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Abstract. The dynamic properties of the cell cortex and
its actin cytoskeleton determine important aspects of
cell behavior and are a major target of cell regulation.
GAP43, myristoylated alanine-rich C kinase substrate
(MARCKS), and CAP23 (GMC) are locally abundant,
plasmalemma-associated PKC substrates that affect ac-
tin cytoskeleton. Their expression correlates with mor-
phogenic processes and cell motility, but their role in
cortex regulation has been difficult to define mechanis-
tically. We now show that the three proteins accumulate
at rafts, where they codistribute with P1(4,5)P,, and
promote its retention and clustering. Binding and mod-
ulation of P1(4,5)P, depended on the basic effector do-
main (ED) of these proteins, and constructs lacking the
ED functioned as dominant inhibitors of plasmalemmal
P1(4,5)P, modulation. In the neuronlike cell ling, PC12,
NGF- and substrate-induced peripheral actin struc-

tures, and neurite outgrowth were greatly augmented
by any of the three proteins, and suppressed by AED
mutants. Agents that globally mask P1(4,5)P, mimicked
the effects of GMC on peripheral actin recruitment and
cell spreading, but interfered with polarization and pro-
cess formation. Dominant negative GAP43(AED) also
interfered with peripheral nerve regeneration, stimu-
lus-induced nerve sprouting and control of anatomical
plasticity at the neuromuscular junction of transgenic
mice. These results suggest that GMC are functionally
and mechanistically related P1(4,5)P, modulating pro-
teins, upstream of actin and cell cortex dynamics regu-
lation.
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Introduction

Signaling at the cell surface integrates specific contextual in-
formation from the local environment by recruiting and as-
sembling cell-specific subplasmalemmal protein complexes
that regulate cell behavior. To control signal quality and
strength, cells assemble signaling platforms and structures of
varying composition, complexity, and stability. Actin-based
structures are major components of cell-surface signaling
complexes such as focal contacts, adherens junctions, caps,
and supramolecular activation clusters involved in lympho-
cyte activation, and synapses in the nervous system (Pen-
ninger and Crabtree, 1999). Since actin assembly is an early
event in the formation of these signaling structures, defining
mechanisms that regulate plasmalemmal actin dynamics,
and the formation of transient and stable actin-based struc-
tures can provide significant insights into cell signaling.
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At the cell surface, actin filament assembly and dynam-
ics are subject to complex temporal and spatial control
by signals from the extra- and intracellular environment
(Welch et al., 1997; Schafer et al., 1998). Members of the
Cdc42, Rac, and Rho family of small GTP-binding pro-
teins couple cell-surface receptor activation to specific pat-
terns of actin cytoskeleton regulation (Tapon and Hall,
1997). In addition, in cell-free systems, key actin binding
and focal contact proteins such as gelsolin, profilin, cofilin,
and vinculin are regulated by the lipid second messenger
P1(4,5)P,, which may be a critical component in promoting
filament assembly at the cell membrane (Hartwig et al.,
1995; Welch et al., 1997; Ma et al., 1998). However, since
the overall contents of P1(4,5)P, at the inner leaflet of the
cell membrane can be comparatively high and constant, it
is not clear how this lipid second messenger regulates actin
dynamics. Because of the relatively low affinities involved
in these interactions, one critical parameter may be the lo-
cal concentration of membrane PI(4,5)P, available for
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ligand binding. Accordingly, one possibility for regulation
would involve the existence of mechanisms to locally con-
centrate and mask P1(4,5)P, at the inner leaflet of the cell
membrane, where its accessibility to actin regulatory pro-
teins would be linked to extracellular signals.

GAP43, myristoylated alanine-rich C kinase substrate
(MARCKS),! and CAP23 (GMC) are major protein
kinase C (PKC) substrates associated with the plasma
membrane that can bind acidic phospholipids including
P1(4,5)P, (Skene, 1989; Aderem, 1995; Seki et al., 1996;
Benowitz and Routtenberg, 1997; Denisow et al., 1998).
Although they do not share regions of sequence homol-
ogy, GAP43 can, to a large extent, substitute for CAP23 in
vivo, indicating that the two proteins are closely related
functionally (Frey et al., 2000a). Mechanistically, the func-
tion of GMC s still not understood, but loss- and gain-of-
function studies in cell lines and mice argue for a critical
role in regulating actin-based structures and motility
(Aigner and Caroni, 1995; Aigner et al., 1995; Strittmatter
etal., 1995; Stumpo et al., 1995; Myat et al., 1997; Frey et al.,
2000a). Such a role is also consistent with the expression of
these proteins, which is highly regulated during develop-
ment and in the adult, and correlates with morphogenic
processes and cell-surface dynamics (Skene, 1989; Ade-
rem, 1995; Benowitz and Routtenberg, 1997, McNamara
and Lenox, 1997). GMC share several characteristic prop-
erties such as the following: membrane association medi-
ated by acylation; colocalization at unique subplasma-
lemmal patches; similar highly hydrophilic amino acid
compositions; and the presence of a basic effector domain
that binds acidic phospholipids, calmodulin, actin fila-
ments, and PKC (Fig. 1 A; Hartwig et al., 1992; Aderem,
1995; Benowitz and Routtenberg, 1997; He et al., 1997;
Wiederkehr et al., 1997). In artificial phospholipid vesi-
cles, the effector domains (EDs) of MARCKS and GAP43
can bind and regulate the accessibility of acidic phospho-
lipids, including PI1(4,5)P,, through electrostatic interac-
tions (see e.g., Denisow et al., 1998). However, presently,
experimental evidence that MARCKS and GAP43 regulate
lipid second messengers at the cell membrane is lacking.

In this study, we present experimental evidence that
GMC sequester and modulate P1(4,5)P, at cholesterol-
dependent microdomains. Constructs lacking the ED
acted as dominant inhibitors of microdomain P1(4,5)P, ac-
cumulation. The effects of GMC constructs on raft P1(4,5)P,,
peripheral actin recruitment, and neurite outgrowth were
highly correlated, and were comparable to those of agents
that directly affect P1(4,5)P,. Based on these results, we
propose that GMC are mechanistically related membrane-
associated proteins that mediate calcium- and PKC-sensi-
tive modulation of PI(4,5)P, at plasmalemmal micro-
domains, upstream of cell cortex and actin dynamics
regulation, and neurite outgrowth. In the accompanying
paper (Frey et al., 2000), we provide compelling evidence
that GAP43 and the related protein CAP23 are related
functionally in vivo, where they have common as well as
unique functions in neurite outgrowth. Together, these
studies establish GMC as members of a family of mecha-

!Abbreviations used in this paper: CaM, calmodulin; GMC, GAP23,
MARCKS, and CAP23; MARCKS, myristoylated alanine-rich C kinase
substrate; ED, effector domain; PKC, protein kinase C; PLC, phospholi-
pase C.
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nistically and functionally related proteins. Because of
their shared effects on PI1(4,5)P, modulation, we propose
the collective designation of pipmodulins.

Materials and Methods

Reagents, Cell Culture, and Transgenic Mice

Inhibitor compounds and growth factors, with their final concentrations,
were used as follows. Neomycin (10 mM), NGF (100 ng/ml), cyclodex-
trin (methyl-B-cyclodextrin; 5 mM), and cytochalasin D (10 wM) from
Sigma Chemical Co.; LiCl (10 mM) and calcimycin (50 M) from FLUKA
AG; and U-73122 (1 pwM) from Calbiochem. For transfection, cDNAs
were cloned into the eukaryotic expression vector pcDNA3 (Invitrogen).
All mutant constructs were generated by conventional PCR techniques
and verified by DNA sequencing. The MARCKS cDNA consisted of
human MARCKS, with a modified C-term to match the chick se-
quence SPEGPAEPAE. Chick GAP43(AED) lacked amino acids 39-53;
PMARCKS(AED) consisted of the human/chick protein, as described
above, which lacked amino acids 152-176, and carried an additional
Ala3Cys mutation to provide a palmitoylation sequence. Antisera to
COOH-terminal peptides of chick MARCKS and GAP43 were as de-
scribed (Wiederkehr et al., 1997). Mouse MARCKS was detected with an
antiserum to the COOH-terminal synthetic peptide CSPEAPPAPTAE;
the mADb to P1(4,5)P, was as described (Fukami et al., 1988); RITC-phal-
loidin, RITC-a-bungarotoxin, and Alexa-labeled secondary antibodies
were from Molecular Probes, Inc.

