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Abstract
High-throughput techniques are leading to an explosive growth in the size of biological databases
and creating the opportunity to revolutionize our understanding of life and disease. Interpretation of
these data remains, however, a major scientific challenge. Here, we propose a methodology that
enables us to extract and display information contained in complex networks1–3. Specifically, we
demonstrate that we can find functional modules4,5 in complex networks, and classify nodes into
universal roles according to their pattern of intra- and inter-module connections. The method thus
yields a ‘cartographic representation’ of complex networks. Metabolic networks6–8 are among the
most challenging biological networks and, arguably, the ones with most potential for immediate
applicability9. We use our method to analyse the metabolic networks of twelve organisms from three
different superkingdoms. We find that, typically, 80% of the nodes are only connected to other nodes
within their respective modules, and that nodes with different roles are affected by different
evolutionary constraints and pressures. Remarkably, we find that metabolites that participate in only
a few reactions but that connect different modules are more conserved than hubs whose links are
mostly within a single module.

If we are to extract the significant information from the topology of a large, complex network,
knowledge of the role of each node is of crucial importance. A cartographic analogy is helpful
to illustrate this point. Consider the network formed by all cities and towns in a country (the
nodes) and all the roads that connect them (the links). It is clear that a map in which each city
and town is represented by a circle of fixed size and each road is represented by a line of fixed
width is hardly useful. Rather, real maps emphasize capitals and important communication
lines so that we can obtain scale-specific information at a glance. Similarly, it is difficult, if
not impossible, to obtain information from a network with hundreds or thousands of nodes and
links, unless the information about nodes and links is conveniently summarized. This is
particularly true for biological networks.

Here, we propose a methodology, which is based on the connectivity of the nodes, that yields
a cartographic representation of a complex network. The first step in our method is to identify
the functional modules4,5 in the network. In the cartographic picture, modules are analogous
to countries or regions, and enable a coarse-grained, and thus simplified, description of the
network. Then we classify the nodes in the network into a small number of system-independent
‘universal roles’.

It is common that social networks have communities of highly interconnected nodes that are
less connected to nodes in other communities. Such modular structures have been reported not
only in social networks5,10–12, but also in food webs13 and biochemical networks4,14–16.
It is widely believed that the modular structure of complex networks plays a critical role in
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their functionality4,14,16. There is therefore a clear need to develop algorithms to identify
modules accurately5,11,17–20.

We identify modules by maximizing the network's modularity11,18,21 using simulated
annealing22 (see Methods). Simulated annealing enables us to perform an exhaustive search
and to minimize the problem of finding sub-optimal partitions. It is noteworthy that, in our
method, we do not need to specify a priori the number of modules; rather, this number is an
outcome of the algorithm. Our algorithm is able to reliably identify modules in a network whose
nodes have as many as 50% of their connections outside their own module (Fig. 1).

When considering modular networks, it is plausible to surmise that the nodes in a network are
connected according to the role they fulfil. This fact has been long recognized in the analysis
of social networks23. For example, in a classical hierarchical organization, the chief executive
is not directly connected to plant employees but is connected to the members of the board of
directors. Such a statement holds for virtually any organization; that is, the role of chief
executive is defined irrespective of the particular organization considered.

We propose a new method to determine the role of a node in a complex network. Our approach
is based on the idea that nodes with the same role should have similar topological
properties24 (see Supplementary Information for a discussion on how our approach relates to
previous work). We predict that the role of a node can be determined, to a great extent, by its
within-module degree and its participation coefficient, which define how the node is positioned
in its own module and with respect to other modules25,26 (see Methods). These two properties
are easily computed once the modules of a network are known.

The within-module degree zi measures how ‘well-connected’ node i is to other nodes in the
module. High values of zi indicate high within-module degrees and vice versa. The participation
coefficient Pi measures how ‘well-distributed’ the links of node i are among different modules.
The participation coefficient Pi is close to 1 if its links are uniformly distributed among all the
modules, and 0 if all its links are within its own module.

We define heuristically seven different universal roles, each defined by a different region in
the z–P parameter space (Fig. 2). According to the within-module degree, we classify nodes
with z ≥ 2.5 as module hubs and nodes with z < 2.5 as non-hubs. Both hub and non-hub nodes
are then more finely characterized by using the values of the participation coefficient (see
Supplementary Information for a detailed justification of this classification scheme, and for a
discussion on possible alternatives).

