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ABSTRACT Temporal dynamics are a general feature of
synaptic transmission. Recently, novel aspects of temporal
dynamics of synaptic transmission have been reported in the
neocortex. Here, we examine the possible effects of these
dynamics on the spatiotemporal receptive fields of simple cells
in V1. We do this by examining a simple model of a cortical
neuron that displays stimulus orientation selectivity as a
consequence of the pattern of thalamocortical synaptic
weights. In our model, the receptive field structure is encoded
functionally in either presynaptic probability of release or
postsynaptic efficacy. We show that these different assump-
tions about the origin of receptive field structure lead to very
different spatiotemporal dynamics in the case of f lashed-bar
stimulus. In addition, the results of the reverse correlation
study suggest a possible test for differentiating between mod-
els. We also show that the temporal code induced by dynamic
synapses can be used to distinguish between different inputs
that induce the same average firing rate.

Temporal dynamics are a general feature of synaptic trans-
mission (1); recently, novel aspects of these dynamics have
been described in the neocortex (2, 3). Markram and Tsodyks
(2) have used whole-cell somatic recordings to study the
response dynamics of synaptic connections between a pair of
neurons. They have shown that successive stimulation gives rise
to depression in the strength of the postsynaptic cell response.
This short-term depression effect is seen in both cortico-
cortical (2, 3) and thalamocortical synapses (4, 5). Depression
is frequency dependent; the steady-state magnitude of the
excitatory postsynaptic current is approximately inversely pro-
portional to the frequency of stimulation (6, 3). Further, it has
been found that Hebbian pairing induces changes in the rate
of synaptic depression (2). The properties of these synapses
may have implications for spatiotemporal properties of cortical
receptive fields (RFs) and for how established cortical plas-
ticity mechanisms affect their formation. In this paper, we
investigate the effect of such synapses on a simple, single-cell
model exhibiting orientation selectivity. We assume that dy-
namic properties of synapses that were investigated in vitro are
not significantly altered in vivo (7). Real cortical cells interact
with neighboring cells, and these interactions may affect their
properties; however, it has been shown (8) that noninteracting
cells show orientation selectivity comparable to that observed
in interacting cortical cells. Furthermore, most models invok-
ing cortical interactions in order to sharpen orientation selec-
tivity require a seed of orientation selectivity at the thalamo-
cortical level (9, 10). The properties of cortical receptive fields
are experience-dependent [For example, see review by Katz
and Shatz (11), and likely candidates for the cellular mecha-
nism that underly this plasticity are long-term potentiation and
long-term depression (12). There is a long-standing debate

about whether long-term potentiation alters the presynaptic
probability of release (2, 13) or the postsynaptic efficacy (14,
15, 16). These two possibilities have different implications
about the functional properties of RFs. In this paper, we
examine the effects of these two different possibilities on the
spatiotemporal structure of RFs in visual cortex.

METHODS

Synaptic transmission as modeled in ref. 6 characterizes the
synaptic connection by its neurotransmitter resources. A frac-
tion of resources become active on arrival of an action poten-
tial. The change in the postsynaptic conductance is propor-
tional to these active resources. Active resources deactivate
before being recovered‡ (for a detailed discussion see ref. 6).
For typical interspike intervals of 20–100 ms, the amount of
available resources would be depleted, resulting in synaptic
depression. This scenario can be described by two cascaded
differential equations. The phenomenological equations of
synaptic dynamics used are similar to the ones described (6).
The amount of available neurotransmitter resources (R) that
can be activated is governed by
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is the presynaptic neurotransmitter probability of release. The
postsynaptic conductance (G) is governed by
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where ti (1–2 ms) is the inactivation time constant and e is the
postsynaptic efficacy. The response of the postsynaptic cell is
modeled as a leaky integrate-and-fire neuron.

