have been represented in

various degrees of detail, two of the simplest being the substrate

graph, whose nodes are reactants and whose edges mean co-

occurrence in the same chemical reaction, and the reaction

graph, whose nodes are reactions and whose edges mean

sharing at least one metabolite (Wagner and Fell, 2001). Signal

transduction networks involve both protein interactions and

biochemical reactions, and their edges are mostly directed,

indicating the direction of signal propagation. Finally, composite

networks superimpose protein–protein and protein–DNA inter-

actions (Yeger-Lotem et al., 2004), protein–protein interactions,

genetic interaction, transcriptional regulation, sequence homol-

ogy, and expression correlation (Zhang et al., 2005) or metabolic

reactions and transcriptional regulation of metabolic genes

(Herrgard et al., 2006).

The development of high-throughput interaction assays (e.g.,

yeast two-hybrid, split ubiquitin, and chromatin immunoprecip-

itation assays) and of curated databases has led to the

generation of large-scale interaction networks for a considerable

number of organisms. In plant biology, the first large-scale

Arabidopsis interactome (protein interaction network) was

recently predicted from the knowledge of interacting Arabidop-

sis protein orthologs in Saccharomyces cerevisiae, Caenorhab-

ditis elegans, Drosophila melanogaster, and Homo sapiens

(Geisler-Lee et al., 2007). As illustrated in this section, graph

analysis of the currently available (sub)cellular networks reveals

a significant degree of consensus among their organizational

features, as well as a few notable differences. Note, however,

that there is a considerable level of variation in the number of

networks available for each interaction type, in the coverage of

these networks, and in the confidence of the interactions in-

cluded in the network; thus, the predictions arising from network

analysis may need updating as more information becomes

available.

The organizational features of interaction graphs can be quan-

tified by network measures whose information content ranges

from local (e.g., properties of single nodes or edges) to network-

wide (e.g., whether all nodes are connected). These two seem-

ingly disparate scales are intimately linked in networks, as global

connectivity is realized by a succession of adjacent edges. Thus,

as we will see later, sometimes a surprisingly small number of

linked events can lead to wide consequences. The most often-

used network measures describe the connectivity (reachability)

among nodes, the importance (centrality) of individual nodes,

and the homogeneity or heterogeneity of the network in terms of

a given node property (Figure 1).

A path (sequence of adjacent edges) (Bollobás, 1979) signifies

a transformation route from a nutrient to an end product in a

metabolic network or a chain of ligand-induced reactions in a

signal transduction network. The distance (path length) between

any two nodes in a network is defined to be the number of edges

in the shortest path connecting those nodes. If the edges of a

network are weighted (e.g., with rate constants), then the

distance between two nodes will be the sum of edge weights

along the path for which this sum is a minimum (Dijkstra, 1959).

The average path length of several large cellular networks,

including metabolic networks (Jeong et al., 2000; Wagner and

Fell, 2001), transcriptional networks (Lee et al., 2002), protein

interaction networks (Giot et al., 2003; Yook et al., 2004), and

signal transduction networks (Ma’ayan et al., 2005) is less than

four. This result predicts that these networks are capable of

rapid response to inputs or perturbations. Cellular networks also

tend to exhibit path redundancy and the availability of multiple

paths between a pair of nodes (Papin and Palsson, 2004; Li

et al., 2006). This network feature reflects cellular networks’

capacity to employ multiple channels between the same input

and output and predicts that these networks will be able

to efficiently compensate for perturbations in the preferred

pathway.

In many networks, only a fraction of the nodes in the network

will be accessible (connected) to any given node. The subset of

nodes connected by paths in both forward and reverse direc-

tions form the so-called strongly connected cluster. One can

also define the in-cluster (nodes that can reach the strongly

connected cluster but that cannot be reached from it) and out-

cluster (the converse). Nodes of each of these subsets tend to

have a shared task; for example, in signal transduction

networks, the nodes of the in-cluster tend to be involved in

ligand-receptor binding; the nodes of the strongly connected

cluster form a central signaling subnetwork; and the nodes of the

out-cluster are responsible for the transcription of target genes

and for phenotypic changes (Ma’ayan et al., 2005).