We find that non-hub nodes can be naturally divided into four different roles: (R1) ultra-
peripheral nodes; that is, nodes with all their links within their module (P ≤ 0.05); (R2)
peripheral nodes; that is, nodes with most links within their module (0.05 < P ≤ 0.62); (R3)
non-hub connector nodes; that is, nodes with many links to other modules (0.62 < P ≤ 0.80);
and (R4) non-hub kinless nodes; that is, nodes with links homogeneously distributed among
all modules (P > 0.80). We find that hub nodes can be naturally divided into three different
roles: (R5) provincial hubs; that is, hub nodes with the vast majority of links within their module
(P ≤ 0.30); (R6) connector hubs; that is, hubs with many links to most of the other modules
(0.30 < P ≤ 0.75); and (R7) kinless hubs; that is, hubs with links homogeneously distributed
among all modules (P > 0.75).

To test the applicability of our approach to complex biological networks, we consider the
cartographic representation of the metabolic networks6–9,14 of twelve organisms: four
bacteria (Escherichia coli, Bacillus subtilis, Lactococcus lactis and Thermasynechococcus
elongatus), four eukaryotes (Saccharomyces cerevisiae, Caenorhabditis elegans, Plasmodium
falciparum and Homo sapiens), and four archaea (Pyrococcus furiosus, Aeropyrum pernix,
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Archaeoglobus fulgidus and Sulfolobus solfataricus). In metabolic networks, nodes represent
metabolites and two nodes i and j are connected by a link if there is a chemical reaction in
which i is a substrate and j a product, or vice versa. In our analysis, we use the database
developed by Ma and Zeng8 (MZ) from the Kyoto Encyclopedia of Genes and Genomes27
(KEGG). The results we report are not altered if we consider the complete KEGG database
instead (Figs 2c and 4b, and Supplementary Information).

First, we identify the functional modules in the different metabolic networks (Fig. 3). Finding
modules in metabolic networks purely on the basis of topological properties is an extremely
important task. For example, Schuster et al. have reported on the impossibility of obtaining
elementary flux modes28 from complete metabolic networks due to the combinatorial
explosion of the number of such modes29. Our algorithm identifies an average of 15 different
modules in each metabolic network—with a maximum of 19 for E. coli and H. sapiens, and a
minimum of 11 for A. fulgidus. As expected, the density of links within each of the modules
is significantly larger than between modules—typically 100–1,000 times larger (see
Supplementary Information).

To assess how each of the modules is related to the pathways traditionally defined in biology,
we use the classification scheme proposed in KEGG, which includes nine major pathways:
carbohydrate metabolism, energy metabolism, lipid metabolism, nucleotide metabolism,
amino-acid metabolism, glycan biosynthesis and metabolism, metabolism of cofactors and
vitamins, biosynthesis of secondary metabolites and biodegradation of xenobiotics. Each
metabolite in the KEGG database is assigned to at least one pathway; thus, we can determine
to which pathways the metabolites in a given module belong. We find that most modules
contain metabolites mostly from one major pathway. For example, in 17 of the 19 modules
identified for E. coli, more than one-third of the metabolites belong to a single pathway.
Interestingly, some other modules—two in the case of E. coli—cannot be trivially associated
with a single traditional pathway. These modules are typically central in the metabolism and
contain, mostly, metabolites that are classified in KEGG as belonging to carbohydrate and
amino-acid metabolism.

Next we identify the role of each metabolite. In Fig. 2b we show the roles identified in the
metabolic network of E. coli. Other organisms show a similar distribution of the nodes in the
different roles, even though they correspond to organisms that are very distant from an
evolutionary standpoint (see Supplementary Information). Role R1, which contains ultra-
peripheral metabolites with small degree and no between-module links, comprises 76–86% of
all the metabolites in the networks. This considerably simplifies the coarse-grained
representation of the network as these nodes do not need to be identified separately. Note that
this finding alone represents an important step towards the goal of extracting scale-specific
information from complex networks.