tmemV̇ 5 2~V 2 Vrest! 2 Rl O
k,synapses

~V 2 Es!Gk

typically Vrest 5 265 mV, Es 5 0 mV, [3]

where V is the post synaptic potential, Vrest is the resting
membrane potential, Es is the synaptic equilibrium potential,
and Gk is the conductance of the kth synapse. This set of
equations, which can account for experimentally observed
synaptic depression (2, 3) has been shown (6) to exhibit the
following interesting properties: (i) synaptic conductance de-
cays to a steady-state value that is inversely proportional to the
stimulus frequency f, and (ii) the decay time to steady-state is
inversely proportional to pr and f.
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Our model consists of (i) rectangular bar stimulus (16 3 16
pixels patch, bar aspect ratio 5 by 16 pixels); (ii) Lateral
geniculate nucleus (LGN) cells (256 on channel, 256 off
channel) with onyoff center-surround receptive fields that has
Poisson firing rate statistics; (iii) convergence of LGN onyoff
channel cells onto a single simple cell via dynamic synapses;
and (iv) the formation of simple cell RF achieved through
either spatial modulation of postsynaptic efficacy e or presyn-
aptic probability of release pr. Details of retinal preprocessing
and LGN and cortical RFs are shown in Fig. 1. We examined
two cases as to the cellular origin of thalamocortical structure:
(i) probability of release (PR) model, in which we assume the
efficacy is constant for all synaptic connections and PR is
modulated spatially to form a RF that has a preferred orien-

tation in space; and (ii) synaptic efficacy (SE) model, in which
efficacy is modulated spatially and PR is constant.

RESULTS

Firing rates and conductances of the neurons in response to
flashed bars depend on the orientation of the bars and the
post-stimulus time. At the onset of the stimulus, a rapid
increase in conductance is followed by a decrease caused by
synaptic depression (Fig. 2 A and B). Orientation tuning curves
as shown in Fig. 2 C and D are trial averages of the responses
over different time scales. Tuning curves in the SE model (Fig.
2C) approximately scales in time. In the PR model, the relative
amplitudes of the sidebands with respect to the preferred

FIG. 1. Input patterns were flashed bars of different orientations. LGN cells have ONyOFF center–surround RFs realized by difference-of-
Gaussian (DOG) filters (s1 5 1, s2 5 3 for ON center, reverse for OFF center). They produce spike trains with Poisson statistics. The firing rates
are set by the visual stimulus after filtering, with a spontaneous rate of 15 Hz. The cortical simple cell receives input from LGN cells. RFs for ON/OFF
subregions are formed by modulation of efficacy or probability of release. Synaptic dynamics are described in text. An interactive demo program
(written with MATLAB 5 for unix platforms) can be obtained from www.physics.brown.edu/people/artun/publications/dynsyn. This program contains
all source codes for interactively generating tuning curves for flashed bars.

FIG. 2. (A and B) Color-coded representations of averaged conductances as a function of time and orientation. After the stimulus is presented,
there is a rapid onset of activity, which decays in time because of synaptic depression. In the SE model, activity decays equally for all orientations
whereas in the PR model, activity decays faster in the preferred orientation. (C and D) Tuning curves for the SE and PR models. Firing rates are
averaged over 50, 100, and 300 ms for both models. The SE model shows unimodal tuning curves at all times whereas the PR model shows bimodal
tuning curves that change over time.
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orientation grow in time. The effect of synaptic depression in
the SE model is orientation independent because of constancy
in pr. However, depression is enhanced in the preferred
orientation because of high pr and high f in the PR model. We
can use a simpler version of the model to understand the
behavior of the PR model. For this, it is assumed that a flashed
bar has two regions, high luminance and low luminance, and
the RF formed by spatial modulation of probability of release
has two regions, high pr and low pr; thus, there are effectively
four types of synapses that contribute to the conductance of the
neuron. Analysis of this simplified system is given in Appendix
A.

The difference between the two models are not identified
easily when stimuli are moving gratings. In Fig. 3, response to
moving sinusoidal grating are shown. In both models, the
amplitude of modulation is proportional to the relative angle
of the stimulus to the receptive field.