All protein interaction networks mapped so far, including the

predicted Arabidopsis interactome, have a strongly connected

cluster connecting the vast majority of the proteins (Giot et al.,

2003; Yook et al., 2004; Geisler-Lee et al., 2007). This finding

predicts a capacity for pleiotropy, since perturbations of a single

gene or protein can propagate through the network and can

have seemingly unrelated or broad effects. By contrast, the

currently available maps of transcriptional networks do not have

CURRENT PERSPECTIVE ESSAY

November 2007 3331



significant strongly connected components, suggesting a uni-

directional regulation mode with relatively little transcriptional

crosstalk (Balázsi et al., 2005). The currently available metabolic

and signal transduction networks are more connected, with 50

to 60% of the nodes forming the largest strongly connected

component (Ma and Zeng, 2003; Ma’ayan et al., 2005). This

intriguing range of interconnectivity from relatively unidirectional

transcriptional regulatory maps to strongly connected protein

interaction maps is affected by several factors. First, the fact

that protein interactions are represented by nondirected edges

is due to the constraints of current experimental assays; as new

information on the source and target of protein interactions

leads to assigning directions to some of the edges, the size of

the strongly connected component may decrease. Second,

some transcriptional regulatory networks are less well mapped

than protein interaction networks, and new additions to these

networks may increase their connectivity. Third, as transcription

factors are often regulated posttranslationally, an integrated

transcriptional/(post)translational regulatory network would be a

more appropriate representation and may have more connec-

tivity and feedback than a map focused on transcriptional

regulation alone. It will be interesting to follow whether new

experimental evidence and novel network representations de-

crease the range of connectivity among molecular interaction

networks.

In addition to the clusters characterizing the global (whole

network level) connectivity of cellular networks, one also can

identify recurring interaction motifs, which are small subgraphs

(i.e., subsets of the full graph) that have well-defined topologies.

Interaction motifs, such as autoregulation (usually a negative

feedback; Figure 1) (Shen-Orr et al., 2002; Balázsi et al., 2005),

feed-forward loops (Figure 1; Shen-Orr et al., 2002; Balázsi

et al., 2005), or triangles of protein interactions (Giot et al., 2003;

Wuchty et al., 2003; Ma’ayan et al., 2005), have a higher

frequency than expected based on the subgraph statistics of

comparable model networks (also referred to as null models).

Moreover, exhaustive analysis of the dynamic behaviors

supported by three- and four-node motifs revealed that dynamic

stability to small perturbations in node states is highly correlated

with the relative frequency of these motifs (Prill et al., 2005).

These observations led to the prediction that interaction motifs

form functionally separable building blocks of cellular networks

(Mangan and Alon, 2003), described in detail by Alon (2006). For

example, the abundance of negative feedback loops in the early

steps of signal transduction networks and of positive feedback

loops at later steps suggest mechanisms to filter weak or short-

lived signals and to amplify strong and persistent signals

(Ma’ayan et al., 2005).

The number, directionality, and strength of connections

associated with a given node can be synthesized into measures

of that node’s centrality (importance). The simplest such

measure is the node degree, or the number of edges adjacent

to that node. If the directionality of interaction is important, a

node’s total degree can be broken into an in-degree and out-

degree, quantifying the number of incoming and outgoing edges

adjacent to the node (Figure 1). The importance of any particular

node in mediating propagation or flow within the network is

quantified by its betweenness centrality, which is defined as the

fraction of shortest paths between pairs of other nodes passing

through that node (Freeman, 1977) (Figure 1).

While the node degree or betweenness centrality of a specific

node is a local topological measure, this local information can be

synthesized into a global description of the network by reporting

the degree distribution P(k), which gives the fraction of nodes in

the network having degree k. A significant number of cellular

interaction networks, including protein interaction networks

(Jeong et al., 2001; Giot et al., 2003; Yook et al., 2004;

Geisler-Lee et al., 2007), metabolic networks (Jeong et al.,

2000; Wagner and Fell, 2001; Arita, 2004; Tanaka, 2005), signal

transduction networks (Ma’ayan et al., 2005), and transcriptional

regulatory networks (Guelzim et al., 2002; Lee et al., 2002),

exhibit a high heterogeneity (diversity) for node centralities that

precludes the existence of a typical node that could be used to

characterize the rest of the nodes in the network. Networks with

this high heterogeneity are often referred to as scale free

(reviewed in Albert and Barabási, 2002; Barabási and Oltvai,

2004). The degree distribution of scale-free networks is gener-

ally close to a power law P(k) ¼ Ak2g, where A is a normalization

constant and the degree exponent g is between 2 and 3.