Cell lines (monkey kidney epithelial cells COS-7, and rat pheochro-
mocytoma PC12 cells, clone B) were from American Type Cell Culture
Collection, and cultured in DME supplemented with 10% FCS, or 10%
horse serum and 5% FCS, respectively. Hippocampal neurons were iso-
lated from newborn (PO-1) mice. In brief, hippocampi were triturated,
cells were washed, resuspended in culture medium (neurobasal; GIBCO
BRL), with 0.5 mM cr-glutamine, 25 wM glutamate, and 1% B27 supple-
ment (GIBCO BRL), and plated at a density of 20,000 cells per 18-mm
poly-L-lysine—coated coverslip.

Transgenic mice expressing chick GAP43(AED), specifically in adult
neurons, were generated using the mouse Thyl.2 expression cassette as
previously described (Caroni, 1997). Two independent lines of mice were
analyzed in this study: line-13 expressed high levels of transgene (compa-
rable to Thyl-GAP43(wt2); Aigner et al., 1995) in most types of neurons,
including spinal motoneurons, whereas line-19 exhibited widespread ex-
pression in the brain and motoneuron at levels that were at least three
times lower than those of line-13, as judged by immunoblots (brain) and
immunocytochemistry (neuromuscular junction).

Transfections, Immunocytochemistry, and Analysis of
the Actin Cytoskeleton

Liposome-based transfection reagents interfered with P1(4,5)P, stainings
(not shown). Therefore, for transient transfections, COS-7 cells were
treated with the nonliposomal reagent Superfect (Qiagen). On the next
day, cells were fixed for 30 min at 37°C, followed by 3-5 h at 4°C with 4%
paraformaldehyde in DME with 2 mM EGTA. Subsequently, cells were
further processed for immunocytochemistry as described in a previous
study (Wiederkehr et al., 1997). The first antibody binding incubation was
carried out overnight at 4°C, using an antibody dilution solution consisting
of PBS, with 0.2% saponin, 50 mM glycine, 0.1% BSA, and 1% FCS. Cul-
tured hippocampal neurons from wild-type and transgenic mice were la-
beled 24 h after plating, according to the same protocol.

For quantitative analysis of GMC and P1(4,5)P, clusters, all cells from
randomly selected fields (400X) with substantial levels of transgene ex-
pression (30-50% of all transgene expressing cells in any given field) were
included in the analysis. At least 20 cells from one dish of transiently
transfected cells were analyzed for every experiment, and the values are
averages from at least two independent experiments. Images from 20 X
20 pwm? bins were captured and all clusters within the bin were analyzed
with NIH Image software (see Fig. 2).

PC12B cells were transfected stably using the Fugene 6 reagent from
Boehringer. Each experiment shown in the study was carried out with at
least three independent clones, with similar results. For process outgrowth
assays, 100,000 PC12 cells were plated on collagen-coated (30 pg/ml) 35-mm
dishes, and, where indicated, the medium was changed 1 d after plating
from DME, 10% horse serum, 5% FCS (growth medium) to DME, 1%
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horse serum, and 100 ng/ml NGF. Where process formation (>1 cell di-
ameter) in the absence of NGF was monitored, cells were preincubated
with or without neomycin for 2 h, replated in the presence or absence of
the drug, and analyzed 3 h after replating. No preincubation was carried
out when LiCl or the phospholipase C (PLC) inhibitor U-73122 was used.

To analyze the distribution of the actin cytoskeleton in PC12B clones,
we determined intensity profiles of RITC-phalloidin labeling across ran-
domly selected cells. Cells were plated on a collagen-coated substratum in
the absence of NGF, fixed and stained 3 h after plating, photographed un-
der identical conditions, and were analyzed with Image software. For each
analyzed cell, one rectangular bin of 10 pixels in height was placed across
the center of the cell (see also schematic in Fig. 6 B), and an edge-to-edge
labeling intensity profile was collected. For each type of PC12B clone,
such profiles had reproducible characteristic features of actin cytoskeleton
distribution, as revealed when the profiles were superimposed. To high-
light shared features, each of six independent profiles (i.e., six cells) was
assigned the same light gray value, and overlapping areas were integrated
(see Fig. 6 B).

Subcellular Fractionation and Lipid Analysis

Raft fractions from 2-d hippocampal neuron cultures or adult mouse brain
homogenate were isolated according to a standard protocol (Maekawa
et al., 1999). In brief, samples were processed with a Polytron homoge-
nizer in hypotonic medium (10 mM Tris-HCI, 1 mM MgCl,, 1 mM EGTA,
with protease inhibitors), in the presence of 1% Triton X-100. The osmo-
larity was adjusted to 0.8 M sucrose (total volume of 3 ml), and the homog-
enate was overlayered with 0.7 M (5 ml), and no sucrose (2 ml) Triton-
containing solutions. After centrifugation at 70,000 g for 6 h (4°C), the
following three fractions were collected, sedimented in homogenization
medium with 0.3% Triton X-100 (for 1 h at 100,000 g), and analyzed: (1)
the fraction that had floated above 0.7 M sucrose (rafts); (2) 0.7 /0.8 M su-
crose interface, plus upper 1 ml of 0.8 M sucrose layer (0.7/0.8 fraction);
and (3) the gradient pellet (high density membranes and Triton-insoluble
cytoskeleton; pellet fraction). Raft fractions from PC12B clones were iso-
lated by an analogous protocol, but cell lysates were prepared in the
presence of 150 mM NacCl, 1% Triton X-100 and 0.1 M sodium carbonate,
pH 11.

Binding of GMC proteins to phospholipids was determined with a sedi-
mentation assay, as described previously (Seki et al., 1996). In brief, multi-
lamellar phospholipid vesicles were made from phosphatidylcholine (Sigma
Chemical Co.) or from a 1:9 mixture of PC and PIP mix (P1(4,5)P2/P1(4)P/
Pl, 6:3:1; Sigma Chemical Co.), and incubated for 30 min at 30°C with 1 pg
of bacterially expressed, purified Hisg-tagged GMC protein in the pres-
ence of 150 mM NaCl (final volume, 150 wl, containing 4.5 g PC, or 0.075
wg PC/PIP lipids). Vesicles with bound proteins were sedimented at
150,000 g for 30 min and analyzed on immunoblots.

Total masses of nonwater-soluble phosphoinositides were determined
according to a standard protocol (Bird, 1998), using myo-(2-[*H])-inositol
(NEN) as a source of labeled inositol, PCA extraction, and TLC fraction-
ation of phosphoinositides. The PI, PIP, and PIP2 spots were identified
using phosphoinositide standards and iodine vapor. The appropriate spots
were scraped off the TLC plates, extracted in ethanol/HCI (100:1), and
counted in scintillation fluid. To compare PC12B clones, values were nor-
malized to protein contents from parallel cultures. The PLC assay in-
volved labeling with myoinositol, stimulation of cells with 20 wM bradyki-
nin, and quantitative determination of the water-soluble breakdown
products of labeled phosphoinositides by anion exchange chromatography
as previously described (Bird, 1998). To compare PC12B clones, values
were normalized to protein contents of acid-insoluble pellets. PIP; and
PI(3,4)P, contents of NGF-treated PC12B clones were determined by
[?2P]orthophosphate metabolic labeling and HPLC fractionation as described
previously (Meier et al., 1998). P1(4)P levels were not affected by growth fac-
tor stimulation, and corresponding values were used to adjust individual sam-
ple counts per minute values for relative phosphoinositide recoveries.