In a recent paper (17), reverse correlation in the orientation
domain was used to study the visual system of monkeys. This
study revealed novel dynamics of cells in monkey visual cortex.
In their study, Ringach et al. (17) used randomly oriented
gratings as stimuli presented at 60 Hz, thus obtaining kernels
in the orientation domain. Using this method with similar
input patterns, we have extracted the reverse correlation
functions in the orientation domain for the two models. The
PR model has a kernel bimodal in the orientation domain. The
SE model however, has a kernel that is unimodal in the
orientation domain (Fig. 4 A and B). Here, as in ref. 17, kernels
are extracted with 1-ms precision, although the input is

FIG. 3. Sinusoidal moving gratings swept across RF with a tem-
poral frequency of 2 Hz are presented to the model. Tuning curves are
shown for both models.

FIG. 4. Reverse correlation functions (kernels) for the two models. (A) Kernel for the PR model. (B) Kernel for the SE model. Both kernels
are extracted from stimuli presented at 50 Hz. C and D are cross-sections taken from A and B at different orientations, respectively. Zero-crossings
(the time at which the value of the kernel is zero) vary with orientation for the PR model but are constant in the SE model.

FIG. 5. Bars at high contrast, nonoptimal orientation, and low-
contrast optimal orientation are presented. Both stimuli produce the
same mean conductance over 150 ms; however, the time course is
clearly different.
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changed every 20 ms; this introduces an error on the assump-
tion of whiteness of the input, which is neglected. These kernels
are qualitatively similar to some of those described by Ringach
et al. (17), especially those in which the shape of the kernel is
inverted in time (e.g., figures 1c, 1d and 1g in ref. 17), showing
that synaptic depression may account for this type of receptive
field dynamics. We have devised a criterion to distinguish
between PR and SE models by using these orientation domain
kernels. We show in Fig. 4 C and D that, for the SE model, the
zero-crossings for all orientations are the same, whereas they
differ for the PR model. This phenomenon is robust to random
fluctuations in pr. Thus, zero-crossings can serve as an indi-
cator for the existence of a structured pr. This behavior arises
directly from the properties of single synapse kernels, as
explained in Appendix B.

What purpose can such temporal dynamics serve? Stimuli
that differ in several of their properties, such as orientation and
contrast, may produce the same average conductance. A single
neuron using a rate code could not be used to distinguish
between such stimuli, and this would also limit ensemble codes

that extract several parameters (18, 19). However, it is possible
that the dynamics of the conductance, brought about by the
synaptic depression, could produce a temporal code that can
be used to distinguish between these inputs. Fig. 5 shows an
example of this for two different inputs which yield same mean
conductance over a 150-ms period. Over the first 50 ms, the
conductance in the high contrast, nonpreferred orientation is
higher than for the low contrast preferred orientation whereas
over the next 100 ms, this is reversed. This type of a temporal
code, which arises from synaptic dynamics, can help to distin-
guish between the different inputs. Furthermore, similar codes
have been observed in the cortex (20). Synaptic depression can
account for RFs that have transient rather than sustained
properties. The SE model produces tuning curves that decay at
approximately the same rate for all orientations and kernels
that have the same zero-crossings. In contrast, the PR model
produces tuning curves in which the response at the preferred
orientation decays faster than at nonpreferred orientations
and kernels with zero-crossings that vary strongly with orien-
tation. It seems that the properties of neurons in the input
layers, for which this model is more appropriate, agree better
with the SE model (17) (for review see ref. 21). Further
experiments, however, are required to settle this point. These
results may indicate that plasticity in the thalamocortical
connections does not alter the probability release but may alter
the efficacy of synaptic connections consistent with experi-
mental results (16).

Abbott et al. (3) have suggested that the purpose of the
synaptic depression is to make synaptic conductances sensitive
to changes in firing rates rather than to their magnitude. We
have shown that the temporal code that arises from synaptic
dynamics can be used to distinguish between features that can
not be distinguished by the firing rate alone. Qualitatively
similar results have been obtained experimentally (20) and
have been shown to enhance the capacity of the neural code
(19).

