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Abstract
Background: In DNA microarray experiments, measurements from different biological samples
are often assumed to be independent and to have identical variance. For many datasets these
assumptions have been shown to be invalid and typically lead to too optimistic p-values. A method
called WAME has been proposed where a variance is estimated for each sample and a covariance
is estimated for each pair of samples. The current version of WAME is, however, limited to
experiments with paired design, e.g. two-channel microarrays.

Results: The WAME procedure is extended to general microarray experiments, making it capable
of handling both one- and two-channel datasets. Two public one-channel datasets are analysed and
WAME detects both unequal variances and correlations. WAME is compared to other common
methods: fold-change ranking, ordinary linear model with t-tests, LIMMA and weighted LIMMA.
The p-value distributions are shown to differ greatly between the examined methods. In a
resampling-based simulation study, the p-values generated by WAME are found to be substantially
more correct than the alternatives when a relatively small proportion of the genes is regulated.
WAME is also shown to have higher power than the other methods. WAME is available as an R-
package.

Conclusion: The WAME procedure is generalized and the limitation to paired-design microarray
datasets is removed. The examined other methods produce invalid p-values in many cases, while
WAME is shown to produce essentially valid p-values when a relatively small proportion of genes
is regulated. WAME is also shown to have higher power than the examined alternative methods.

Background
The DNA microarray technique involves a series of steps,
from the harvesting of cells or biopsies to the preprocess-
ing of the scanned arrays, before analysable data are
obtained. During several of these steps the quality can be
affected by random factors. For instance, depending on
the handling of a biological sample the mRNA can be
more or less degraded [1], and the cell-type composition

of a biopsy can be more or less representative for the tissue
in question. When arrays share sources of variation the
deviations from the nominal value will be correlated. For
example, two arrays from sources with degraded RNA will
both tend to underestimate the expression of easily degra-
dable genes, and two biopsies with a similar and non-rep-
resentative cell-type composition will deviate in a similar

Published: 15 October 2007

BMC Bioinformatics 2007, 8:387 doi:10.1186/1471-2105-8-387

Received: 25 April 2007
Accepted: 15 October 2007

This article is available from: http://www.biomedcentral.com/1471-2105/8/387

© 2007 Sjögren et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 15
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/8/387
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17937807
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Bioinformatics 2007, 8:387 http://www.biomedcentral.com/1471-2105/8/387
fashion from the average expression for the ideal cell-type
composition.

The procedure Weighted Analysis of Microarray Experiments
(WAME) [2,3] introduced a model where a covariance-
structure matrix common for all genes aims at catching
differences in quality by differences in variances and cov-
arying deviations by correlations between arrays. For com-
putations of test statistics and estimators this resulted in
weighting of observations according to the estimated cov-
ariance-structure matrix, giving lower weight to imprecise
or positively correlated arrays.

In order for the estimation of the covariance matrix to
work in the current WAME method, the measurements of
most genes must only measure noise, i.e. have an expected
value of zero. This is the case in experiments where pair-
wise log-ratios are observed and where few genes are dif-
ferentially expressed between any of the pairwise meas-
ured conditions. In the present paper, this crucial
constraint will be relaxed to only require that most genes
are non-differentially expressed between the conditions
actually being compared. Thus, non-paired experiments
can be analysed, e.g. many additional ones based on one-
channel microarray data. The relaxation is realised by
transforming the data to remove irrelevant information in
a manner yielding transformed data with expectation zero
for non-differentially expressed genes, after which the cur-
rent WAME method is applied. The transformed data are
shown to give equivalent tests and estimates to those of
the original data, given the corresponding covariance-
structure matrices.

Problem formulation and current methods
Given a microarray experiment with n arrays and m genes,
we observe for each gene g an n-dimensional vector Xg of
log2 transformed values measuring mRNA abundance. In
WAME the vector Xg is assumed to have expectation µg
described by a design matrix D and a gene-specific param-
eter vector γg, typically having one dimension per studied
condition. A covariance-structure matrix Σ, common for
all genes, is used to model differences in quality between
arrays as different variances and shared sources of varia-
tion between arrays as correlations. A gene-specific vari-
ance-scaling factor cg is assumed to have inverse gamma
prior distribution with a global shape parameter α. Con-
ditional on cg the vector Xg is assumed to have a normal
distribution with covariance matrix cgΣ. A matrix C speci-
fies the differential expression vector δg, describing the lin-
ear combinations of the parameters that are of main
interest. Formally,

and variables corresponding to different genes are
assumed independent. We want to estimate the differen-
tial expression

δg = Cγg

or we want to test for differential expression

In the current version of WAME [2,3] the estimation of the
covariance-structure matrix Σ is based on a temporary
assumption of expectation zero, µg = 0, for all genes,
which is shown to give reasonable results if the expecta-
tion is close to zero for most genes. Thus, this is a suitable
assumption for data with paired observations and few reg-
ulated genes between the pair-wise measured conditions.