Exceptions from the heterogeneity associated with power-law

distributions are also notable: the in-degree distribution of

transcriptional networks and the degree distribution of enzymes

have a small range, reflecting that combinatorial regulation by

several transcription factors is less frequent than regulation of

several targets by the same transcription factor and that

enzymes catalyzing several different reactions are rare.

In scale-free networks, small-degree nodes are most com-

mon; however, the highest-degree nodes have degrees that are

orders of magnitude higher than the average degree. Such

highest-degree (or in general highest-centrality) nodes are

commonly referred to as hubs. This heterogeneous structure

leads to the prediction that in scale-free networks random node

disruptions do not cause a major loss of connectivity, whereas

the loss of the hubs causes the breakdown of the network into

isolated clusters (Albert and Barabási, 2002). This point has

been experimentally corroborated in S. cerevisiae, where the

severity of a gene knockout has been shown to correlate with

the number of interactions in which the gene’s products

participate (Jeong et al., 2001; Said et al., 2004). High degree

is a practical but nevertheless insufficient predictor of functional

importance, as there are several examples of low-degree nodes

that are critical for certain outcomes (Holme et al., 2003; Almaas

et al., 2005; Mahadevan and Palsson, 2005; Li et al., 2006).

Ultimately, a high-precision prediction of functionally important

nodes will need to take into account the biological identity of the

nodes and the synergistic and dynamic aspects of the interac-

tions and will therefore require significantly more input informa-

tion than what it currently available for most interaction
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networks. Given the state of the knowledge on these networks, a

suitable combination of node degree with betweenness cen-

trality, and possibly other centrality measures, will offer the

optimal trade-off between predictive power and practicality.

The graph measures described above, alone or combined

with additional information regarding the network nodes (such

as the functional annotation of the corresponding genes/

proteins), provide testable biological predictions on several

scales, from single interactions to functional modules. The

functions of unannotated proteins can be inferred on the basis of

the annotation of their interacting partners, as it was done for S.

cerevisiae and Arabidopsis proteins using interaction, coex-

pression, and localization data (Vazquez et al., 2003; Lee et al.,

2004; Geisler-Lee et al., 2007). New protein interactions can be

predicted using machine learning algorithms based on the

presence of abundant interaction motifs within the network

(Albert and Albert, 2004). New protein functions and interactions

can be inferred through global alignment between protein

interaction networks in different species (Kelley et al., 2004).

Conversely, protein interaction networks of two species can be

used to augment sequence-based homology searches as a

basis for orthology prediction; in a recent analysis of D.

melanogaster and S. cerevisiae, in 61 out of 121 cases with

ambiguous homology assignment, the network supported a

different orthologous protein pair than that favored by sequence

comparisons (Bandyopadhyay et al., 2006). The connected

subgraphs of a probabilistic S. cerevisiae gene–gene linkage

network have been used to identify highly connected gene

clusters (modules). The demonstrably coherent functional an-

notation of genes within each cluster allowed the annotation of

unknown proteins that are part of the cluster (Lee et al., 2004).

Finally, construction of an integrated transcriptional and meta-

bolic network allowed global predictions of growth phenotypes

and qualitative gene expression changes in E. coli (Covert et al.,

2004) and yeast (Herrgard et al., 2006).

DYNAMIC MODELING

The nodes of cellular interaction networks represent populations

of proteins or other molecules. The abundances of these

populations can range from a few copies of an mRNA, protein,

or metabolite to hundreds or thousands of molecules per cell,

and they vary in time and in response to external or internal

stimuli. To capture these changes, the interaction network

needs to be augmented by quantitative variables indicating the

state (i.e., expression, concentration, or activity) of each node

and by a set of equations indicating how the state of each node

changes in response to changes in the state of its regulators. In

other words, the interaction network needs to be developed into

a dynamic network model.

