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Abstract
Electronic differentiations in Pd-catalyzed allylic substitutions are assessed computationally from
transition structure models with electronically modified phospha-benzene-pyridine ligands.
Although donor/acceptor substitutions at P and N ligand sites were expected to increase the site
selectivity, i.e. the preference for "trans to P" attack at the allylic intermediate, acceptor/acceptor
substitution yields the highest selectivity. Energetic and geometrical analyses of transition
structures show that the sensitivity for electronic differentiation is crucial for this site selectivity.
Early transition structures with acceptor substituted ligands give rise to more intensive Pd-allyl
interactions, which transfer electronic P,N differentiation of the ligand more efficiently to the allyl
termini and hence yield higher site selectivities.

Introduction
Palladium-catalyzed allylic substitutions allow very selec-
tive and mild allylations of C-,N- and O-nucleophiles. [1-
13] The selectivity derives from steric and electronic
properties of substrate and catalyst structures. "Side arm
guidance" of nucleophiles with multifunctional phos-
phinoferrocenes [14-18] or "chiral pockets" in C2-sym-
metric diphosphanes based on 2-(diphenyl-
phosphino)benzoic acid amides [19-22] were applied
especially successfully. Chiral P,N-ligands (e.g. phosphi-
nooxazolines, phox) [23-27] provide in addition to steric
control the possibility for "electronic differentiation",
originating from the trans-influence [28] of different
donor atoms. Nucleophiles (e.g. dimethylmalonate) nor-
mally favour addition to the "trans to phosphorus" posi-
tion at the Pd-η3-allylic intermediate (Scheme 1). [29-42]
This "trans to P" rule is supported by X-ray and computa-
tional analyses of Pd-η3-allylic intermediates, which
exhibit longer and hence weaker Pd-Callyl bonds trans to P

(i.e. the stronger π-acceptor vs. N) and hence are more sus-
ceptible to nucleophilic attack (Scheme 1). [29-41] This 

Scheme 1: Electronic and steric differentiations provide the basis
for the high selectivity of P,N-ligands in Pd-catalyzed allylic sub-
stitutions. Effects are studied with P-N-model ligands with para-
substituted, coplanar phosphabenzene and pyridine moieties.
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electronic differentiation contributes to the high selectiv-
ity in Pd-catalyzed asymmetric allylic substitutions[19]
and provides also an explanation for α-memory effects.
[42,43] Computational model systems for P,N-ligands,
i.e. PH3 and para-substituted pyridines, have shown that
cis-trans differentiations, i.e. the electronic site selectivity,
of nucleophilic additions to Pd-η3-allylic intermediates is
highest for electron poor pyridine ligands.[45]

To further explore origins of site selectivities based on elec-
tronic differentiations in Pd-catalyzed allylic substitutions, we
here employ a more advanced model system with phosphaben-
zene, [45-48] and pyridine moieties for the crucial step of Pd-
catalyzed allylic substitutions. Both P- and N-coordination
sites are tuned electronically with para-substituents to reveal
energetic and geometrical effects on cis- vs. trans- additions of
nucleophiles to the Pd-η3-allylic intermediates (Scheme 1).

Results and Discussion
Electron donating or withdrawing groups (i. e. X, Y = HNMe, H,
NO2) in para-positions of phosphabenzene (X) and pyridine
(Y) units tune electronic characteristics of P,N-ligand models in
Pd-catalyzed allylic substitutions (Scheme 1). The phos-
phabenzene and pyridine moieties are linked via Car-Car bonds
and a methylene bridge retains planarity and limits conforma-
tional flexibility. NHMe rather than higher substituted NMe2
was employed as donor group, to retain lp-aryl conjugation.

Ammonia serves as model nucleophile and attacks the Pd-η3-
allylic intermediate cis or trans to phosphorus. This cis vs. trans
site selectivity is employed as measure for electronic differenti-
ation induced by the ligand system (Scheme 2).

Scheme 2: Activation (∆Ea) and reaction (∆Er) energies (kcal mol-
1), computed for the P,N-ligand model with tuneable electronic 
differentiation.