The WAME model can be compared with the ordinary lin-
ear model (OLM) [4],

Xg ~ N(µg, cgI)

which gives rise to the ordinary t- or F-tests, and with a
widely used empirical Bayes model proposed in [5] and
implemented in the LIMMA package [6],

The novel feature of WAME was thus the introduction of
the quality modelling covariance-structure matrix Σ.

After the introduction of WAME, a weighted version of
LIMMA was proposed [7], which we will refer to as
wLIMMA. There, a model with array-wise variance scales
but no correlations is used,

The parameters are estimated using a restricted maximum-
likelihood (REML) approach.

A widely used approach is to only consider the ordinary
least-squares estimated differential expression, often
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referred to as the log fold-change, here abbreviated as FC,
or as the average M-value. In the present paper, the rank-
ing of the genes imposed by this method will be included
in comparisons, when applicable.

Results
The new version of WAME
In the current version of WAME [2,3] the covariance-struc-
ture matrix Σ is estimated using a temporary assumption
that µg = 0 for most genes, i.e. that the measurements of
most genes consist solely of biological and technical
noise. In the new version of WAME we relax this to only
assume that most genes are non-differentially expressed,
i.e. δg = 0. This allows a much larger class of experimental
designs and design matrices D, most notably unpaired
designs.

The trick used is to transform the data and consider

where  is a suitable linear estimator of µg which is

unbiased under H0 and which preserves the estimability of

the differential expression δg, based on only the trans-

formed data (see Methods for details). An example is (8)
below where for each gene the mean value of all arrays is
subtracted.

Since the transformed data contain only noise for non-dif-
ferentially expressed genes by construction, the current
version of WAME can essentially be applied to the trans-
formed data Yg. As before, the covariance-structure matrix
(now ΣY) and the hyperparameter α are first estimated
under a provisional assumption (now δg = 0). The maxi-
mum likelihood estimates of δg and the likelihood ratio
test statistics of (3) are then computed. The tests and esti-
mators are in fact unchanged by the transformation (7), if
the covariance-structure matrices for the transformed and
untransformed data are known (details given in Meth-
ods). WAME is implemented as a package for the R lan-
guage [8] and is available at [9].

Evaluation on real and resampled data
To investigate the properties of the new version of WAME,
two real datasets are examined. Briefly, they are analysed
both using WAME and the current methods described in
Background. Array-specific weights, p-value distributions
and rankings are produced showing clear differences
between the procedures, most notably in the p-value dis-
tributions. To investigate the power of the different proce-
dures and to look at p-value distributions in a controlled
but realistic setting, we also analyse simulated data with
real noise from the studied datasets and synthetic signal.

Description of the real datasets
Two public one-channel microarray datasets are analysed.
The datasets are selected from the NCBI GEO database
[10] with the criteria of having unpaired design and being
sufficiently large to allow for the resample-based simula-
tions in Resampled data below.

In the first dataset [11], biopsies were taken from the left
atrium from 20 human hearts with normal sinus rythm
and 10 hearts with permanent atrial fibrillation. It is here
referred to as Atrium. In the second dataset [12], mecha-
nisms in chronic obstructive pulmonary disease, COPD,
were investigated by taking lung tissue biopsies from 12
smokers with mild or no emphysema and from 18 smok-
ers with severe emphysema. In both datasets one Affyme-
trix HGU-133A array was used for each patient. In the
present paper RMA [13] is used to obtain expression
measures from the raw probe-wise intensities. The analy-
ses are performed using the R language and the Biocon-
ductor framework [14].

Analysis of the real datasets
A natural parameterisation of the included datasets is to
have one parameter per condition, yielding design and
hypothesis matrices

Under the null hypothesis, for each gene g and array i, an
unbiased estimator of the expected value of the measure-
ment Xig is obtained by the gene-wise mean value over all
arrays from both groups. The transformation then
becomes a subtraction of that mean value, cf. (7),

Note how the transformation preserves the difference in
mean value between the two groups of arrays.

If the elements in Xg from the different arrays had in fact
independent and identically distributed noise for each
fixed gene g as assumed in OLM and unweighted LIMMA,
the noise in Yg would have equal variances for all arrays.
In Figure 1 array-wise density estimates for the trans-
formed expression values are shown. For arrays from the
same condition the distributions should be identical,
reflecting the combined variability of signal and noise. For
unregulated genes the expectation of Yg is zero, so if the
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assumption of few regulated genes holds the densities
from all arrays should furthermore be essentially equal.
Examination of Figure 1 reveals that neither of these state-
ments are true, indicating that some variances are highly
unequal.

Analogously, all pairs of arrays within each condition
should have a common joint distribution and when few
genes are regulated all pairs of arrays should essentially
have a common joint distribution with a small negative
correlation of -1/(n - 1). Examination of scatter plots for
all pairs of arrays shows that this is clearly not the case
(some obvious examples are shown in Figure 2, all pairs
are included in Additional file 1 and Additional file 2).