Dynamic network models have as input the interaction

network, the transfer functions describing how the state of

each node depends on the state of its regulators, and the initial

state of each node in the system. Examples of transfer functions

include mass action kinetics for chemical reactions or Hill

functions for regulatory relationships and include several kinetic

parameters whose values need to be known or estimated. If the

model refers to spatio-temporal phenomena, such as those

based on cell-to-cell communication, the node states and

transfer functions will depend on spatial coordinates (Mjolsness

et al., 1991; Palsson and Othmer, 2000). Given the interaction

network, transfer functions, and initial states, the model will

output the time evolution of the state of the system. The most

basic qualitative feature of a dynamic system is the number and

type of different behaviors, often called attractors, that are found

in the infinite time limit. All initial conditions that evolve to a given

attractor constitute its basin of attraction. The attractors of gene

regulatory networks are thought to correspond to distinct cel-

lular states (Kauffman, 1993) or cycles (e.g., circadian rhythms;

Goldbeter, 2002), while the attractors of a signal transduction

network correspond to steady state (time-independent) or sus-

tained oscillatory response(s) to the presence of a given signal

(Tyson et al., 2003).

A validated dynamic model that correctly captures exper-

imentally observed normal behavior allows researchers to track

the changes in the system’s behavior due to perturbations, to

discover possible covariation between coupled variables, and to

identify conditions in which the dynamics of variables are

qualitatively similar. It is easier to use a model to search for

perturbations that have a significant or beneficial effect on

system behavior than it is to perform comparable experiments

on the living system; for example, models can predict multiple

small perturbations that produce large effects when combined.

While the benefits of using verified models are obvious, the

information and data requirements necessary to construct a

verifiable dynamic model are daunting for all but the smallest

systems. Additionally, modelers need to balance a set of

features that are nonexclusive but nevertheless cannot be

maximized simultaneously. Ideally, a good model should have a

low level of uncertainty in the interactions, equations, and

parameters used; it should be relatively easy to run or construct;

it should provide a high level of understanding or insight; it

should be simple and elegant; its predictions should be highly

accurate; it should be general (be applicable to a large number

of systems); and it should be robust (insensitive to small

changes in parameters or assumptions) (Haefner, 2005).

Dynamic modeling frameworks are usually classified along

two axes: continuous versus discrete and deterministic versus

stochastic. The first classification refers to the level of detail in

the representation of the node state, while the second indicates

whether the transfer functions incorporate any uncertainty or

variability. Since variability and noise are pervasive in biological

systems, a continuous stochastic model has the highest

potential to accurately describe the system; however, it also

has the highest requirement for input information. A continuous

deterministic model, the most frequently used middle ground,

represents the limit of the corresponding continuous stochastic

model as the number of molecules becomes large or the noise
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decreases to zero. Only continuous deterministic models readily

allow theoretical methods such as bifurcation analysis (Goldbeter,

2002; Tyson et al., 2003), that is, the analysis of where the

system’s dynamics changes as a function of various parame-

ters. The conclusions of these analyses can then contribute to

the selection of the best-suited high-level stochastic models.

Discrete deterministic models exhibit a high level of abstraction

in that they classify node states into just a few categories of

expression or activity. On the plus side, this means that they

require relatively little detailed input and can be constructed in

cases where the large number of unknowns makes continuous

models impractical or even impossible. On the minus side, the

predictions of these models are more coarse grained and less

quantitative than the predictions of continuous models.

Continuous deterministic models characterize node states by

concentrations and describe the rate of production or decay of all

components by differential equations based on mass action–like

kinetics (Figure 1; Irvine and Savageau, 1990). When built on a

solid starting knowledge of the elementary biochemical reactions

and the associated reaction rates, these models can efficiently

explore alternative hypotheses and predict the effect of pertur-

bations. For example, a differential equation-based model of an

11-node signaling network responsible for programmed cell

death after infection of Arabidopsis with Pseudomonas syringae

led to significant refinement of the signaling circuitry (by dis-

counting two previously proposed negative feedback loops) and

of the kinetic parameters (Agrawal et al., 2004). When the number

of constituents is small, optimization methods can be used to

estimate parameters that best account for measured dynamic

behaviors. For example, continuous deterministic modeling of

the three-node circadian clock of Arabidopsis, combined with

optimization-based parameter estimation and sensitivity analy-

sis, led to the prediction of two new network nodes and of a

novel architecture of three coupled feedback loops (Locke et al.,

2005, 2006; Zeilinger et al., 2006). Experiments on clock com-

ponent deletion mutants confirmed the predicted architecture

and identified the gene GIGANTEA as a major component of one

of the predicted novel network nodes (Locke et al., 2006).