The information about modules and roles enables us to build a cartographic representation of
the metabolic network of, for example, E. coli (Fig. 3). This representation enables us to recover
relevant biological information. For instance, we find that the metabolism is mostly organized
around the module containing pyruvate, which in turn is strongly connected to the module
whose hub is acetyl-coenzyme A (CoA). These two molecules are key to connecting the
metabolism of carbohydrates, amino acids and lipids to the tricarboxylic acid (TCA) cycle
from which ATP is obtained. These two modules are connected to more peripheral ones by
key metabolites such as D-glyceraldehyde 3-phosphate and D-fructose 6-phosphate (which
connect to the glucose and galactose metabolisms), D-ribose 5-phosphate (which connects to
the metabolism of certain nucleotides), and glycerone phosphate (which connects to the
metabolism of certain lipids).
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Our analysis also uncovers nodes with key connector roles that take part in only a small but
fundamental set of reactions. For example, N-carbamoyl-L-aspartate takes part in only three
reactions but is vital because it connects the pyrimidine metabolism, whose hub is uracil, to
the core of the metabolism through the alanine and aspartate metabolism. The potential
importance of such non-hub connectors points to another consideration. It is a plausible
hypothesis that nodes with different roles are under different evolutionary constraints and
pressures. In particular, we expect that nodes with structurally relevant roles are more necessary
and therefore more conserved across species.

To quantify the relation between roles and conservation, we define the loss rate plost(R) (see
Methods). Structurally relevant roles are expected to have low values of plost(R) and vice versa.
We find that the different roles have different loss rates (Fig. 4). As expected, ultra-peripheral
nodes (role R1) have the highest loss rate whereas connector hubs (role R6) are the most
conserved across all species considered.

The results for the comparison of plost(R) for ultra-peripheral nodes and connector hubs is
illustrative, but hardly surprising. The comparison of plost(R) for non-hub connectors (role R3)
and provincial hubs (role R5), however, yields a surprising finding. The metabolites in the
provincial hubs class have many within-module connections, sometimes as many as five
standard deviations more connections than the average node in the module. Conversely, non-
hub connector metabolites have few links relative to other nodes in their modules—and fewer
total connections than the metabolites in role R5 (see Supplementary Fig. S12b, c). The links
of non-hub connectors, however, are distributed among several different modules, whereas the
links of provincial hubs are mainly within their modules. We find that non-hub connectors are
systematically and significantly more conserved than provincial hub metabolites (Fig. 4).

A possible explanation for the high degree of conservation of non-hub connectors is as follows.
Connector nodes are responsible for inter-module fluxes. These modules are otherwise poorly
connected or not connected at all to each other, so the elimination of connector metabolites
will probably have a large impact on the global structure of fluxes in the network. On the
contrary, the pathways in which provincial hubs are involved may be backed up within the
module in such a way that elimination of these metabolites may have a comparatively smaller
impact, which in addition would probably be confined to the module containing the provincial
hub.

Our results therefore point to the need to consider each complex biological network as a whole,
instead of focusing on local properties. In protein networks, for example, it has been reported
that hubs are more essential than non-hubs30. Notwithstanding the relevance of such a finding,
our results suggest that the global role of nodes in the network might be a better indicator of
their importance than degree26.

Our ‘cartography’ provides a scale-specific method to process the information contained in the
structure of complex networks, and to extract knowledge about the function performed by the
network and its constituents. An open question is how to adapt current module-detection
algorithms to networks with a hierarchical structure.

For metabolic networks—a comparatively well studied and well understood case—our method
allows us to recover firmly established biological facts, and to uncover important new results,
such as the significant conservation of non-hub connector metabolites. Similar results can be
expected when our method is applied to other complex networks that are not as well studied
as metabolic networks. Among those, protein interaction and gene regulation networks may
be the most significant.
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Methods
Modularity

For a given partition of the nodes of a network into modules, the modularity M of this partition
is11,18,21:

M ≡ ∑
s=1

NM ls
L − ( ds2L )2 (1)

where NM is the number of modules, L is the number of links in the network, ls is the number
of links between nodes in module s, and ds is the sum of the degrees of the nodes in module
s. The rationale for this definition of modularity is the following. A good partition of a network
into modules must comprise many within-module links and as few as possible between-module
links. However, if we just try to minimize the number of between-module links (or,
equivalently, maximize the number of within-module links) the optimal partition consists of a
single module and no between-module links. Equation (1) addresses this difficulty by imposing
that M = 0 if nodes are placed at random into modules or if all nodes are in the same
cluster11,18,21.