As expected from the observations above, unequal vari-
ances and non-zero correlations are estimated in the anal-
yses with WAME, giving rise to highly unequal weights in
the estimates of the differential expressions (shown in
Table 1 and Table 2). In fact, the sign of the weight for
some arrays even get switched compared to the sign of the
weight of the other arrays from the same condition. This
is an effect of strong correlations combined with unequal
variances. It is an issue which is further addressed in Dis-
cussion.

The analysis methods described in Background are
applied to the data and p-values and ranks computed. The

respective probability plots are shown in Figure 3, demon-
strating that there are substantial differences in the distri-
bution of p-values between the different statistics. Since
correlations and unequal variances are observed, the
model assumptions of the alternative standard methods
do not seem to hold. The p-values could thereby have
become optimistic. On the other hand, it cannot be ruled
out that the temporary assumption in WAME of no regu-
lated genes makes its p-values conservative, which could
also partly explain the differences. These problems are
studied below by use of resampled data.

A common alternative to using the p-values as measures
of significance is to consider the ranking of the genes,
induced by the p-values or test statistics, and to select a
fixed number of top ranked genes for further investiga-
tions. In Table 3 and Table 4 the concordance of the
ranked lists are shown. The results from the included
methods differ, for instance those from WAME compared
to the other methods. This is not surprising since high cor-
relations and highly unequal variances were identified by
WAME, giving rise to highly unequal weights.

Resampled data
To examine closer the effect of violated assumptions of
independence and identical distribution, we repeatedly
selected two random subgroups of four arrays from within
one group in the original data and performed tests

Density plotsFigure 1
Density plots. Distribution of transformed expression values, Y, for the different arrays, in the two datasets. Colour-coding 
according to sample variance is used for increased clarity (blue for low variance, red for high variance). Differences in variability 
can be noted for both datasets.
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between those groups. This was performed 100 times for
the largest group in each of the two real datasets. Differen-
tially expressed genes have unequal expected values in the
two populations being sampled (cf. (2)). Since we now
sample twice from the same condition, no differentially
expressed genes exist.

Figure 4 shows the empirical p-value distributions for the
resampled COPD data analysed with the four methods,
together with the respective average empirical distribu-
tion,

where Fi denotes the empirical CDF from the ith of the
100 resamples. For WAME, the p-value distributions are
very close to the expected uniform. For OLM, LIMMA and
weighted LIMMA there is a high variability between the p-
value distributions and they are in many cases substan-
tially different from the expected uniform. For WAME,
OLM and LIMMA, the respective average empirical distri-
bution is approximately correct, while for weighted
LIMMA it is clearly optimistic. The results for the Atrium
dataset (see Additional file 3) are very similar.

Evaluation of power
To evaluate the power of the tests in the studied datasets,
a known regulation is added to randomly selected genes
in one of the resampled groups, created according to the
previous section. Thus, the noise is obtained from the real
data and only the signal is synthetic. Ideally, the power

F p F pi
i

( ) ( ),=
=
∑1

100 1

100

Table 1: WAME weights for the Atrium dataset. Weights in percent from estimate of differential expression using WAME on the 
Atrium dataset.

Sinus rythm Atrial fibrillation

3.0 -0.8 -2.7 -1.9 -4.6 -0.7 14.9 8.5 21.0 12.2 10.7
-9.4 1.9 -5.1 0.3 -5.2 -18.3 7.5 16.6 2.1 11.8 5.3
-10.6 -8.9 -9.9 -19.8 -9.4 -20.4 6.5 5.2

Pairwise plotsFigure 2
Pairwise plots. Transformed expression values, Yg, for selected pairs of arrays within the same group. Different pairs within 
the same group have distinctly different correlations. Upper triangle contains scatterplots. Lower triangle contains heatmaps of 
the corresponding two-dimensional kernel density estimates, where the majority of the genes are in the red portion of the 
plot, revealing important trends inside the black clouds. Diagonal red clouds in the heat maps reveal correlations between 
arrays. Off-diagonal numbers show estimated correlations from WAME. Diagonal boxes contain sample names and weights as 
well as estimated variances from WAME.
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can then be estimated by the proportion of differentially
expressed genes that have a computed p-value less than a
fixed level. However, valid p-values of the test statistics
cannot be obtained from the respective models since, as
demonstrated above, the corresponding assumptions are
typically not valid. Ideally, the p-values would be deter-
mined by the true null distribution of the respective test
statistics, given the array-wise quality deviations. In the
simulation study, the critical value of the test statistics are
therefore estimated from the empirical distribution of the
test statistic for the unregulated genes. This is used to esti-
mate the power of the different statistics (details are given
in Methods).

The power estimates for the different methods are shown
in Figure 5, for a level 0.1% test. The 0.1% level yields
approximately 22 false positives if relatively few genes are
in fact differentially expressed. For WAME, Σ is estimated
both before and after adding a signal to 2228 genes
(10%), thereby substantially affecting the estimate of Σ

(cf. Figure 6). The powers of the two versions are neverthe-
less very similar (difference less than 0.003) and only the
latter version is included in the plot.