Analysis of Peripheral Nerve Regeneration and
BotA-induced Sprouting

To analyze peripheral nerve regeneration, the right sciatic nerve of
2-3-mo-old mice was crushed at the level of the midthigh, by applying
pressure for 20 s with a watchmaker tweezer, as previously described
(Aigner et al., 1995). Regeneration and reinnervation of muscle was ana-
lyzed 14 d after the crush, using a combined silver esterase reaction (Ca-
roni et al., 1997) on frozen sections of triceps surae muscle. For quantita-
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tive analysis, the muscle was mounted slightly flattened, with the plane
that faced the bone down; 50-.m sections of the entire muscle were cut,
and at least 40 of these were analyzed, thus, covering all regions of the tri-
ceps surae muscle. Paralysis-induced nerve sprouting was analyzed as
described (Frey et al., 2000). In brief, 0.01 U of botulinum toxin A (Aller-
gan AG) was injected per gram of mouse into one triceps surae, and cryo-
stat sections were analyzed with the combined silver esterase reaction 7 d
after toxin treatment. Sprouting synapses in medial gastrocnemius and so-
leus were mapped systematically, and the results were displayed as per-
centages of synapses with sprouts along the synaptic band at a defined po-
sition of the muscle (Frey et al., 2000b).

Results

Codistribution of GMC with P1(4,5)P, at
Plasmalemmal Microdomains

To determine whether subplasmalemmal clusters of GAP43,
MARCKS, and CAP23 immunoreactivity may coincide
with sites of local P1(4,5)P, accumulation, we carried out
double labeling experiments with an antibody that binds
specifically to P1(4,5)P, (Fukami et al., 1988). The anti-
body does not bind to PC, PE, PI, or IP;, and only weakly
to PI(5)P (Han et al., 1992). It binds to PI(3,4,5)P; with
~30% of the affinity that it has for P1(4,5)P,, and does not
bind to PI1(3,4)P, nor PI(3)P (Fukami, K., unpublished
results). In paraformaldehyde-fixed cells, the antibody
yielded a patchy pattern of surface-associated immunore-
activity that was suppressed when cells were treated with
agents that reduce (LiCl, calcimycin), or specifically mask
(neomycin) plasmalemmal PI1(4,5)P, (Fig. 1 B). When
combined with the fact that PI1(3,4,5)P; levels in cells are
orders of magnitude lower than those of P1(4,5)P,, these
experiments validate the application of this antibody to
specifically visualize plasmalemmal P1(4,5)P,. As shown in
Fig. 1 C, surface-associated P1(4,5)P, immunoreactivity
codistributed precisely with clusters of endogenous or
transgenic GMC immunoreactivity in hippocampal neu-
ron growth cones and transfected COS cells. In addition,
within any given cluster, there was a strong overlap of the
four components.

Evenly patched GMC immunoreactivity patterns can
be detected in both paraformaldehyde- or methanol-
fixed cells (Wiederkehr et al., 1997). However, when cells
were fixed with cold methanol, clusters were substantially
smaller, suggesting that macroscopically detectable clus-
ters may coalesce during the fixation and staining process.
This is reminiscent of sphingolipid/GPI-linked protein mi-
crodomains (rafts), which have been shown to coalesce
into larger aggregates during standard immunocytochem-
istry protocols (Harder and Simons, 1997; Harder et al.,
1998). This is consistent with the possibility that GMC and
P1(4,5)P, may colocalize at submicroscopic lipid micro-
domains; when double labeling experiments were carried
out with glutaraldehyde-fixed cells, i.e., under conditions
when macroscopically detectable clusters of GPI-linked
proteins do not form (Harder et al., 1998), GMC and
P1(4,5)P, exhibited nearly homogeneous surface labeling
patterns (Fig. 1 C).

To determine whether GMC are raft components, we
analyzed corresponding subcellular fractions from neona-
tal hippocampal neurons, mouse brain homogenates, and
neuronlike PC12 cells. The GPI-linked cell-surface protein
Thyl is a well-characterized raft component (Harder and

1457



MARCKS
CaM
[ |1 ]
Mu*‘ib
| v— 04’
GAP43 &
I CaM
[ i:l ]
HR
CAP23
CaM
= ]
[ acidic region
[ basic region
myristoylation
| palmitoylation

B PIPz immunoreactivity

: ' glutaraldehyde fix

i 4

- - e
Calcimycin.-

neonatal hippocampal neurons
Raft Pellet 0.7/08

180— - -
140 — NCAM
120 -

A ~m— GAP43

= CAP23

e = ==  MARCKS

adult brain
Lysate Raft
180 =
140— NCAM
120—

g,

The Journal of Cell Biology, Volume 149, 2000

1458

Raft  Pellet 0.7/0.8
asm—es w— GAP43
= CAP23
o = - MARCKS
PCIZB s
raft
GAP43  MARCKS




Simons, 1997), and was highly enriched in the Triton-insol-
uble low density membrane raft fraction (Fig. 1 D). GPI-
linked NCAM-120 is a raft component, whereas the
NCAM-140 and NCAM-180 transmembrane isoforms are
not (Olive et al., 1995). As shown in Fig. 1 D, the NCAM-
120 isoform accumulated in the raft fraction, whereas the
transmembrane isoforms did not, indicating that the raft
fraction was selectively enriched for the appropriate
subset of the membrane-associated proteins. GAP43,
MARCKS, and CAP23 were all recovered in the raft frac-
tion (Fig. 1 D). In addition, treating PC12 cells with cyclo-
dextrin, an agent that sequesters cholesterol, thereby dis-
rupting rafts, led to a loss of GAP43 in the raft fraction
(see Fig. 2 C). Raft association was most pronounced for
CAP23, whereas substantial fractions of total GAP43 and
MARCKS were recovered in the 0.7/0.8 M sucrose frac-
tion (Fig. 1 D). When brain tissue was homogenized in the
absence of detergent, and separated into a soluble and a
particulate fraction (100,000 g, 60-min pellet), about a
third of MARCKS and GAP43, but not CAP23, were
recovered in the soluble fraction (not shown). These find-
ings are in good agreement with those from previous stud-
ies, and support the notion that most membrane-bound
CAP23 and GAP43, and a substantial fraction of mem-
brane-bound MARCKS are associated with plasmalem-
mal rafts. In addition, significant amounts of GAP43 and
MARCKS are recovered in soluble fractions, and a frac-
tion of membrane-bound MARCKS is associated with ly-
sosomal compartments (Aderem, 1995). Taken together,
these results support the notion that cell surface-associ-
ated microdomain GMC immunoreactivity reflects the as-
sociation of these proteins with rafts at the inner leaflet of
the cell membrane.

GMC Bind PI1(4,5)P, and Promote P1(4,5)P,
Microdomain Assembly Independent of Actin
Cytoskeleton Integrity

To determine whether GMC can influence PI1(4,5)P, -con-
taining domains at the cell surface, we compared P1(4,5)P,
labeling patterns in hippocampal neurons, PC12B cells,
and COS cells expressing different levels of these proteins.
As shown in Fig. 2 A, cells overexpressing GMC exhibited
substantially larger macroscopic P1(4,5)P, clusters. In
addition, MARCKS-overexpressing cells (but not those
overexpressing GAP43 or CAP23; not shown) also exhib-
ited stronger P1(4,5)P, cell-surface staining (Fig. 2 A). To
exclude the possibility that the effects of GMC on the la-
beling pattern of PI(4,5)P, were related to the labeling
process for these transgenes, we analyzed cells that had
been transfected with a bicistronic construct driving the
expression of the green fluorescent protein and MARCKS

in the same transiently transfected cells. Cells expressing
green fluorescent protein, and thus also MARCKS, exhib-
ited larger, more numerous clusters and stronger labeling
for PI1(4,5)P, (not shown). Therefore, overexpression of
GMC augments the formation of macroscopically detect-
able plasmalemmal P1(4,5)P, clusters.