The lowest activation energies (Ea, Table 1) for ammonia addi-
tion to the Pd-η3-allylic intermediate are apparent for strong
electron withdrawing para-substituted phosphabenzene and
pyridine units, i.e. X, Y = NO2 (Figure 1 and Figure 2, Ea

trans =
2.19, Ea

cis = 2.52 kcal mol-1, Table 1). The highest activation
energies result from electron donating amino groups X, Y =
NHMe (Figure 3 and Figure 4, Ea

trans = 10.67, Ea
cis = 10.47 kcal

mol-1, Table 1, Scheme 2). Such electronic tunings of the lig-
ands strongly affect the reactivity and give rise to increased or
decreased electrophilicity of Pd-allyl intermediates.

The reaction energies (Er) for ammonia addition to the
Pd-η3-allylic intermediate show a similar preference: Pd-
ene-adduct formation is favoured most for X, Y = NO2
(Ertrans = 0.29, Ercis = -0.25 kcal mol-1) and becomes
most unfavourable (i.e. endothermic) for X, Y = NHMe
(Ertrans = 10.98, Ercis = 10.33 kcal mol-1, Table 1,
Scheme 2). This points to a more π-donating character of
the ene product relative to the allyl-cation reactant.

In agreement with the "trans to phosphorus" rule, [23-28]
attack of ammonia is preferred for most X, Y combinations
trans to P, due to the stronger π*/σ* acidity at P in phos-
phabenzene relative to N in pyridine (Table 1).[44] Surpris-
ingly however, this electronic site selectivity, as it is
measured from relative energies of the transition structures
(∆Ea

TS), is not largest for different X, Y donor-acceptor com-
binations (Figure 5, Figure 6, Figure 7 and Figure 8), but is
highest for X and Y = NO2 (∆Ea

TS = 0.33 kcal mol-1, Table 1).
Likewise, the smallest electronic site "trans to P" selectivity
is not found for X, Y donor-acceptor combinations, but for
strong donating X and Y = NHMe. Here, the selectivity is so
low, that it even inverts to "cis to P" (∆Ea

TS = -0.20 kcal mol-
1, Table 1).
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Table 1: Activation (Ea) and reaction energies (Er) reflecting 
electronic differentiations in transition structures (∆Ea

cis-trans) and 
Pd-ene products relative to Pd-allyl and NH3 reactands (pb = 
phosphabenzene; py = pyridine moieties)[a]

pb-X py-Y Ea TS ∆Ea
TS Er

Prod ∆Er
Prod

H HNMe cis 8.55 0.03 7.81 0.55
trans 8.52 8.36

H H cis 6.38 0.17 5.14 0.52
trans 6.21 5.67

H NO2 cis 4.47 0.27 2.48 0.54
trans 4.20 3.02

HNMe HNMe cis 10.47 -0.20[b] 10.33 0.65
trans 10.67 10.98

HNMe H cis 8.43 -0.03[b] 7.80 0.60
trans 8.46 8.40

HNMe NO2 cis 6.61 0.10 5.34 0.65
trans 6.51 5.99

NO2 HNMe cis 6.34 0.08 5.05 0.53
trans 6.26 5.58

NO2 H cis 4.24 0.23 2.26 0.43
trans 4.01 2.70

NO2 NO2 cis 2.52 0.33 -0.25[c] 0.54
trans 2.19 0.29

[a] B3LYP/6-31G* (C, H, N, P, O), /SDD (Pd) optimized structures. 
Energies include ZPE corrections scaled by 0.9806; [b] Negative ∆Ea

TS 

with Ea
cis < Ea

trans; [c] exothermic reaction energy.
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Transition structure for the energetically favored cis to phos-phorus addition of ammonia at the Pd-η3-allylic intermediate (B3LYP/6-31G* (C, H, N, P, O), /SDD (Pd))Figure 4
Transition structure for the energetically favored cis to phospho-
rus addition of ammonia at the Pd-η3-allylic intermediate 
(B3LYP/6-31G* (C, H, N, P, O), /SDD (Pd)). Bond distances are 
given in Å.

