Induction of a glibenclamide-sensitive K-current by modification of a delayed rectifier channel in rat portal vein and insulinoma cells

¹G. Edwards & A.H. Weston

Smooth Muscle Pharmacology Group, Department of Physiological Sciences, University of Manchester, Oxford Road, Manchester M13 9PT

In insulinoma cells (RINm5F), the glibenclamide-sensitive K-current $(I_{K(ATP)})$ which developed spontaneously or after exposure to levcromakalim or to butanedione monoxime was always accompanied by a reduction in the delayed rectifier current $(I_{K(V)})$. At potentials over which $I_{K(V)}$ was fully activated, the total outward current remained constant. In rat portal vein, the delayed rectifier channel inhibitor, margatoxin, reduced the combined induction of $I_{K(ATP)}$ and inhibition of $I_{K(V)}$ by levcromakalim. These data suggest that the ATP-sensitive K-channel, $K_{(ATP)}$, is a voltage-insensitive state of the delayed rectifier, K_{V} .

Keywords: Levcromakalim; RINm5F; Kv; KATP; K-channel; portal vein

Introduction In rat portal vein, we have demonstrated that K-channel openers or procedures designed to reduce channel phosphorylation stimulate a non-inactivating K-current $(I_{K(ATP)})$ and simultaneously inhibit a delayed rectifier K-current $(I_{K(V)})$. We thus concluded that the effects of lev-cromakalim were consistent with an action on K_V via removal of its voltage-sensitivity (Edwards *et al.*, 1993).

We have now studied the possible conversion of $I_{K(V)}$ into $I_{K(ATP)}$ in insulinoma cells and extended our observations on portal vein to include margatoxin, a potent inhibitor of K_v (Garcia-Calvo *et al.*, 1993).

Methods Single rat portal vein cells were isolated and recordings made as previously described (Ibbotson *et al.*, 1993). RINm5F cells were maintained in culture. The composition of the solutions used was (mM): pipette – NaCl 5, KCl 120, MgCl₂ 1.2, K₂HPO₄ 1.2, glucose 11, HEPES 10, EGTA 1.2, oxalacetic acid 5, sodium pyruvate 2, sodium succinate 5, pH 7.3; bath (oxygenated) – NaCl 125, KCl 4.8, MgCl₂ 3.7, K₂HPO₄ 1.2, glucose 11, HEPES 10, EGTA 1, pH 7.3. All experiments were performed at room temperature (22–25°C).

Results When RINm5F cells were voltage-clamped at -90 mV and stepped in 10 mV increments to test potentials more positive than -40 mV, a delayed rectifier K-current $(I_{K(V)})$ was observed. At potentials more negative than -40 mV only a non-inactivating cation current (I_{NI}) was present. When cells were clamped for 1 min at -10 mV, $I_{K(V)}$ inactivated, leaving only I_{NI} . With time, an additional non-inactivating K-current developed (peak approximately 12 min) and simultaneously $I_{K(V)}$ declined (Figure 1a). The non-inactivating K-current $(I_{K(ATP)})$ was obtained by digital subtraction of the non-inactivating currents ($(I_{NI} \text{ or } I_{NI} + I_{K(ATP)})$ from currents obtained at similar test potentials after stepping from -90 mV. At the more positive test potentials, total current remained constant with time (Figure 1b).

In some cells under conditions in which the extracellular glucose concentration was increased to 22 mM, $I_{\text{K(ATP)}}$ did not develop. Application of levcromakalim (30 μ M) or the

'chemical phosphatase', butanedione monoxime (BDM, 5 mM), induced $I_{K(ATP)}$ and inhibited $I_{K(V)}$ (Figure 1c,d).

Applying the same voltage-step protocols to rat portal vein cells, only $I_{K(V)}$ and I_{NI} were observed under control conditions. Levcromakalim (1 μ M) induced $I_{K(ATP)}$ and simultaneously inhibited $I_{K(V)}$. Margatoxin (100 nM) had no effect on $I_{K(V)}$. However, after pre-exposure to margatoxin and in its continued presence, the ability of levcromakalim to induce $I_{K(ATP)}$ and to inhibit $I_{K(V)}$ were both markedly reduced (Figure 2).