To determine whether GMC proteins bind directly to
P1(4,5)P,, we carried out cosedimentation experiments with
recombinant proteins and lipid vesicles. Binding of GMC
to liposomes depended on the presence of acidic phospho-
lipids such as PI1(4,5)P,, and on the presence of the basic
ED (Fig. 2 B). Mutant GAP43(Ser42Asp), which does not
bind calmodulin and codistributes with GMC at plasma-
lemmal microdomains (Wiederkehr et al., 1997), did bind
to PI(4,5)P,-containing vesicles, although less effectively
than wild-type GAP43 (Fig. 2 B).

Cell-surface lipid microdomains described so far are
highly sensitive to the physical properties of the lipid envi-
ronment and, in particular, the presence of cholesterol
(Harder and Simons, 1997). As shown in Fig. 2 C, treat-
ing COS cells with the cholesterol sequestering agent cy-
clodextrin, induced a loss of cluster and plasmalemmal
P1(4,5)P,. In transfected cells, this loss was accompanied
by a concomitant reduction in the number and size of
GMC clusters (Fig. 2 C). In addition, when compared
with transgene-negative cells, overexpression of GAP43,
MARCKS, or CAP23 partially protected cell surface and
cluster P1(4,5)P, from cyclodextrin-induced dispersion
(Fig. 2 C). In demonstrating that GMC-PI1(4,5)P, cell-sur-
face microdomains are highly interdependent, these re-
sults provide experimental evidence supporting the view
that molecular interactions involving proteins such as
GMC and phospholipids such as P1(4,5)P, are involved in
the assembly and/or maintenance of these microdomains.

GAP43 and MARCKS can interact with actin filaments
through their basic ED (Hartwig et al., 1995; He et al.,
1997), and PI1(4,5)P, interacts with a large number of actin-
binding proteins (Welch et al., 1997). As a consequence,
GMC may affect PI(4,5)P, microdomains through an indi-
rect mechanism involving the actin cytoskeleton. To deter-
mine whether the association state of GMC-PI(4,5)P, mi-
crodomains depends on actin cytoskeleton integrity, we
analyzed cluster size distributions in the presence of cy-
tochalasin D. As shown in Fig. 3 A, treating COS cells
acutely with 10 wM cytochalasin D for 20 min induced the
loss of stress fibers and clumping of the actin cytoskeleton,
but had no effects on PI1(4,5)P, clusters, which remained
significantly larger in the presence of MARCKS or
GAP43. To investigate the effects of GMC on PI(4,5)P,
microdomain assembly in the continued absence of an in-
tact actin cytoskeleton, we analyzed COS cells cotrans-
fected with GMC proteins and a constitutively active form

Figure 1. GAP43, MARCKS, and CAP23 accumulate at plasmalemmal rafts, where they codistribute with P1(4,5)P,. (A) Schematic
representation of GMC, with the relative position of the EDs. (B) Plasmalemmal immunoreactivity detected with the P1(4,5)P, anti-
body kt3g is suppressed by treatments that mask or reduce cell membrane P1(4,5)P,. Treatment times are as follows: neomycin and
LiCl, 24 h; and calcimycin, 15 min. (C) Codistribution of P1(4,5)P, immunoreactivity with endogenous GMC in hippocampal neuron
growth cones and transiently transfected COS-7 cells. Note the absence of clustered labeling pattern for P1(4,5)P, and MARCKS in
cells fixed with glutaraldehyde. (D) GMC accumulate in raft fractions from hippocampal neuron cultures, adult brain homogenate, and
stably transfected PC12B clones. The samples are fractions from the sucrose density gradient used to isolate rafts; equal amounts of to-
tal protein were loaded on each lane. Lysate: brain homogenate. Bars: (B) 25 um; (C) 3 pm.
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Figure 2. The distributions of P1(4,5)P, and GMC proteins at the cell membrane are interdependent. (A) Hippocampal neurons (left,
nontransgenic; middle, transgenic overexpressing GAP43), COS cells (right) and PC12B cells overexpressing GMC proteins exhibit
larger P1(4,5)P, clusters. Quantitative analysis: COS cells, one 20 X 20 um? bin analyzed per cell (n = 20). (B) GAP43 and MARCKS
bind to PI1(4,5)P,-containing (PIPs) but not to PC lipid vesicles; GAP43(Ser42Asp) binds more weakly; and GAP43(AED) does not
bind. Quantitative analysis of GAP43 binding (immunoblot signal intensities, AU) to PIPs is shown in the graph (n = 4). (C) Cyclodex-
trin disperses plasmalemmal GMC-PI1(4,5)P, microdomains; GMC protect partially against dispersion by cyclodextrin. Raft fractions:
PC12B-GAP43 cells, immunoblot. Photographs: COS cells treated with cyclodextrin (5 mM, 30 min); left, nontransfected (compare to
nontreated patterns in A). Quantitative analysis: COS cells, with and without cyclodextrin; one 20 X 20 wm? bin per cell (n = 40). Bars:
10 pm.
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Figure 3. GMC modulate plasmalemmal P1(4,5)P, clusters independent of actin cytoskeleton integrity. Transiently transfected COS
cells; (insets) details at 4X. Disruption of the actin cytoskeleton with cytochalasin D (20 min; A), or constitutively active (LIM)K1 (B)
did not affect P1(4,5)P, clusters, nor the effect of GMC proteins (bottom panels in A, and bottom panels in B) on cluster size. (B, top
panels) Actin cytoskeleton clumping in cells overexpressing (LIM)K1. (B, central and bottom panels) Triple labelings of cells overex-
pressing (LIM)K1 (clumped actin cytoskeleton), with or without MARCKS. Bars: 5 pm.

of LIM-kinasel ((LIM)KZ1) that phosphorylates cofilin and
blocks actin cytoskeleton dynamics (Arber et al., 1998). As
shown in Fig. 3 B, cells overexpressing the (LIM)K1 con-
struct, with or without MARCKS (or GAP43, or CAP23; not
shown) exhibited massive collapsing of the actin cytoskele-
ton into a few large clumps, but GMC-PI(4,5)P, micro-
domains were not affected. Taken together, these results
support the notion that GMC-PI(4,5)P, microdomain assem-
bly and modulation is independent of the actin cytoskeleton.

MARCKS and GAP43 Mutants Lacking the Basic
Effector Domain Reduce Microdomain Size and
Interfere with P1(4,5)P, Retention at
Plasmalemmal Clusters

GMC are acidic proteins, with one unique stretch of exclu-
sively basic residues, that bind to acidic phospholipids like
P1(4,5)P, (Fig. 2 A). Because of its palmitoylation, GAP43
does not require the presence of the ED to efficiently as-
sociate with the plasma membrane (Wiederkehr et al.,
1997). In contrast, PKC-mediated phosphorylation or de-
letion of the ED leads to the dissociation of MARCKS
and CAP23 from the plasma membrane (Thelen et al.,
1991; Aderem, 1995; Laux, T., and P. Caroni, unpublished
observations). Consequently, to generate a MARCKS
(AED) construct that still associated with the plasmalemma,
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we introduced an Ala3Cys point mutation to generate
palmitoylated pPMARCKS(AED). In spite of the absence
of the lipid-binding ED in the mutants, in double-trans-
fected cells overexpressing MARCKS or GAP43, and
GAP43(AED) or pMARCKS(AED), wild-type and mu-
tant proteins codistributed at the cell surface (Fig. 4 A,
bottom row). Therefore, accumulation of MARCKS or
GAP43 at the characteristic surface-associated clusters,
where these proteins colocalize, does not depend on the
presence of the ED.