Transition structure for the energetically disfavored cis to phosphorus addition of ammonia at the Pd-η3-allylic interme-diate (B3LYP/6-31G* (C, H, N, P, O), /SDD (Pd))Figure 2
Transition structure for the energetically disfavored cis to phos-
phorus addition of ammonia at the Pd-η3-allylic intermediate 
(B3LYP/6-31G* (C, H, N, P, O), /SDD (Pd)). Bond distances are 
given in Å.

Transition structure for the energetically favored trans to phosphorus addition of ammonia at the Pd-η3-allylic interme-diate (B3LYP/6-31G* (C, H, N, P, O), /SDD (Pd))Figure 1
Transition structure for the energetically favored trans to phos-
phorus addition of ammonia at the Pd-η3-allylic intermediate 
(B3LYP/6-31G* (C, H, N, P, O), /SDD (Pd)). Bond distances are 
given in Å.

Transition structure for the energetically disfavored trans to phosphorus addition of ammonia at the Pd-η3-allylic interme-diate (B3LYP/6-31G* (C, H, N, P, O), /SDD (Pd))Figure 3
Transition structure for the energetically disfavored trans to 
phosphorus addition of ammonia at the Pd-η3-allylic intermedi-
ate (B3LYP/6-31G* (C, H, N, P, O), /SDD (Pd)). Bond distances 
are given in Å.
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Transition structure for the energetically favored trans to phosphorus addition of ammonia at the Pd-η3-allylic interme-diate (B3LYP/6-31G* (C, H, N, P, O), /SDD (Pd))Figure 8
Transition structure for the energetically favored trans to phos-
phorus addition of ammonia at the Pd-η3-allylic intermediate 
(B3LYP/6-31G* (C, H, N, P, O), /SDD (Pd)). Bond distances are 
given in Å.

Transition structure for the energetically disfavored cis to phosphorus addition of ammonia at the Pd-η3-allylic interme-diate (B3LYP/6-31G* (C, H, N, P, O), /SDD (Pd))Figure 6
Transition structure for the energetically disfavored cis to phos-
phorus addition of ammonia at the Pd-η3-allylic intermediate 
(B3LYP/6-31G* (C, H, N, P, O), /SDD (Pd)). Bond distances are 
given in Å.

Transition structure for the energetically favored trans to phosphorus addition of ammonia at the Pd-η3-allylic interme-diate (B3LYP/6-31G* (C, H, N, P, O), /SDD (Pd))Figure 5
Transition structure for the energetically favored trans to phos-
phorus addition of ammonia at the Pd-η3-allylic intermediate 
(B3LYP/6-31G* (C, H, N, P, O), /SDD (Pd)). Bond distances are 
given in Å.

Transition structure for the energetically disfavored cis to phosphorus addition of ammonia at the Pd-η3-allylic interme-diate (B3LYP/6-31G* (C, H, N, P, O), /SDD (Pd))Figure 7
Transition structure for the energetically disfavored cis to phos-
phorus addition of ammonia at the Pd-η3-allylic intermediate 
(B3LYP/6-31G* (C, H, N, P, O), /SDD (Pd)). Bond distances are 
given in Å.
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For each phosphabenzene moiety with X = H or NHMe or
NO2, the "trans to P" site selectivity ∆EaTS increases for
pyridine substituents Y in the order NHMe < H < NO2
(Figure 9, Table 1). Hence, there is apparently an addi-
tional effect, which controls the site selectivity ∆EaTS
besides the electronic donor vs. acceptor properties of dif-
ferent ligand atoms, i.e. P vs. N. Via this effect; electron
withdrawing groups (e.g. NO2) give rise to the highest
site-selectivities.

NO2-substituted ligands give rise to earlier transition
structures with longer (forming) H3N-Cα bonds (Table 2,
Figures 1 to 8), e.g. trans-TS with X = Y = NO2: H3N-Cα =
2.04 Å (Figure 1). In contrast, amino-donor substitution
leads to later transition structures with shorter H3N-Cα
distances, e.g. trans-TS with X = Y = NHMe: H3N-Cα =
1.866 Å (Figure 3). This agrees with the more electrophilic
properties of cationic Pd-allyl intermediates induced by
electron withdrawing ligands.