FIG. 6. A simple four-synapse model using probability of release
(or efficacy) to define the receptive field. There are four distinct
regions as shown, A1, A2, A3, and A4 where the respective properties
of synapses are shown in the table. The respective areas are a function
of the relative angle between the RF and the stimulus.

FIG. 7. (A) The conductance for the simplified SE model. (B) The
conductance for the simplified PR model.

FIG. 8. Single synapse kernels as a function of synaptic parameters.
(A) Kernels in time as a function of probability of release. (B) Kernels
in time as a function of efficacy. The effect of modulation of
probability of release has interesting consequences; for instance, the
zero-crossing of the kernels is not constant.
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APPENDIX A

The stimulus in the simplified model is composed of two
regions; the region on the bar has a high activity level, and that
off the bar has a low activity level. The activity here is not the
rate of a stochastic variable, but a deterministic variable. The
receptive field, as in the complex model, is composed either of
a structured PR or of a SE. In the PR model, the RF has a
constant efficacy but two values of probability of release: high
on the bar and low off the bar. For the SE model, the
probability is kept constant, but the efficacy has two values.
The detailed values used in this set of simulations are shown
in Fig. 6. For both models, there are four types of synapses, as
depicted in Fig. 6. We denote them by A1, in which both
stimulus rate and probability (efficacy) are high; A2, in which
the rate is high but the pr is low; A3 in which the rate is low and
pr is high; and A4, in which both rate and pr are low. The
relative fraction of each type of synapse depends on the angle
between the RF and the stimulus. The conductance changes in
time differently for each type of synapse. The total conduc-
tance is a weighted sum over the different types of synapses.
In Fig. 7, the conductance as a function of time is shown for
these two simplified model neurons for several different
angles. In the SE model, for all orientations, the conductance
decays in time at the same rate; thus, the preferred orientation
has a higher conductance at all points in time. In the PR model,
in contrast, the conductance at the preferred orientation
decays faster than at other orientations. At 50 ms, the orien-
tation with the highest conductance is the orientation that
initially had the lowest conductance. Thus, as in the more
complete model, the PR model neuron exhibits an inversion of
the tuning curve in time. In this simple model, it is easy to see
that this inversion arises from coupling synaptic depression and
a structured probability. For instance, at the preferred orien-
tation, the dominant term in the conductance is A1, which has
a high firing rate and a high pr and therefore decays quickly;
at the orthogonal orientation, however, the dominant terms
have slower decay times and thus the total conductance has a
slower decay rate as well.

APPENDIX B

We can gain valuable insight by decomposing the kernel into
the sum of single synapse kernels. Conductance G(t) and the
contribution from each synapse gk(t) are given by

G~t! 5 O
k

gk~t! 5 O
k
E h1~k, t!xk~t 2 t!dt 1 · · · , [4]

where xk(t) is the input to synapse k. If xk(t) has white Gaussian
noise characteristics, then the first Wiener kernel can be
computed by the Lee–Schetzen method (commonly known as
reverse correlation):

^gk~t!xk~t 2 t1!&t 5 E h1~k, t!Sxk
d~t 2 t1!dt 5 Sxk

h1~k, t1!

[5]

where Sxk
is the power of the input. Single synapse kernels for

different synaptic parameters shown in Fig. 8 A and B clearly
show that the qualitative behavior of kernels is affected by pr.
The efficacy e, however, only scales the kernel. Zero-crossing
of the kernel is the time at which the value of the kernel is zero.
When all synapses have the same pr, the model neuron kernel
will have the same zero-crossing at all orientations. However,
when there is a spatial modulation in pr, as in the PR model,
bars at different orientations will activate a different fraction
of synapses with high and low pr, thus producing different
zero-crossings at different orientations. Thus, zero-crossings
can serve as an indicator for the existence of a structured pr.
This criterion is valid even if both e and pr are structured and
are robust to random fluctuations in the pr. It is important to
note that, in order to extract a kernel properly, the inputs need
to be decorrelated in time. We, following ref. 17, have used
inputs that randomly change every 20 ms, and, therefore, the
extracted kernels can not tell us about time resolutions ,20 ms.
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