To explore the effects of the ED-free mutants on cluster
assembly, we monitored their effects on P1(4,5)P, clusters.
Cells expressing comparatively low levels of pMARCKS
(AED) or GAP43(AED) exhibited cell-surface P1(4,5)P,
immunoreactivity that colocalized with the mutant trans-
gene at small clusters (not shown). In contrast, hippocam-
pal neuron growth cones and COS cells expressing sub-
stantial levels of GAP43(AED) or pMARCKS(AED)
exhibited transgene accumulation at numerous, regularly
spaced, small plasmalemmal clusters, but were essentially
devoid of plasmalemmal PI1(4,5)P, clusters (Fig. 4, A and
B). These results suggest that the presence of excess ED-
free mutant interferes with the function of endogenous
components involved in the recruitment of P1(4,5)P,, and
cluster coalescence. Since these mutants only differ from
MARCKS or GAP43 by the absence of the ED that binds
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to acidic phospholipids, it seems likely that interference is
due to a dominant negative mechanism, involving accumu-
lation of the competing, nonfunctional component at these
P1(4,5)P, sequestering platforms.

P1(4,5)P, Microdomain Modulation by GMC Does Not
Correlate with Alterations in Total Phosphoinositide
Contents Nor Bradykinin-induced

P1(4,5)P, Breakdown

We next determined whether overexpression of GMC
constructs alters lipid second messenger metabolism. First,
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Figure 4. Mutants of
MARCKS and GAP43 lack-
ing the ED accumulate at
GMC-PI(4,5)P, microdomains
and interfere with PI1(4,5)P,
accumulation at the micro-
domains. (A, top three rows)
Hippocampal neuron growth
cones from wild-type (top)
and Thyl-GAP43(AED) mice;
bottom rows: single and dou-
ble (bottom) transfections of
COS cells, as indicated. (B)
Quantitative analysis of trans-
fection experiments; COS
cells had up to 200-300
P1(4,5)P, clusters; cells with
<10 clusters were scored as
negative. n = 200. Bars:
5 pwm.
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we determined the total sizes of the PI, PIP, and PIP,
pools in stably transfected PC12B clones (Baetge and
Hammang, 1991) overexpressing comparable amounts of
MARCKS, GAP43, or dominant negative pMARCKS
(AED) transgenes (see also Fig. 6). These cells express low
levels of endogenous MARCKS and CAP23 (not shown)
and extremely low levels of endogenous GAP43 (Baetge
and Hammang, 1991). GAP43- or pMARCKS(AED)-over-
expressing cells did not exhibit alterations in bulk phos-
phoinositide levels (Fig. 5 A). In contrast, overexpression
of MARCKS produced a significant increase in phospho-
inositide bulk levels in PC12B cells, a finding that is consis-
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tent with the higher P1(4,5)P, immunoreactivity signals in
cells transfected transiently with MARCKS. To determine
whether overexpression of the GMC constructs affects sig-
nal-induced breakdown of P1(4,5)P,, we analyzed bradyki-
nin-induced PI1(4,5)P, hydrolysis. This well characterized
response to the activation of a G protein—-coupled receptor
involves the activation of PLC to hydrolyze PI1(4,5)P, into
inositol triphosphate and diacylglycerol. When compared
with wild-type PC12B cells, the levels of stimulus-induced
P1(4,5)P, metabolites were elevated in the presence of
MARCKS, but not GAP43 (Fig. 5 B) nor pMARCKS
(AED) (not shown). These results are consistent with
the interpretation that MARCKS-overexpressing cells
contain higher levels of the PLC substrate PI(4,5)P,,
whereas GAP43 or pMARCKS(AED) cells do not. Be-
cause GAP43 or pMARCKS(AED) overexpression did
not alter bulk phosphoinositide levels nor stimulus-induced
P1(4,5)P, breakdown, the results show that accumulation
at PI(4,5)P,-containing microdomains and augmentation
or reduction of domain numbers and size does not, by it-
self, affect overall levels of PI1(4,5)P, hydrolysis by acti-
vated PLC. As discussed below, the additional effects of
MARCKS on bulk phosphoinositide levels may be due to
the higher density of positive charges of its ED.

Coordinate Regulation of P1(4,5)P, Microdomains and
P1(4,5)P,-sensitive Peripheral Actin Structures by
GMC Constructs

GMC proteins and P1(4,5)P, have both been implicated in
regulating the accumulation of actin structures at the plas-
malemma (Hartwig et al., 1992; Aigner and Caroni, 1995;
Hartwig et al., 1995; He et al., 1997; Welch et al., 1997
Wiederkehr et al., 1997). Modulation of microdomain
P1(4,5)P, by GMC did not depend on the presence of an
intact actin cytoskeleton (Fig. 3), which is consistent with
the notion that it involves direct interactions between the
EDs of GMC proteins and PI1(4,5)P, at rafts. To explore
the possibility that GMC modulation of plasmalemmal mi-
crodomain P1(4,5)P, may, in turn, regulate cell-surface ac-
tin dynamics, we analyzed the actin cytoskeleton of cells
expressing GMC constructs. These experiments were car-
ried out in neuronlike PC12 cells, where GAP43 promotes
NGF-induced neurite outgrowth, a process that involves
major rearrangements of the actin cytoskeleton (Paves et al.,
1990). Three independent clones were analyzed for each
construct, with comparable results. As shown in Fig. 6 and
Fig. 7 A, overexpression of GAP43, GAP43(Ser42Asp), or
MARCKS greatly potentiated the accumulation of actin-
based filopodia and spikes at the periphery of untreated or
NGF-treated PC12B cells. A comparison with wild-type
PC12B clones revealed that, in the absence of NGF, this
was accompanied by a dramatic decrease in cytosolic and
perinuclear phalloidin signal (Fig. 6, A and B), suggesting
the presence of a major shift towards the cell periphery in
the subcellular accumulation of actin filaments. Indis-
tinguishable results were obtained with PC12B clones
overexpressing CAP23 (not shown). In marked contrast,
GAP43(AED) or pMARCKS(AED) suppressed the accu-
mulation of peripheral actin structures in response to NGF
(Fig. 7 A). These findings are consistent with the view that
P1(4,5)P, microdomain modulation by GMC promotes the
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Figure 5. MARCKS, but not GAP43, nor pPMARCKS(AED) af-
fects bulk phosphoinositide contents in PC12B clones. (A) Bulk
contents of PI, PIP, and PIP, (n = 4). (B) Bradykinin-induced
(20 wM, 15 min) hydrolysis of P1(4,5)P, by PLC (n = 4).

assembly and accumulation of plasmalemmal actin-based
structures.