When the covariance-structure matrix Σ is estimated in
WAME it is assumed that no genes are differentially
expressed. Figure 6 includes the average empirical distri-
bution for the p-values of the unregulated genes when dif-
ferent proportions of the genes have a log2 differential
expression of 1. It is clear that the distributions are biased
for high proportions, giving conservative p-values, which
should be an effect of biased estimates of Σ.

The results from the studied datasets indicate (i) that
WAME offers a relevant power increase compared to the
included alternatives, (ii) that weighted LIMMA does not
offer an advantage compared to LIMMA and (iii) that the
moderated statistics (WAME, LIMMA and wLIMMA) are
superior to the traditional methods of ranking by ordinary
t-statistic (OLM) or estimated differential expression (FC).

Observed probability plotsFigure 3
Observed probability plots. Empirical distribution of p-values compared to the distribution expected for non-differentially 
expressed genes. The OLM and LIMMA curves largely coincide, as does the identity line and the WAME curve.
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Table 2: WAME weights for the COPD dataset. Weights in percent from estimate of differential expression using WAME on the 
COPD dataset.

No/mild emphysema Severe emphysema

-18.0 -6.7 -3.9 -8.9 11.8 2.6 12.0 4.0 12.6 7.6
-10.6 -7.3 -8.0 -5.6 7.1 9.0 6.7 0.9 6.2 5.5
-8.3 -3.6 -14.9 -4.3 -0.3 1.6 3.2 7.6 4.3 -2.5
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Discussion
The WAME model and the simulations
The WAME model aims at catching quality deviations by
one covariance-structure matrix common for all genes.
This is certainly simplistic in some cases, e.g. when only
certain physical parts of an array or certain types of
mRNAs are of decreased quality. The estimated covariance
structure can then only be expected to reflect a mixture of
the qualities of the different genes. However, examining
the simulations (Figure 5), we see a clear power gain in the
WAME model compared to the other models. Also,
WAME succeeds in catching enough of the quality devia-
tions to make the p-value distributions more correct, thus
providing increased usefulness of the p-values (Figure 3).

The models of LIMMA, weighted LIMMA and WAME are
nested, where weighted LIMMA adds unequal variances
and WAME adds unequal variances and correlations.
Examination of Figure 1 shows that there are evident dif-
ferences in variability between arrays. It is therefore inter-
esting that we have not found a power increase of
weighted LIMMA compared to LIMMA. Further, the p-val-
ues of weighted LIMMA turned out to be too optimistic
(Figure 4). Comparison with the results of the WAME
method, where the power increases and the p-value distri-
butions get substantially more correct, suggests that the
correlations are crucial in the model.

In the simulations, noise is taken from real data through
resampling within a fixed group. This procedure provides
data with fewer assumption on the noise structure com-
pared to a fully parameterised simulation and should
hopefully better reflect realistic situations. To evaluate the
power of the different methods, a synthetic signal which

is constant within each condition is added to the resam-
ple-based noise. This follows the assumption in the mod-
els of both WAME, OLM, LIMMA and weighted LIMMA,
that the noise structure is equal for genes that are differen-
tially expressed and non-differentially expressed. How-
ever, the biological variability of the expression of
differentially expressed genes might be different under the
different conditions due to the changed rôle of those
genes. For complicated conditions such as complex dis-
eases, the problem is more severe (cf. [15-17]) since cru-
cial genes might only be differentially expressed in a
subset of the studied arrays. Further work is needed to
evaluate the performance of WAME in such settings, as
well as to possibly expand it to better fit these situations.

A relevant question regarding the modelling of quality
deviations by the covariance-structure matrix Σ is whether
biologically interesting features may be hidden by this
model. In the present datasets, the question can partly be
answered by examining the pairwise plots (cf. Figure 2)
and noticing that a large proportion of the genes show
similar deviations, which should speak against a specific
interesting biological explanation. Also, the estimated
covariance structure matrix Σ can be inspected with the
goal of finding relevant correlations between arrays and
thus highlighting interesting features in the data. Possible
future work is to use such inspections to reveal unwanted
features in normalisation or in preprocessing wet-lab
steps that give rise to correlated errors for a large propor-
tion of the genes.

Weights with switched signs
In the studied datasets, strong correlations combined with
unequal variances make some weights within a group

Table 4: Concordance of top lists in the COPD dataset. Number of mutually included genes in the top-100 lists in the COPD dataset as 
determined by the different methods.

WAME LIMMA wLIMMA OLM FC

WAME 100 46 47 41 22
LIMMA 46 100 77 78 35

wLIMMA 47 77 100 66 32
OLM 41 78 66 100 25
FC 22 35 32 25 100

Table 3: Concordance of top lists in the Atrium dataset. Number of mutually included genes in the top-100 lists in the Atrium dataset 
as determined by the different methods.