Continuous deterministic models of simple regulatory or

signaling networks can also be coupled with descriptions of

cell growth and mechanics to explain spatio-temporal pattern

formation in cell colonies or tissues. For example, a recent

model of plant organ positioning driven by auxin patterning

predicts that the underlying mechanism is a feedback loop

between relative auxin concentrations in adjacent cells and

auxin efflux direction. It is proposed that this feedback is realized

through the putative auxin efflux mediator PIN1 whose cycling

between internal and membrane compartments is auxin regu-

lated in such a way that a higher auxin concentration in a

neighboring cell leads to an increased PIN1 localization at the

membrane toward that cell, resulting in a higher auxin transport

into that cell (Jönsson et al., 2006).

The stochasticity (nondeterminism) of biological processes is

usually taken into account by appending stochastic (noise)
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Figure 3. Illustration of Predictions from a Discrete Dynamic Model: The

Percentage of Simulated Stomata That Attain ABA-Induced Closure as a

Function of Time Steps in Li et al. (2006).

This Boolean model circumvents the lack of information in the timing of

each process, in the internal states of signaling proteins, and in the

concentrations of small molecules by performing a large number of

simulations that sample equally over relative durations and node initial

states. The results are reported as the percentage of simulations that

attain the on state for the node closure. In all panels, black triangles with

dashed lines signify the model’s representation of normal (wild-type)

response to ABA stimulus. Open triangles with dashed lines show that in

the wild type, the percentage of closed simulated stomata decays in the

absence of ABA.

(A) The model predicts that disruption of depolarization (open diamonds)

or anion efflux at the plasma membrane (open squares) cause total loss

of ABA-induced closure.

(B) The model predicts that perturbations in sphingosine-1-phosphate

(dashed squares), phosphatidic acid (dashed circles), or pHc (dashed

diamonds) lead to reduced closure probability.

(C) The model predicts that abi1 recessive mutants (black squares) show

faster than wild-type ABA-induced closure (ABA hypersensitivity).

Blocking Cac
21 increase (black diamonds) causes slower than wild-

type ABA-induced closure (ABA hyposensitivity) in the model. Figure

reproduced from Li et al. (2006).

3334 The Plant Cell



terms to differential equations. Discrete events (such as the

initiation of transcription) and low abundances for certain

molecules can be incorporated by characterizing the node

states by the copy number of each molecule and describing the

time evolution of the probabilities of each of a system’s possible

states (Rao et al., 2002; Andrews and Arkin, 2006). A recent

model of the ethylene signaling pathway and its gene response

in Arabidopsis combines chemical kinetics for signaling proteins

with a probabilistic description of the target genes’ states (Diaz

and Alvarez-Buylla, 2006). This model reproduces the experi-

mentally observed differential responses to different ethylene

concentrations and predicts that the pathway filters rapid

stochastic fluctuations in ethylene availability.

Discrete deterministic models usually characterize network

nodes by two binary states corresponding to, for example, an

expressed or not expressed gene, an open or closed ion chan-

nel, or above-threshold or below-threshold concentration of a

molecule. The change in state of each regulated node is gener-

ally described by a logical function using the Boolean operators

‘‘and,’’ ‘‘or,’’ and ‘‘not’’ (Figure 1). Boolean models can predict

dynamic trends in the absence of detailed kinetic parameters.

For example, a Boolean gene regulatory network model of Arabi-

dopsis floral organ development (Mendoza and Alvarez-Buylla,

1998; Espinosa-Soto et al., 2004) offered a mechanistic and

dynamic explanation for the conceptual ABC model (Coen and

Meyerowitz, 1991), successfully reproduced experimental gene

expression patterns in wild-type and mutant plants, and pre-

dicted that cell fate determination is determined by the network

architecture rather than precise interaction parameters or initial

conditions. The model also proposed four novel interactions and

predicts the effects of evolutionary differences in the network

architecture between Arabidopsis and Petunia hybrida. A Bool-

ean model of the signal transduction network mediating abscisic

acid–induced stomatal closure (Li et al., 2006) reproduced experi-

mental results at both the pathway and whole-cell physiological

level, predicted that the network’s response is robust against a

significant fraction of possible perturbations and provided a

ranking of network nodes in terms of their essentiality (Figure 3).

Hybrid dynamic models meld a Boolean description of com-

binatorial regulation with continuous synthesis and decay by

describing each node with both a continuous variable (akin to a

concentration) and a Boolean variable (akin to activity) (Glass

and Kauffman, 1973; Chaves et al., 2006). For example, a hybrid

model of the transcriptional regulation of the Endo16 sea urchin

gene revealed that its spatial control during embryonic devel-

opment is mediated by a cis-regulatory switch (Yuh et al., 2001),

and a hybrid model of D. melanogaster embryonic segmentation

predicts that transient disregulation of posttranslational modi-

fications can have effects as severe as gene knockouts (Chaves

et al., 2006).