The objective of a module identification algorithm is to find the partition with largest
modularity, and several methods have been proposed to attain such a goal. Most of them rely
on heuristic procedures and use M, or a similar measure, only to assess their performance. In
contrast, we use simulated annealing22 to find the partition with the largest modularity.

Simulated annealing for module identification
Simulated annealing22 is a stochastic optimization technique that enables you to find ‘low-
cost’ configuration without getting trapped in ‘high-cost’ local minima. This is achieved by
introducing a computational temperature T. When T is high, the system can explore
configurations of high cost whereas at low T the system only explores low-cost regions. By
starting at high T and slowly decreasing T, the system descends gradually towards deep minima,
eventually overcoming small cost barriers.

When identifying modules, the objective is to maximize the modularity, and thus the cost is
C = −M, where M is the modularity as defined in equation (1). At each temperature, we perform
a number of random updates and accept them with probability:

p = { 1 if Cf ≤ Ci

exp ( − Cf − Ci
T ) if Cf > Ci

(2)

where Cf is the cost after the update and Ci is the cost before the update.

Specifically, at each T we propose ni = fS2 individual node movements from one module to
another, where S is the number of nodes in the network. We also propose nc = fS collective
movements, which involve either merging two modules or splitting a module. For f we typically
choose f = 1. After the movements are evaluated at a certain T, the system is cooled down to
T′ = cT, with c = 0.995.

Within-module degree and participation coefficient
Each module can be organized in very different ways, ranging from totally centralized—with
one or a few nodes connected to all the others—to totally decentralized, with all nodes having
similar connectivities. Nodes with similar roles are expected to have similar relative within-
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module connectivity. If ki is the number of links of node i to other nodes in its module si, k̄si
is the average of k over all the nodes in si, and σksi is the standard deviation of k in si, then:

zi =
ki − k̄si
σksi

(3)

is the so-called z-score. The within-module degree z-score measures how well-connected node
i is to other nodes in the module.

Different roles can also arise because of the connections of a node to modules other than its
own. For example, two nodes with the same z-score will play different roles if one of them is
connected to several nodes in other modules while the other is not. We define the participation
coefficient Pi of node i as:

Pi = 1 − ∑
s=1

NM ( kiski )
2

(4)

where kis is the number of links of node i to nodes in module s, and ki is the total degree of
node i. The participation coefficient of a node is therefore close to 1 if its links are uniformly
distributed among all the modules and 0 if all its links are within its own module.

Loss rate
To quantify the relation between roles and conservation, we calculate to what extent
metabolites are conserved in the different species depending on the role they play. Specifically,
for a pair of species, A and B, we define the loss rate as the probability p(RA = 0|RB = R) ≡
plost(R) that a metabolite is not present in one of the species (RA = 0) given that it plays role
R in the other species (RB = R). Structurally relevant roles are expected to have low values of
plost(R) and vice versa.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We thank L. Broadbelt, V. Hatzimanikatis, A. A. Moreira, E. T. Papoutsakis, M. Sales-Pardo and D. B. Stouffer for
discussions and suggestions, and H. Ma and A. P. Zeng for providing us with their metabolic networks' database. R.G.
thanks the Fulbright Program and the Spanish Ministry of Education, Culture & Sports. L.A.N.A. acknowledges the
support of a Searle Leadership Fund Award and of a NIH/NIGMS K-25 award.