WAME LIMMA wLIMMA OLM FC

WAME 100 47 45 44 15
LIMMA 47 100 80 88 26

wLIMMA 45 80 100 76 21
OLM 44 88 76 100 21
FC 15 26 21 21 100
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switch sign, in essence meaning that it is beneficial to
partly subtract some arrays within a group in the estimate
to be able to add more of the others in the same group (cf.
Table 1 and Table 2). Since this might seem counter-intu-
itive, an elucidating example of possible mechanisms
behind such weights follows.

Consider an example where two two-colour arrays are
observed, X1 and X2. Let the two arrays have two sources

of variation, one that is mutually independent (ε1, ε2) and

one consisting of different proportions, a1 and a2, of one

common source of variation η. Let ε1, ε2 and η be inde-

pendent and normally distributed with expectation 0 and

variances  and , respectively. Furthermore, let µ be

the parameter to be estimated. The model becomes

Xi = µ + aiη + εi, i ∈ {1,2}.

Then, X1 gets a negative weight if and only if

i.e. if array 1 includes a large enough contribution from
the common source of variation. When a negative weight
is allowed instead of removing the array, a smaller propor-
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Probability plotsFigure 4
Probability plots. Empirical distributions of p-values for LIMMA, weighted LIMMA, OLM and WAME from tests on 100 resa-
mples from the COPD dataset. Average empirical distribution indicated. Since no signal is added, the curves should ideally fol-
low the diagonal.
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Average empirical p-value distribution for WAME under regulationFigure 6
Average empirical p-value distribution for WAME under regulation. Average empirical p-value distribution of the 
unregulated genes, calculated using WAME, when 0%, 0.1%, 1%, 5% and 10% of the genes have a log2 differential expression of 
1, i.e. a two-fold change. When genes are regulated the estimate of Σ is biased, leading to conservative, non-diagonal curves.

Estimated powerFigure 5
Estimated power. Estimated power in the simulated data for level 0.1% tests, based on resamples from the respective larger 
group in the Atrium and COPD datasets. Power is estimated at the marked points and spline interpolation is used in between.



BMC Bioinformatics 2007, 8:387 http://www.biomedcentral.com/1471-2105/8/387
tion of the common source of variation is included in the
final estimate. Its precision is thus increased.

Validity of the p-values and derived entities
Varying quality of arrays and correlated errors were dem-
onstrated in [2,3] and in the present paper through exam-
ination of the data. These questions are typically neglected
in microarray analyses, both when using parametric and
when using non-parametric analysis methods, since inde-
pendence and identical distribution or exchangeability
are generally assumed under the null hypothesis. Thus,
the validity is questionable of the corresponding p-values
and their derived entities, e.g. false discovery rates and
estimates of proportions of differentially expressed genes.
This problem is obvious in the resample based simula-
tions.

A number of experiments have been analysed (data not
shown) in addition to those published in the present
paper and in [2,3]. In almost all cases relevant unequal
variances and correlations have been identified, indicat-
ing that the problem is common.

In the resample based simulations with added signal,
WAME is shown to be conservative, which is an effect of
the biased estimate of Σ. Further work on an estimator of
Σ with better characteristics under regulation is therefore
needed. However, the simulations indicate (i) that the
power of the test is basically unaffected by the bias and (ii)
that hundreds of genes may be differentially expressed
(two-fold) with only mildly conservative p-values as
result.

Correlations between genes or between arrays?
It has recently been argued that the expression of different
genes are highly dependent, making the law of large
number normally inapplicable [18] and standard estima-
tors of e.g. the false discovery rate (FDR) imprecise [19].
In [19], a latent FDR is introduced, being the conditional
FDR given a random effect b that captures the correlation
effects between genes. The FDR is then the marginal latent
FDR, that is the average over the random effect b.

For the datasets examined in the present paper, the model
assumptions of e.g. the ordinary linear model are shown
not to hold (cf. Figure 1 and Figure 2). This can be
expected to result in invalid p-values, which is indeed
observed in Figure 4. Interestingly, the p-value distribu-
tion seem to be valid marginally, i.e. on average over the
different resamples, which would yield valid but impre-
cise estimates of the FDR. This type of failed model
assumptions is not taken into account in e.g. [18,19].
Since for a performed experiment, the p-values from the
ordinary t-statistic (OLM) share a common bias condi-
tional on the experiment (see Figure 4), the different p-

values may be highly dependent. However, this depend-
ency is due to failure of taking array-wide quality devia-
tions into account in the model and not due to the nature
of microarray data per se, e.g. through substantial long-
range gene-gene interactions.

Consequently, the strong observed dependencies between
statistics from different genes might largely be explainable
by quality deviations between the arrays in the experi-
ment, e.g. correlations between arrays. Since WAME mod-
els these deviations such that the p-values are essentially
correctly distributed when few genes are differentially
expressed in the studied datasets, the dependency
between genes should be greatly decreased. The covari-
ance structure matrix Σ is therefore in a sense a parallel to
the random factor b in [19]. It remains as future work to
evaluate the gene-gene dependencies and estimates of e.g.
the FDR in the context of the WAME model.