To investigate more directly the possible involvement of
P1(4,5)P, in GMC-regulated actin dynamics, we carried
out experiments in the presence of 10 mM neomycin. This
specific P1(4,5)P, sequestering agent (Fig. 1 B) had three
major effects. First, it mimicked the overall effects of
GMC on the distribution of the actin cytoskeleton, dra-
matically potentiating the accumulation of peripheral ac-
tin-based structures, particularly filopodia, at the plasma-
lemma, and greatly reducing the pool of comparatively
amorphous cytosolic and perinuclear filamentous actin
(Fig. 6, A and B, and Fig. 7 B). Second, it partially coun-
teracted the effects of the dominant negative AED mu-
tants (Fig. 7 B). Third, it counteracted the effects of GMC,
with respect to the local accumulation of larger actin struc-
tures, cell polarization (Figs. 6 and 7 B), and neurite out-
growth (Fig. 8). As a result, cells treated with neomycin
spread in radially symmetrical, round shapes, with dense
accumulations of evenly distributed actin-based filopodia
and lamellae at their edges. The effects of neomycin were
mimicked most closely by the GAP43(Ser42Asp) mutant
that does not bind calmodulin (CaM) and cannot be phos-
phorylated by PKC (Figs. 6 B and 7 A), suggesting that
regulation of GMC proteins by calcium/CaM and PKC
may promote the local accumulation of larger actin struc-
tures (see Fig. 10). The neomycin effects did not depend
on the presence of NGF, which, like GMC proteins, poten-
tiated the accumulation of larger peripheral actin struc-
tures, particularly spikes (Fig. 6 A). Interestingly, GMC
and NGF had similar effects on neomycin-treated PC12
cells, and their combination partially rescued actin accu-
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Figure 6. Roles of GMC and PI1(4,5)P, in actin regulation at the cell periphery. (A) RITC-phalloidin patterns of PC12B cells 3 h after
plating. The figure shows representative examples obtained with a clone expressing MARCKS; comparable results were obtained with
GAP43 and CAP23 clones. (B) Quantitative analysis of phalloidin labeling profiles (see Materials and Methods for details). The sche-
matic on the left shows how rectangular bins were placed (six cell profiles are superimposed for each plot on the right). Bar, 25 pm.
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mulation polarity at the plasmalemma of these cells (Fig. 6
A), suggesting that with respect to actin regulation, GMC
proteins and NGF may control synergistic pathways. Be-
cause it prevents the access of this enzyme to its substrate,
neomycin is frequently used as an inhibitor of phospholipase
C (PLC). However, direct inhibition of PLC with U-73122
had an effect opposite to that of neomycin: it reduced spread-
ing and suppressed dynamic actin structures at the plasma-
lemma (Fig. 6, A and B, and Fig. 7 B). As discussed below
(Fig. 6 A, schematic), these findings are consistent with
the interpretation that, under local resting conditions, un-
masked plasmalemmal PI1(4,5)P, sequesters actin-regulat-
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GAP43(Ser42Asp)

" Neor;'lycin

Figure 7. Opposite effects of GMC and their
AED mutants on plasmalemmal actin dynamics.
RITC-phalloidin labelings of PC12B clones. (A)
Cells grown in the presence of NGF for 4 d.
Rectangles show the position of the details
shown in the bottom rows. (B) Cells grown for
1 d in the presence of NGF and drugs, as indi-
cated. Note the induction of symmetrical actin
structures in the presence of neomycin, partial
rescue of polarization by MARCKS, and oppo-
site effects of the PLC inhibitor U-73122. Also
note that neomycin partially rescued peripheral
actin accumulation in GAP43(AED) cells. Bar:
10 wm (A, top rows); 25 um (B).

ing proteins that promote actin structure dynamics, thus,
indirectly stabilizing the actin-based cortical cytoskeleton,
and preventing the formation of dynamic actin structures
involved in protrusive activity and spreading.

Critical Role of Plasmalemmal GMC for Neurite
Outgrowth in PC12 Cells

To investigate possible biological implications of micro-
domain and actin regulation by GMC proteins, we ana-
lyzed NGF-induced neurite outgrowth in stable PC12B
clones overexpressing wild-type and ED-deficient con-
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structs. As expected (Yankner et al., 1990), overexpres-
sion of GAP43 substantially potentiated cell spreading
and neurite outgrowth (Fig. 8 A). MARCKS- or CAP23-
overexpressing cells exhibited potentiated neurite out-
growth indistinguishable from that induced by GAP43
(Fig. 8 A). This is remarkable, given the absence of se-
quence homologies between the three proteins, and is
consistent with their similar effects on PI1(4,5)P,-con-
taining microdomains and the actin cytoskeleton. Domi-
nant negative GAP43(AED) or pMARCKS(AED) sup-
pressed NGF- induced neurite outgrowth (Fig. 8 A).
These findings are entirely consistent with the effects of
GMC constructs on PI1(4,5)P,-containing microdomains
and actin dynamics, and provide evidence for a critical
role of GMC protein-mediated regulation in neurite out-
growth.

To determine whether GMC can induce process out-
growth in these cells in the absence of NGF, we monitored
attachment and spreading of PC12 clones on a collagen
substratum. Unlike wild-type cells, GMC-overexpressing
cells formed neuritelike processes during spreading in the
presence of high serum concentrations and no NGF (Fig. 8
B). Under these experimental conditions, process forma-
tion was transient: it peaked at ~3 h after plating, and pro-
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cesses disappeared after 15 h (not shown). In contrast to
those formed in the presence of NGF, processes were
short, not exceeding 50 wm in length, and were not affected
by the presence of the P13-kinase inhibitor LY 294002 (not
shown). The specific P1(4,5)P, sequestering agent neomy-
cin promoted symmetrical cell spreading, and prevented
spontaneous process formation (Fig. 8 B) and NGF-
induced neurite outgrowth (not shown, but see Fig. 7 B) in
GMC-overexpressing cells. Comparable effects were ob-
tained with 10 mM LiCl (Fig. 8 B), which inhibits the me-
tabolism of phosphoinositides, and greatly reduces the lev-
els of plasmalemmal P1(4,5)P, (Fig. 1 B). In contrast to
neomycin, U-73122, which directly inhibits PLC, effec-
tively inhibited cell spreading (see also Fig. 6 A).

NGF-induced neurite outgrowth involves the activity of
PI3-kinases (Jackson et al., 1996), which may depend, in
part, on the local concentrations of plasmalemmal sub-
strate phosphoinositides available for phosphorylation.
However, neither GMC proteins nor their AED mutants
affected the accumulation of the 3-phosphoinositides PIP,
(Fig. 8 D) or PI(3,4)P, (not shown) in response to NGF,
which is consistent with the notion that the regulation of
neurite outgrowth by GMC proteins specifically involves
PI(4,5)P,.
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Role of GMC-mediated Regulation in Peripheral Nerve
Regeneration and Stimulus-induced Nerve Sprouting at
the Neuromuscular Junction in the Adult

Although GAP43 has been implicated in axonal growth,
GAP43-deficient mice only exhibit restricted axonal path-
finding defects (Strittmatter et al., 1995; Sretavan and
Kruger, 1998). Likewise, MARCKS-deficient mice do form
axonal projections, although these are highly aberrant
(Stumpo et al., 1995). Our results (Frey et al., 2000a) provide
strong evidence that these proteins have partially redundant
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functions, suggesting that to reveal their full functional roles
would require approaches that interfere with common
downstream components. Therefore, we generated trans-
genic mice overexpressing dominant negative GAP43
(AED) specifically in neurons. We used a mouse Thyl.2 ex-
pression cassette, thus, achieving high expression levels re-
stricted to postnatal neurons, including motoneurons and
their neuromuscular synapses (Fig. 9 A; Caroni, 1997). Hip-
pocampal neurons derived from such mice exhibited a dis-
ruption of growth cone plasmalemmal PI1(4,5)P, clusters
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(Fig. 4 A), and extended neurites of greatly reduced length
(<30% of wild-type values; not shown).

In control wild-type mice, nerve terminal branches at
the neuromuscular junction exhibit a regular decrease in
diameter as they elongate towards the periphery of the
synapse (Fig. 9 B). This characteristic pattern was detected
at most adult gastrocnemius muscle synapses that we ex-
amined (at least 465/500 synapses from three mice). In
contrast, in GAP43(AED)-overexpressing mice, nerve ter-
minal branches were irregular in shape, with frequent en-
largements at their tips (Fig. 9 B). In addition, the nerve
frequently exhibited a strikingly circular course (Fig. 9 B).
The circular course was reminiscent of CAP23—/— neu-
rons, where the phenotype could be phenocopied by cy-
tochalasin D, supporting the notion that it was due to a de-
fect in the actin cytoskeleton (Frey et al., 2000a).