While the details of different dynamic models can be signif-

icantly different, and the predictions offered by them are specific

to the systems they refer to, there is a considerable level of

common insight arising from these models. For example, there

is increasing evidence that molecular networks are constructed

from simpler modules with generic input-output properties not

unlike those of electric circuits (Alon, 2006). Some of these

modules exhibit perfect adaptation to a signal (i.e., they exhibit a

transient response to changes in signal strength, but their steady

state response is independent of the signal strength), switch

abruptly and irreversibly from low to high response at a critical

(bifurcation) value of the signal, or show sustained oscillations in

the response variable (Tyson et al., 2003). Frequently, these

dynamic behaviors do not depend on the details of the transfer

functions or on the kinetic parameters and are determined by the

underlying network; for example, positive feedback loops (either

mutual activation or antagonism) may create a discontinuous

switch, negative feedback often leads to homeostasis, and

sustained oscillations require a negative feedback loop with a

time delay. The pursuit of general insight from integrating the

lessons learned from specific models is an emergent and rapidly

developing topic in systems biology.

CONCLUSIONS

Systems biology develops through an ongoing dialog and

feedback among experimental, computational, and theoretical

approaches. High-throughput experiments reveal, or allow the

inference of, the edges of global interaction networks. Graph-

theoretical analysis of these networks enables insight into the

organization of cellular regulation, feeds back to network

inference (Albert and Albert, 2004; Gupta et al., 2006; Horvath

et al., 2006; Christensen et al., 2007), and allows specific

biological predictions. Dynamic modeling of systems with

specified inputs and outputs allows the identification of key

regulatory components or parameters. Experimental testing of

model predictions enables the validation or refinement of the

model, which in turn paves the way to more predictions and

ultimately the generation of new biological knowledge.

Network analysis and dynamic network modeling represent

complementary approaches most appropriate for different net-

work scales. Network analysis can be readily performed on

networks with tens of thousands of nodes and edges; however, it

cannot explicitly incorporate the temporal and quantitative

aspects of the processes corresponding to the edges of the

network. Detailed deterministic or stochastic models allow for

high-fidelity dynamic analysis of small networks but increase

dramatically in complexity even for small increments in the

number of nodes and edges and thus can hardly be used

meaningfully on large-scale networks. A potential middle ground

is emerging through the development of qualitative modeling

techniques that map the propagation of context-dependent

signals through a network (Ma’ayan et al., 2005; Prill et al., 2005;

Li et al., 2006).

This perspective essay has shown a small sample of network-

based modeling in systems biology; the interested reader is

referred to excellent review articles and books written from

different perspectives (Goldbeter, 2002; Tyson et al., 2003;
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Barabási and Oltvai, 2004; Ma’ayan et al., 2004; Haefner, 2005;

Alon, 2006; Palsson, 2006). To date, much of systems biology

research has focused on single-celled organisms, which de facto

precludes assessment of endogenous cell–cell signaling. As the

scope of inquiry expands from cells to organs and organisms as

systems, plants provide unique opportunities to study organism-

level responses to environmental challenges. Indeed, while

animals tend to rely on behavioral adjustments to evade

environmental stress, plants are more likely to emphasize stress

resistance and recovery mechanisms. Moreover, the modular

structure of plants causes relatively weak coupling between

different parts of the same plant as well as significant differences

in these parts’ microenvironments. Given also that plant signal

transduction mechanisms are at least as developed as those of

animals and use many conserved components (e.g., hetero-

trimeric G-proteins and cytosolic Ca21), plants can eminently

serve as model systems and will undoubtedly gain in importance

as the field of systems biology matures. Most of the literature on

systems biology shares the view that in order for the research

community to develop the sophisticated interplay of theory,

computation, and experiment that will be needed to understand

and manipulate cellular regulatory systems, we will first need to

learn to communicate effectively. I hope the examples shown in

this perspective will facilitate new and fruitful dialogs.

ACKNOWLEDGMENTS

Research on plant systems biology in the author’s laboratory is

supported by National Science Foundation Grants MCB-0618402 and

CCF-0643529 as well as USDA Grant NRI 2006-02158.
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