In the WAME model, the data from different genes are
assumed independent, which is unrealistic, e.g. since
genes act together in pathways. However, this is only used
in the derivation of the maximum likelihood estimaties of
the covariance structure matrix Σ and the shape parameter
α. The assumption could thus be relaxed to a dependence
between the different genes that is weak enough that the
estimates of Σ and α become precise, and accurate under
H0. This holds if the law of large numbers is applicable for
averages of certain functions of the gene-wise observed
data (cf. the likelihood functions in [2,3]). Given the large
number of genes and the observed p-value distributions
in Figure 4, this relaxed assumption seems plausible.

It can be noted that for the studied data, WAME has higher
power and considerably more valid p-values than
weighted LIMMA. Since the difference between the
weighted LIMMA and WAME models is the inclusion of
correlations between arrays, this emphasises the impor-
tance of the correlations in the model.

Conclusion
Statistical methods in microarray analysis are typically
based on the often erroneous assumption that the data
from different arrays are independent and identically dis-
tributed. An exception is Weighted Analysis of Microarray
Experiment (WAME) where heteroscedasticity and corre-
lations between arrays are modelled by a covariance-struc-
ture common for all genes. In the present paper, WAME
has been extended to handle datasets without a natural
pairing, e.g. data from one-channel microarrays, and cor-
responding estimates and test statistics have been derived.
In the examined one-channel microarray datasets WAME
detected unequal variances and nonzero correlations.
Page 10 of 15
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WAME was compared with four other common methods:
an ordinary linear model with t-tests, LIMMA, weighted
LIMMA, and fold-change ranking. The comparison was
performed using resampling of the different arrays within
the datasets. Here, WAME had the highest power. When a
relatively small proportion of the genes are regulated,
WAME also generates close to correct p-value distribu-
tions while the p-value distributions from the other meth-
ods are highly variable. However, when many genes are
differentially expressed, the p-values from WAME tend to
be conservative.

In conclusion, p-values from the standard methods for
microarray analysis should in general not be trusted and
any result based on p-values, e.g. estimates of the number
of regulated genes and false discovery rates, should be
interpreted with care. The analyses of the examined data-
sets showed that WAME gives a powerful approach for
finding differentially expressed genes and that it produces
more trustworthy p-values when a relatively small propor-
tion of genes are differentially expressed.

Methods
Details on the new version of WAME
Model Framework
For g = 1,..., m, let Xg be an n-dimensional vector with
expectation µg = Dγg, where D is the design matrix, having
rank k, and γg ∈ �q is the parameter vector. Furthermore,
let

Xg | cg ~ N(µg, cgΣ),

cg ~ Γ-1(α, 1),

where Σ is the non-singular covariance-structure matrix, cg
is the variance-scaling factor, α is the shape parameter for
cg and (c1, X1),...,(cm, Xm) are assumed independent. The
differential expression vector is defined as

δg = Cγg,

where C is a matrix of rank p such that δg is estimable.
Here, an estimator of δg and a test for

are in focus.

As mentioned in Background, one main obstacle is that Σ
is hard to estimate. In fact, Σ and δg cannot be maximum
likelihood estimated simultaneously, since there are triv-
ial infinite suprema of the likelihood, e.g. when the vari-
ance of one observation is set to zero and the

corresponding mean is selected so that it equals that
observation.

The current WAME method
In the current version of WAME [3], Σ is estimated as fol-
lows. First, temporarily assume that µg = 0 for all genes,
which is reasonable for paired experimental designs with
few differentially expressed genes between any pairwise
measured conditions. For each gene, the variance scaling
factor cg is removed by dividing the n measurements with
the first measurement, yielding a random vector distrib-
uted according to a multivariate generalisation of the
Cauchy distribution. A scaled version of Σ is then maxi-
mum likelihood estimated numerically. Second, the
unknown scale and the hyperparameter α of the prior dis-
tribution of cg are maximum likelihood estimated numer-
ically without the assumption of µg = 0. The parameters Σ
and α are subsequently treated as known in the maxi-
mum-likelihood estimates and likelihood-ratio tests for
the different genes.

The new WAME method

The new version of WAME relaxes the assumption from µg

= 0 to δg = 0, which incorporates many designs without a

natural pairing. This is performed by subtracting an arbi-

trary estimator  of µg, which is unbiased under H0 and

has as image the space 0 of possible values for µg under

H0,

It can be shown that this transformation preserves the esti-
mability of δg.

By construction, the transformed data Yg will have expec-
tation zero for non-differentially expressed genes and the
current WAME method can be applied on Yg, including
the estimation of the covariance-structure matrix ΣY for Yg.
It will now be proved that the likelihood ratio tests of (9)
and the maximum likelihood estimates of δg based on Xg
or Yg are identical, if α and Σ or ΣY respectively are consid-
ered known. 

We shall henceforth consider a fixed gene g and drop the
g index.

Equality of tests and estimators
Before beginning, some further definitions are needed.
Define the Mahalanobis inner product corresponding to a
symmetric n by n matrix A as

H

H

g

A g

0 :

:

δδ

δδ

=

≠

0

0

µµg
0



Y Xg g g= − µµ0.