References
1. Amaral LAN, Scala A, Barthelémy M, Stanley HE. Classes of small-world networks. Proc Natl Acad

Sci USA 2000;97:11149–11152. [PubMed: 11005838]
2. Albert R, Barabási AL. Statistical mechanics of complex networks. Rev Mod Phys 2002;74:47–97.
3. Amaral LAN, Ottino J. Complex networks: Augmenting the framework for the study of complex

systems. Eur Phys J B 2004;38:147–162.
4. Hartwell LH, Hopfield JJ, Leibler S, Murray AW. From molecular to modular biology. Nature

1999;402(Suppl):C47–C52. [PubMed: 10591225]
5. Girvan M, Newman MEJ. Community structure in social and biological networks. Proc Natl Acad Sci

USA 2002;99:7821–7826. [PubMed: 12060727]
6. Jeong H, Tombor B, Albert R, Oltvai ZN, Barabási AL. The large-scale organization of metabolic

networks. Nature 2000;407:651–654. [PubMed: 11034217]

Guimerà and Nunes Amaral Page 6

Nature. Author manuscript; available in PMC 2008 January 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



7. Wagner A, Fell DA. The small world inside large metabolic networks. Proc R Soc Lond B
2001;268:1803–1810.

8. Ma H, Zeng AP. Reconstruction of metabolic networks from genome data and analysis of their global
structure for various organisms. Bioinformatics 2003;19:270–277. [PubMed: 12538249]

9. Hatzimanikatis V, Li C, Ionita JA, Broadbelt L. Metabolic networks: enzyme function and metabolite
structure. Curr Opin Struct Biol 2004;14:300–306. [PubMed: 15193309]

10. Guimerà R, Danon L, Díaz-Guilera A, Giralt F, Arenas A. Self-similar community structure in a
network of human interactions. Phys Rev E 2003;68(no 065103)

11. Newman MEJ, Girvan M. Finding and evaluating community structure in networks. Phys Rev E
2004;69(no 026113)

12. Arenas A, Danon L, Díaz-Guilera A, Gleiser PM, Guimerà R. Community analysis in social networks.
Eur Phys J B 2004;38:373–380.

13. Krause AE, Frank KA, Mason DM, Ulanowicz RE, Taylor WW. Compartments revealed in food-
web structure. Nature 2003;426:282–285. [PubMed: 14628050]

14. Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási AL. Hierarchical organization of modularity
in metabolic networks. Science 2002;297:1551–1555. [PubMed: 12202830]

15. Holme P, Huss M. Subnetwork hierarchies of biochemical pathways. Bioinformatics 2003;19:532–
538. [PubMed: 12611809]

16. Papin JA, Reed JL, Palsson BO. Hierarchical thinking in network biology: the unbiased
modularization of biochemical networks. Trends Biochem Sci 2004;29:641–647. [PubMed:
15544950]

17. Eriksen KA, Simonsen I, Maslov S, Sneppen K. Modularity and extreme edges of the Internet. Phys
Rev Lett 2003;90(no 148701)

18. Newman MEJ. Fast algorithm for detecting community structure in networks. Phys Rev E 2004;69
(no 066133)

19. Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D. Defining and identifying communities in
networks. Proc Natl Acad Sci USA 2004;101:2658–2663. [PubMed: 14981240]

20. Donetti L, Muñoz MA. Detecting network communities: A new systematic and efficient algorithm.
J Stat Mech Theor Exp. 2004P10012

21. Guimerà R, Sales-Pardo M, Amaral LAN. Modularity from fluctuations in random graphs and
complex networks. Phys Rev E 2004;70(no 025101)

22. Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by simulated annealing. Science 1983;220:671–
680. [PubMed: 17813860]

23. Wasserman, S.; Faust, K. Social Network Analysis. Ch. 12. Cambridge Univ. Press; Cambridge:
1994.

24. Guimerà R, Amaral LAN. Cartography of complex networks: Modules and universal roles. J Stat
Mech Theor Exp. 2005P02001

25. Rives AW, Galitski T. Modular organization of cellular networks. Proc Natl Acad Sci USA
2003;100:1128–1133. [PubMed: 12538875]

26. Han JDJ, et al. Evidence for dynamically organized modularity in the yeast protein–protein interaction
network. Nature 2004;430:88–93. [PubMed: 15190252]

27. Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res
2000;28:27–30. [PubMed: 10592173]

28. Schuster S, Fell DA, Dandekar T. A general definition of metabolic pathways useful for systematic
organization and analysis of complex metabolic networks. Nature Biotechnol 2000;18:326–332.
[PubMed: 10700151]

29. Schuster S, Pfeiffer T, Moldenhauer F, Koch I, Dandekar T. Exploring the pathway structure of
metabolism: decomposition into subnetworks and application to Microplasma pneumoniae.
Bioinformatics 2002;18:351–361. [PubMed: 11847093]