GAP43 and CAP23 promote nerve sprouting at the neu-
romuscular junction (Aigner et al., 1995; Caroni et al., 1997;
Frey et al., 2000a). To determine the effect of GAP43(AED)
on stimulus-induced nerve sprouting, we paralyzed lower
hindlimb muscles of transgenic mice with botulinum toxin
A. 7 d after toxin treatment, >95% of the synapses in the so-
leus muscle of wild-type mice exhibit robust ultraterminal
sprouting, whereas sprouting in the medial gastrocnemius is
much less pronounced, and is restricted to slow-type syn-
apses (Frey et al., 2000b; Fig. 9, C and D). As predicted,
sprouting in the soleus muscle of transgenic mice was greatly
reduced in frequency and length (Fig. 9, C and D). However,
in addition, a large proportion of medial gastrocnemius syn-
apses that do not sprout in wild-type mice, nor in Thyl-
GAP43 mice (Frey et al., 2000b), did so in the presence of
GAP43(AED) (Fig. 9 D). Sprouting in the absence of toxin
treatment was minimal (Fig. 9 D), suggesting that the pres-
ence of GAP43(AED) interfered with negative control of
stimulus-induced sprouting at these synapses. When com-
pared with those induced in wild-type mice, sprouts were
strikingly curved, with frequent side branches and local ex-
pansions (Fig. 9 C). Again, these features were reminiscent
of the abnormal neurite outgrowth patterns in CAP23—/—
or cytochalasin D-treated neurons (Frey et al., 2000a),
which is consistent with the notion that they may reflect a
disruption in actin cytoskeleton control at the cell cortex.

Finally, to explore the role of GMC proteins in axonal
regeneration, we crushed the sciatic nerve of Thyl-GAP43
(AED) mice and monitored peripheral nerve regenera-
tion. As shown in Fig. 9 (E, F), GAP43(AED) inhibited re-
generation and reinnervation of skeletal muscle in a dose-
dependent manner. Ultrastructural analysis of myelinated
axonal profiles proximal to the crush site revealed normal
numbers in the mutant mice (not shown). In addition, al-
though with a substantial delay, skeletal muscle was appar-
ently fully reinnervated also in the transgenic line express-
ing high levels of GAP43(AED). Therefore, the presence
of excess GAP43(AED) greatly delayed, but did not com-
pletely prevent peripheral nerve regeneration. These re-
sults are consistent with the in vitro data with PC12 cells,
and indicate that regulation by GMC proteins plays a criti-
cal role in axonal outgrowth in vivo.

Discussion
We have provided evidence that GAP43, MARCKS, and
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CAP23 regulate plasmalemmal microdomain PI1(4,5)P,,
cell cortex actin recruitment, and morphogenic processes
such as neurite outgrowth. The effects of GMC constructs
on the actin cytoskeleton and morphogenic processes cor-
related closely with those on plasmalemmal P1(4,5)P,, and
were mimicked by pharmacological agents that act on
P1(4,5)P,, which is consistent with the notion that a main
function of these proteins is to locally modulate P1(4,5)P,,
upstream of actin cytoskeleton and cell cortex regulation.
In the following sections, we discuss the regulation of
P1(4,5)P, microdomains by GMC-like proteins and their
function in actin dynamics, neurite outgrowth, and ana-
tomical plasticity.

A Lipid Microdomain that Brings Together P1(4,5)P,
and the Plasmalemma-associated Proteins GAP43,
MARCKS, and CAP23

The results of this study suggest that P1(4,5)P, and GMC
proteins accumulate together at a subtype of cholesterol-
rich plasmalemmal microdomains found in many, and pos-
sibly all types of cells. Thus, endogenous and transgenic
GMC accumulated in cyclodextrin-sensitive raft fractions
(Fig. 1 D; Maekawa et al., 1999), where they codistributed
with PI1(4,5)P, (Liu et al., 1998; Pike and Miller, 1998) in a
surface-associated patchy pattern in all cell lines and pri-
mary cell types that we have tested. This characteristic pat-
tern did not overlap with the distribution of a number
of surface-associated components, including early endo-
somes, caveolin, integrin-B1, and vinculin, which also yield
patchy labeling patterns. The microdomains described in
this study appear to share significant physico-chemical
properties with sphingolipid/GPI-linked protein microdo-
mains (Harder and Simons, 1997). However, the absence of
substantial colocalization between GMC-PI(4,5)P, and src
or caveolin (Wiederkehr et al., 1997) suggest that these mi-
crodomains may not overlap physically with sphingolipid/
GPI-linked protein rafts, and that GMC-PI1(4,5)P,-contain-
ing microdomains may belong to a subtype of rafts.
Definitive information about the properties and the
regulation of GMC-PI1(4,5)P, microdomains will require
further studies, including their biochemical isolation, and
molecular identification of their lipid and protein compo-
nents, as well as a characterization of their dynamic prop-
erties. However, some conclusions can already be drawn
from this study. First, like previously described rafts, they
are sensitive to cholesterol-depleting drugs, implying that
significant domain promoting forces possibly related to
those operating in sphingolipid rafts reside within the
lipid environment. Second, direct interactions between
P1(4,5)P, and GMC proteins appear to promote P1(4,5)P,
retention at the domains. Thus, overexpression of GMC,
induced larger macrodomains, and partially counteracted
cyclodextrin-induced loss and dispersion of plasmalemmal
P1(4,5)P,. In contrast, effector domain mutant accumula-
tion may reduce the net binding capacity of the domain for
P1(4,5)P,, thus, reducing masking and retention of this
lipid second messenger. Along similar lines, the higher to-
tal contents of P1(4,5)P, in MARCKS, but not in GAP43-
overexpressing cells may be due to the fact that the ED of
MARCKS has a significantly higher density of basic resi-
dues (13 lysine and arginine out of a total of 25 residues in
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MARCKS, versus 8/23 in GAP43), thus, binding P1(4,5)P,
with higher avidity. These combined findings suggest that
direct electrostatic interactions between the ED-contain-
ing proteins and acidic phospholipids, including P1(4,5)P,,
may be involved in domain stabilization. However, ad-
ditional, presently unidentified, components are likely to
be involved in microdomain nucleation and recruitment.
Thus, for example, since mutant constructs of MARCKS
or GAP43 lacking the ED codistribute with the wild-type
proteins and P1(4,5)P,, protein interactions not involving
the ED must be involved in GMC targeting to these do-
mains.

With respect to their regulation, an important difference
to previously described rafts is that while sphingolipid/
GPI-linked protein complexes occupy the outer leaflet of
the plasmalemma, where they can be regulated by signals
from the extracellular environment, GMC-PI(4,5)P, com-
plexes are located at the inner leaflet. The interaction of
the basic domains of GMC with acidic phospholipids, in-
cluding P1(4,5)P,, is subject to regulation by several signal-
ing pathways (Aderem, 1995; Benowitz and Routtenberg,
1997). Accordingly, phosphorylation by PKC or binding of
calcium/CaM would mimic ED deletion by masking posi-
tively charged EDs, thereby weakening electrostatic inter-
actions that sequester P1(4,5)P,. As a consequence, GMC
proteins may mask and inhibit microdomain P1(4,5)P, un-
der resting conditions, and release clustered PI1(4,5)P, in
response to local calcium/CaM and/or PKC activation
(Fig. 10).