〈 〉 = −x x x x1 2 1 2, ,A AT
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and the norm ||·||A as

where x, x1, x2 lies in the rowspace of A and the generalised

inverse A-is any matrix satisfying AA-A = A. Let χ denote

the n-dimensional inner product space with �·,·�Σ as inner

product. Define  ⊂ χ as the space of possible values for

µg,

 = {µ : µ = Dγ, γ ∈ �q}

and let 0 ⊂ χ denote the corresponding space restricted

by the null hypothesis,

0 = {µ : µ = Dγ, Cγ = 0, γ ∈ �q}.

Proposition Let be an arbitrary linear estimator of µ,

which is unbiased under H0 and which has image 0. Let

and let ΣY be the covariance-structure matrix of Y. Then the
likelihood ratio test of (9) and the maximum likelihood esti-
mate of δ based on X with Σ and α known are identical to the
ones based on Y with ΣY and α known.

Proof of the Proposition
The proof is divided into two steps which combined con-
clude the proof.

1. The likelihood ratio test (LRT) of (9) and the maximum

likelihood estimator (MLE) of δ does not depend on the

choice of .

2. The proposition holds when  is the MLE of µ under

H0.

Proof of step 1

Let µ' and µ'' be two valid choices of , i.e. they are both

unbiased estimators of µ under H0 and have 0 as image.

Let Y' = X - µ' and Y'' = X - µ''. Recall that a matrix P is a
projection matrix projecting on 0 if and only if for all x

∈ �n, Px ∈ 0 and for all x0 ∈ 0, Px0 = x0. It can be

shown that µ' and µ'' can be written as µ' = P' X and µ'' =
P'' X for some projection matrices P' and P'' projecting on

0. Since P' and P'' project on the same space it follows

that P' P'' = P'' and P'' P' = P', and thus (I - P') Y'' = Y' and
(I - P'') Y' = Y''. Hence there is an invertible map between
Y' and Y'' and likelihood methods based on Y' and Y''
respectively will give equal results. Consequently, the MLE

of (9) and the LRT of δ will not depend on the choice of

Proof of step 2
Since δ is estimable based on X, there exist a matrix A such
that C = AD and thus δ = Aµ. The likelihood of µ can there-
fore be examined instead of the likelihood of δ.

The likelihood of µ based on X can be shown to be

where ∝ denotes proportionality. Using the Projection

Theorem [20], the MLE of µ is the orthogonal projection
of X on ,

where the orthogonality is according to the inner product

of χ. When H0 is true, µ is restricted to 0 and thus the

MLE of µ becomes

Note that  is a valid choice for , i.e.  is unbiased

under H0 and has 0 as image. Let

which gives , where  denotes the orthogo-

nal complement of 0 in χ. Standard properties of the

normal distribution gives

Z|c ~ N(µz, cΣz),

where µz = Dzγ with Dz = , and where

.

The likelihood function of µz (with respect to the Lebesgue
measure on the space of possible values of Z spanned by
the column vectors of Σz) can be written as

x x x x xA A2 = 〈 〉 = −, ,T









µµ0



Y X= − µµ0,

µµ0

µµ0

µµ0




 



µµ0

L f c f c dc

n

( | ) ( | , ) ( )
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/
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∞

− −

∫0
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Since, δ is estimable based on Z, the likelihood of µz can
be examined instead of the likelihood of δ.

The likelihood ratio statistic of (9) based on X is defined
by

which can be rewritten (cf. [3]) as a strictly increasing
function of

where ⊥ and  are the orthogonal complements of

 and 0 respectively.

Note that the space of possible values for µz is  ∩ 

and that µz = 0 under H0. Let  denote the orthogonal

projection according to . Then, the likelihood ratio

statistic of (9) based on Z can in analogy with (13) be
shown to be a strictly increasing function of

The Lemma below yields that for all  and all z ∈

,  and . The equivalence

of the test statistics (13) and (14) is now straight-forward,

Lemma Let be a subspace of χ and let be the orthog-

onal projection from χ onto . Then for any x1, x2 ∈ ,

where .

Proof Let A be a matrix of a change of basis [20] from the

standard basis to an orthonormal basis of χ such that the

first l basis vectors span . Let I(l) denote the identity

matrix with all but the l top left diagonal elements set to

zero. It follows that AT A = Σ-1 and A  = I(l)A and there-

fore,

where the last equality uses the fact that (AB)- = B- A-1

when A is invertible �.

The next step is to show that the MLE of δ when X is
observed is identical to the MLE of δ when Z is observed.
The former is defined by

L z

n

z
( | ) / .
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µµ µµZ Z∝ − +




− −

Σ
2 2

2 1
α

T

L

L
= ∈

∈

sup ( | )

sup ( | )
,µµ

µµ

µµ

µµ




X

X
0

′ = − + −

− +

= − +

+

∩

T
n p

k

n p

k

2

2

2

2

0

2

2

2

2

α

α

 







 



 



X X

X X

X

X

Σ

Σ

Σ

Σ

0
?