Table 2: H3N-Cα, H3N⊕-Cα and Pd-Cα distances (Å) of transition states and Pd-ene product complexes (pb = phosphabenzene; py = 
pyridine)[a]

Transition structures Pd-ene product complexes

Pb-X py-Y Pd-Cα H3N-Cα H3N⊕-Cα

H HNMe cis 2.754 1.930 1.594
trans 2.834 1.906 1.604

H H cis 2.728 1.968 1.588
trans 2.815 1.947 1.598

H NO2 cis 2.696 2.010 1.583
trans 2.797 1.989 1.592

HNMe HNMe cis 2.767 1.898 1.598
trans 2.850 1.866 1.611

HNMe H cis 2.745 1.932 1.593
trans 2.840 1.902 1.603

HNMe NO2 cis 2.718 1.969 1.588
trans 2.824 1.940 1.598

NO2 HNMe cis 2.733 1.970 1.587
trans 2.805 1.957 1.596

NO2 H cis 2.703 2.012 1.582
trans 2.787 1.997 1.590

NO2 NO2 cis 2.674 2.051 1.578
trans 2.765 2.040 1.586

[a] B3LYP/6-31G* (C, H, N, P, O), /SDD (Pd) optimized structures. Energies include ZPE corrections scaled by 0.9806.

For each phosphabenzene moiety, the site selectivities ∆Ea
TS increase with more electron withdrawing pyridine substituents (Y) in the order HNMe < H < NO2 (cf. Table 1)Figure 9

For each phosphabenzene moiety, the site selectivities ∆EaTS increase with more electron withdrawing pyridine substituents (Y) in 
the order HNMe < H < NO2 (cf. Table 1).
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These positions on the reaction coordinate indeed corre-
spond to the site selectivity of the transition structures, i.e.
∆Ea

TS: earlier transition structures have higher, later transi-
tion structures exhibit lower "trans to P" selectivities (Fig-
ure 10).

The distance between Pd and the allylic systems decreases
from early (allyl cation like) to late (ene like) positions on
the reaction coordinate. A closer, more intense Pd-Cα con-
tact (e.g. 2.674 Å, Figure 2, Table 2) stronger delivers elec-

tronic differentiation of the ligand, and hence "trans to P"
selectivity. Hence, higher electronic site selectivity closely
corresponds to intense Pd-allyl interactions with short Pd-
Cα distances (Figure 11).

Apparently, the positions on the reaction coordinate
influence the site selectivity even stronger than the elec-
tronic differentiation between P and N ligand atoms: No
substitution (X = Y = H) gives rise to even higher ∆Ea

TS

than more pronounced electronic differentiations with X,

Higher site selectivities, i.e. larger ∆Ea
TS values, are found for transition structures with closer, more intense Pd-Cα contactsFigure 11

Higher site selectivities, i.e. larger ∆EaTS values, are found for transition structures with closer, more intense Pd-Cα contacts.
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Y = NO2 or NHMe (Figure 11), due to higher TS-sensitivity
originating from closer Pd-allyl contact.

Conclusion
In Pd-catalyzed allylic substitutions, the electronic site selectiv-
ity, i.e. the preference for "trans to P" addition, is affected by the
intrinsic electronic differentiation of the ligand atoms, e.g. P vs.
N. However, the sensitivity for this electronic differentiation
depends on the intensity of the Pd-allyl interaction. A close Pd-
allyl distance in an early, allyl cation like transition structure
delivers the electronic differentiation of the ligand system more
efficiently to the allylic termini (Cα) than a more distant Pd-
allyl (more ene like) unit of a late transition structure. Electron
withdrawing (e.g. NO2) substituents in the ligand system gen-
erate earlier transition structures with more intense Pd-allyl
interactions and higher sensitivity for electronic differentia-
tions. Hence, both intrinsic electronic differentiation in the lig-
and and high TS-sensitivity appear to be crucial for high site-
selectivity in Pd-catalyzed allylic substitutions.

Computational details
All structures were fully optimized and characterized by fre-
quency computations as minima or transition structures
using Gaussian 03[49] with standard basis sets [50,51] and
the B3LYP [52-55] hybrid-DFT method. Zero point energies
and thermochemical analysis were scaled by 0.9806.[56]
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