Functions of GMC Proteins in Actin Regulation,
Neurite Outgrowth, and Anatomical Plasticity

The question of whether GMC are signaling or structural
proteins, and what, if any, are their downstream targets
has been difficult to address experimentally in the past.
Because they can be such abundant proteins, and because
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Figure 10. Proposed model of PI(4,5)P, modulation by GMC
proteins at plasmalemmal microdomains, and its effects on actin
cytoskeleton dynamics. Filled circles in the P1(4,5)P, symbols in-
dicate masking by GMC; the bold segment in the GMC symbol
indicates the basic domain; the bold lines at the cell periphery
represent actin structures.
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their EDs interact with several molecules involved in sig-
naling, including calcium/CaM, PKC, PI(4,5)P,, and ac-
tin filaments, it has been suggested that MARCKS and
GAP43 may regulate the pools of any of these interacting
molecules. However, we now find that GMC can modulate
P1(4,5)P, independent of binding to CaM or actin cyto-
skeleton integrity, and that all effects of GMC on the actin
cytoskeleton, cell spreading and neurite outgrowth corre-
late with their effects on microdomain P1(4,5)P,. The glo-
bal effects on cell spreading and peripheral actin recruit-
ment are mimicked by drugs that reduce the availability of
P1(4,5)P,, whereas the effects on cell polarization and pro-
cess formation are, in part, prevented by these same drugs.
This may reflect the regulatory cycle outlined above, i.e.,
masking of PI(4,5)P, under resting conditions, which is
mimicked by neomycin, and local unmasking of clustered
P1(4,5)P, in response to calcium/CaM and/or PKC activa-
tion, which is not mimicked by neomycin (Fig. 10). This in-
terpretation is also consistent with the observation that
GAP43(Serd2Asp), which does not bind CaM, cannot be
regulated by PKC, but still binds P1(4,5)P,, affected the ac-
tin cytoskeleton in a manner that was particularly reminis-
cent of that of neomycin (Figs. 6 B and 7 A). Therefore,
we propose that P1(4,5)P, is a main effector of GMC, and
that, rather than being regulated by GMC, calcium/CaM
and PKC regulate the interactions of GMC with P1(4,5)P,.
Accordingly, a main function of GMC would be to act as
P1(4,5)P, modulatory pipmodulins, to retain and mask
P1(4,5)P, at plasmalemmal lipid microdomain platforms,
where they would couple its availability for actin cytoskel-
eton and cell cortex regulation to signal transduction path-
ways involving calcium/CaM and PKC (Fig. 10). In addi-
tion to modulating P1(4,5)P,, MARCKS and GAP43 can
also interact directly with actin filaments (Hartwig et al.,
1992; He et al., 1997). As a consequence, in spite of the
striking correlations between the effects of GMC and
those of pharmacological agents that act on PI(4,5)P,,
some of the effects described in this study may be due to
such direct interactions. The observation that the colocal-
ization between GMC proteins and actin filaments is very
limited (Wiederkehr et al., 1997) seems to argue against
this possibility. In addition, under cell-free conditions,
where filament decoration by other proteins was readily
detectable by electron microscopy, we could not detect
any decoration of actin monomers or filaments by recom-
binant GAP43 or CAP23 (Caroni, P., unpublished re-
sults). Therefore, although we presently cannot exclude
more direct roles in actin dynamics regulation, we favor
the possibility that interactions between GMC proteins
and actin filaments may synergize with modulation of
P1(4,5)P, to facilitate the recruitment and assembly of ac-
tin-based structures.

How does GMC-modulated PI1(4,5)P, affect the actin
cytoskeleton and cell-surface activity? Based on the re-
sults of this study, the fact that GMC expression corre-
lates with cell cortex dynamics, and the known effects of
P1(4,5)P, on the actin cytoskeleton and the cell cortex, we
suggest that GMC levels affect local P1(4,5)P, availability,
that in turn directly controls the activity of key actin regu-
lating proteins. This model is consistent with recent evi-
dence that PI(4,5)P, promotes membrane—cortical cyto-
skeleton interactions (Raucher et al., 2000), and that
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plasmalemmal actin polymerization promotes cell spread-
ing (Vasioukhin et al., 2000). According to in vitro system
studies, sequestration of P1(4,5)P, should consistently pro-
mote cell-surface actin dynamics, facilitating stimulus-
induced actin recruitment, whereas its local liberation
should promote growth and stabilization of peripheral ac-
tin structures (for reviews see Welch et al., 1997; Ma et al.,
1998; Raucher et al., 2000). First, inhibition of gelsolin by
P1(4,5)P, should reduce actin severing and dynamics (e.g.,
Hartwig et al., 1995). Second, global inhibition of cofilin
by PI1(4,5)P, should reduce monomer dissociation at the
minus end of filaments, thus, reducing actin filament dy-
namics (Welch et al., 1997). Third, sequestration of profi-
lin by P1(4,5)P, should globally inhibit filament growth,
but promote local growth by uncapping filament plus ends
(Hartwig et al., 1995). In addition, binding of WASP pro-
teins to P1(4,5)P, promotes Arp2/3 function and actin re-
cruitment, and binding of P1(4,5)P, to vinculin should pro-
mote focal contact formation.

The PI1(4,5)P, modulatory mechanism suggested by our
results is likely to be operating throughout the cell surface.
Thus, although some local accumulation can be detected
at sites of cell-substratum attachment and ruffling activity,
the immunocytochemistry data suggest the presence of
substantial amounts of evenly distributed PI(4,5)P, and
GMC throughout the cell cortex. However, because it
should be affected by the intrinsic, cell-specific properties
of the cortical cytoskeleton, and by the local accumulation
of structural, regulatory, and signaling components that
initiate and regulate actin structure formation, its outcome
is likely to exhibit highly cell specific and local features.
Taking all these factors into account, actin regulation by
GMC and PI(4,5)P, may involve the following mecha-
nisms (see also Fig. 10). First, under local resting condi-
tions, with low contents of components such as Arp2/3,
CapZ, and activated Rho-type GTPases that promote the
formation of dynamic structures, and with low levels of
GMC proteins, accessible P1(4,5)P, would favor cortical
actin cytoskeleton stability, suppressing local dynamics
and inhibiting membrane fusion. Second, under the same
conditions, but with higher levels of GMC proteins,
P1(4,5)P, masking would lower the threshold for cell-sur-
face dynamics, promoting processes such as cell spreading
and membrane fusion. Third, in the presence of signals
and components that promote the formation of actin
structures, for example, at a forming axonal growth cone
or phagosome, stimulus-induced release of P1(4,5)P, from
masking by GMC would support local actin filament as-
sembly, coupling this process to regulation by calcium/
CaM and PKC signals. Overall, according to this model,
the expression of proteins such as GAP43, MARCKS, or
CAP23 would promote and regulate cell-surface dynam-
ics, phagocytosis, cell attachment, and regulated morpho-
genic processes such as neurite outgrowth (Fig. 10). These
predictions are in good agreement with a wealth of data
from cultured cells and genetically modified mice.

The effects of GMC constructs on neurite outgrowth in
PC12 cells, peripheral nerve regeneration, and stimulus-
induced nerve sprouting at the neuromuscular junction of
soleus muscle provide strong experimental evidence for a
critical role of GMC proteins in promoting process out-
growth. Together with those of the accompanying paper
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(Frey et al. 2000a), they establish GMC proteins as major
intrinsic determinants of anatomical plasticity in neurons.
In addition, the results highlight the role of cell cortex reg-
ulation in controlling anatomical plasticity. Thus, overex-
pressing GAP43(AED) in neurons not only impaired
proper axonal regeneration and synaptic sprouting, but
also paradoxically allowed paralysis-induced sprouting at
neuromuscular synapses that do not sprout in wild-type
mice. Such sprouts were abnormal in shape and exhibited
several features reminiscent of cytochalasin D-treated or
CAP23—/— neurons. It is well established that disrupt-
ing the actin cytoskeleton of pioneer neurons in situ abol-
ishes growth cone guidance and induces extensive twisted
growth of neurites (Bentley and Toroian-Raymond, 1986).
In a similar manner, intrinsic determination of anatomical
plasticity in neurons may involve differential expression of
components that control the dynamics of the actin cyto-
skeleton at the cell cortex, and interference with this con-
trol would disrupt specificity in stimulus-induced anatomi-
cal plasticity.
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