30. Jeong H, Mason SP, Barabási AL, Oltvai ZN. Lethality and centrality in protein networks. Nature
2001;411:41–42. [PubMed: 11333967]

Guimerà and Nunes Amaral Page 7

Nature. Author manuscript; available in PMC 2008 January 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Performance of module identification methods. To test the performance of the method, we
build ‘random networks’ with known module structure. Each test network comprises 128 nodes
divided into 4 modules of 32 nodes. Each node is connected to the other nodes in its module
with probability pi, and to nodes in other modules with probability po < pi. On average, thus,
each node is connected to kout = 96 po nodes in other modules and to kin = 31 pi in the same
module. Additionally, pi and po are selected so that the average degree of the nodes is k = 16.
We display networks with: a, kin = 15 and kout = 1; b, kin = 11 and kout = 5; and c, kin = kout =
8. d, The performance of a module identification algorithm is typically defined as the fraction
of correctly classified nodes. We compare our algorithm to the Girvan–Newman algorithm5,
18, which is the reference algorithm for module identification11,18,19. Note that our method
is 90% accurate even when half of a node's links are to nodes in outside modules. e, Our module-
identification algorithm is stochastic, so different runs yield, in principle, different partitions.
To test the robustness of the algorithm, we obtain 100 partitions of the network depicted in c
and plot, for each pair of nodes in the network, the fraction of times that they are classified in
the same module. As shown in the figure, most pairs of nodes are either always classified in
the same module (red) or never classified in the same module (dark blue), which indicates that
the solution is robust.
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Figure 2.
Roles and regions in the z–P parameter space. a, Each node in a network can be characterized
by its within-module degree and its participation coefficient (see Methods for definitions). We
classify nodes with z ≥ 2.5 as module hubs and nodes with z < 2.5 as non-hubs. We find that
non-hub nodes can be naturally assigned into four different roles: (R1) ultra-peripheral nodes;
(R2) peripheral nodes; (R3) non-hub connector nodes; and (R4) non-hub kinless nodes. We
find that hub nodes can be naturally assigned into three different roles: (R5) provincial hubs;
(R6) connector hubs; and (R7) kinless hubs (see text and Supplementary Information for
details). b, Metabolite role determination for the metabolic network of E. coli, as obtained from
the MZ database. Each metabolite is represented as a point in the z–P parameter space, and is
coloured according to its role. c, Same as b but for the complete KEGG database.
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Figure 3.
Cartographic representation of the metabolic network of E. coli. Each circle represents a
module and is coloured according to the KEGG pathway classification of the metabolites it
contains. Certain important nodes are depicted as triangles (non-hub connectors), hexagons
(connector hubs) and squares (provincial hubs). Interactions between modules and nodes are
depicted using lines, with thickness proportional to the number of actual links. Inset: metabolic
network of E. coli, which contains 473 metabolites and 574 links. This representation was
obtained using the program Pajek. Each node is coloured according to the ‘main’ colour of its
module, as obtained from the cartographic representation.
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Figure 4.
Roles of metabolites and inter-species conservation. To quantify the relation between roles and
conservation, we calculate the loss rate plost(R) of each metabolite (see Methods). Each thin
line in the graph corresponds to a comparison between two species. Because we are interested
in metabolites that are present in some species but missing in others, metabolic networks of
species within the same superkingdom—bacteria, eukaryotes and archaea—are usually too
similar to provide statistically sound information, especially for roles containing only a few
metabolites. Therefore, we consider in our analysis only pairs of species that belong to different
superkingdoms. The thick line is the average over all pairs of species. The loss rate plost(R) is
maximum for ultra-peripheral (R1) nodes and minimum for connector hubs (R6). Provincial
hubs (R5) have a significantly and consistently higher plost(R) than non-hub connectors (R3),
even though the within-module degree and the total degree of provincial hubs is larger. Note
that, out of the total 48 pair comparisons, only in two cases is plost(R) lower for provincial hubs
than for non-hub connectors, whereas the opposite is true in 44 cases. a, b, Results obtained
for the MZ database (a) and the complete KEGG database (b).
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