?

,

 0
?

 

 0
?

z

〈⋅ ⋅〉, Σz

′ = − +

+

∩

∩

T
n p

kz
z

z

2

2

2

2
α

−





 

 

0

0

?

?

z

z

Z

Z Z

Σ

Σ

.

 ⊆ 0
?

0
? z zΣ Σz

2 2=   
z z z=

′ = − +

− +

= − +

∩

∩

∩

T
n p

k

n p

k

z

z

z

z

z

2

2

2

2

2

2

0 0

α

α





 

 

 

  

0

0

?

?

? ?

Z

Z Z

X

Σ

Σ

Σ

(( )( )    





     

 



+ − +

= − +

+
=

∩

∩

? ? ? ?

?

?

0 0 0

0

2

2

2

2

2

2

X X

X

X

Σ

Σ

Σ

n p

k

α ′′T .

 
 

〈 〉 = 〈 〉x x x x1 2 1 2, , ,Σ Σ

Σ Σ   =





〈 〉 =

=

=

=

−

−

x x x x

x x

x x

x

1 2 1
1

2

1 2

1 2

1

,

( )

(

( )

( )

Σ Σ

Σ

T

T T

T T

T T

A A

A I A

A I A A

l

l



TT

T T T T

T T

I A

A A A A

l( ))

( )

( ) ,

−

−

−

=

=

x

x x

x x

2

1 2

1 2

 
 

 

 

Σ

Σ

ˆ ˆ argmin .δδ γγ γγ
γγ

= = −C C DX Σ
2

Page 13 of 15
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:387 http://www.biomedcentral.com/1471-2105/8/387
Define 0 = {γ : Dγ ∈ 0} and 1 = {γ : Dγ ∈ } and

note that for any γ there exist γ0 ∈ 0 and γ1 ∈ 1 such

that γ = γ0 + γ1. Thus,

Now, since ,

where the second equality follows from the generalised
Theorem of Pythagoras [20], the Lemma, and the fact that

 and . Now since γ0 and γ1

minimise the expression independently of each other and

since Cγ0 = 0 by construction,

For all γ0 ∈ 0, Cγ0 = 0 and Dzγ0 = 0, so the area of mini-

misation can be extended,

which is the MLE of δ based on Z by definition. �

Remark 1 Using the invertible map between any two
choices of Y, Y and Y', as defined in Step 1 above, the

respective maximum likelihood estimates of α, Σy and Σy'

can be shown to be identical based on Y or Y'. In this

sense, the choice of  is thus truly irrelevant.

Remark 2 Sometimes, additional linear combinations of

γ can be assumed to be zero for most genes, C* γ = 0 for
some matrix C* with rowspace being a superspace of the
rowspace of C. Let P* be any projection matrix on the cor-

responding space * = {µ : µ = Dγ, C* γ = 0, γ ∈ �q} and

let Y* = X - P* X. It is straight forward to show that a vari-
ant of the Proposition still holds, so given the covariance

structure matrices the inference results concerning Cγ will

be identical, based on Y or Y* respectively. However, the
estimates of the covariance structure matrices for Y and Y*
might not be coherent and the results are expected to dif-
fer slightly.

The estimator of power
Consider a certain experimental design, a level 1-λ test
and a differential expression δ. Let a realisation of the
experiment be given, which e.g. results in certain quality
deviations between arrays. The conditional power is
defined as the probability of identifying a random gene in
the current experiment, i.e. conditional on e.g. the quality
deviations, when the gene has differential expression δ.
The power is then defined as the average conditional
power over all possible realisations of the experimental
design. The power is thus related to an unperformed
experiment while the conditional power is related to a
specific performed experiment. Here, the test is assumed
to be valid conditional on the experiment, i.e. to have
conditional power λ when δ = 0.

In Evaluation of power, the aim is to estimate the power
for a hypothetical experiment where the distribution of
the data under the null hypothesis is obtained by resam-
pling of real data. For a given resample, a constant differ-
ential expression is added to randomly selected genes and
the statistics tg are computed. The estimate  of the condi-
tional critical value is computed so that a proportion λ of
the unregulated genes satisfy |tg| ≥ . The conditional power
is then estimated by the proportion of regulated genes sat-
isfying |tg| ≥ . The power is finally estimated by averaging
the estimated conditional power over the resamples.
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Pairwise plots of all arrays in the Atrium dataset. Transformed expres-
sion values for all arrays in the Atrium dataset. See legend of Figure 2 for 
details.
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Pairwise plots of all arrays in the COPD dataset. Transformed expres-
sion values for all arrays in the COPD dataset. See legend of Figure 2 for 
details.
Click here for file
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Probability plots for the Atrium dataset. Empirical distributions of p-
values for LIMMA, weighted LIMMA, OLM and WAME from tests on 
100 resamples from the Atrium dataset. Average empirical distribution 
indicated. Since no signal is added, the curves should ideally follow the 
diagonal.
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