Discussion Recent experiments on rat portal vein cells have suggested that K_{ATP} is a partially-dephosphorylated state of

Figure 1 Effect of time on whole-cell currents in RINm5F cells: (a) 14 min after formation of the whole-cell recording configuration a non-inactivating current $(I_{K(ATP)}, \bigoplus)$ had developed and $I_{K(V)}(\blacktriangle)$ was reduced. However, the total current at this time (\blacksquare) was similar to the initial total current (\Box) (b). Leveromakalim (10 μ M, c) and butanedione monoxime (5 mM, d) similarly induced $I_{K(ATP)}(\bigoplus)$ and inhibited $I_{K(V)}(\blacktriangle)$; (\bigtriangleup) and (O) indicate control $I_{K(V)}$ and non-inactivating currents, respectively. In (a) and (b), each point represents the mean \pm s.e.mean, n = 3. (c) and (d) each represent the result from a single cell.

¹ Author for correspondence.

Figure 2 Effect of margatoxin on response to levcromakalim in rat portal vein cells. Levcromakalim $(1 \,\mu M, \, \Phi)$ induced $I_{K(ATP)}$ (a) and inhibited $I_{K(V)}$ (b). Margatoxin alone (100 nm, \Box) had no effect but inhibited the effects of levcromakalim $(1 \,\mu M, \, \Delta)$; (O) indicates control currents. Each point represents the mean \pm s.e.mean, n = 5.

 K_{v} , consistent with findings that inhibitors of $I_{K(v)}$ also inhibit $I_{K(ATP)}$ (see Edwards *et al.*, 1993). A key physiological role of K_{ATP} is the regulation of insulin secretion in pancreatic β-cells. We therefore examined the relationship between $I_{K(v)}$ and $I_{K(ATP)}$ in an insulinoma cell (RINm5F). In this cell, as in the β-cell, K_{ATP} is considered to be almost maximally inhibited by physiological concentrations of intracellular ATP ([ATP]_i), and only to open as [ATP]_i falls (Harding *et al.*, 1993).

Immediately after cell breakthrough only $I_{K(V)}$ and I_{NI} were detected in RINm5F cells, with no evidence of glibenclamidesensitive currents. However, the magnitude of $I_{K(V)}$ declined with time and simultaneously a glibenclamide-sensitive Kcurrent ($I_{K(ATP)}$) developed. In the potential range + 30 to + 50 mV, at which $I_{K(V)}$ was probably fully activated, the total outward current after development of $I_{K(ATP)}$ (i.e. $I_{K(V)} + I_{NI} + I_{K(ATP)}$) was essentially identical to that immediately after breakthrough ($I_{K(V)} + I_{NI}$). Furthermore, in

References

- BEECH, D.J., ZHANG, H., NAKAO, K. & BOLTON, T.B. (1993). Single channel and whole-cell K-currents evoked by levcromakalim in smooth muscle cells from the rabbit portal vein. Br. J. Pharmacol., 110, 583-590.
- EDWARDS, G., IBBOTSON, T. & WESTON, A.H. (1993). Levcromakalim may induce a voltage-independent K-current in rat portal veins by modifying the gating properties of the delayed rectifier. *Br. J. Pharmacol.*, **110**, 1037-1048.
- IBBOTSON, T., EDWARDS, G., NOACK, TH. & WESTON, A.H. (1993). Effects of P1060 and aprikalim on whole-cell currents in rat portal vein; inhibition by glibenclamide and phentolamine. Br. J. Pharmacol., 108, 991-998.
- GARCIA-CALVO, M., LEONARD, J.L., NOVICK, J., STEVENS, S.P., SCHMALHOFER, W., KACZOROWSKI, G.J. & GARCIA, M.L. (1993). Purification, characterization, and biosynthesis of margatoxin, a component of *Centroides margaritatus* venom that selectively inhibits voltage-dependent potassium channels. J. Biol. Chem., 268, 18866-18874.

RINm5F cells in which the spontaneous induction of $I_{K(ATP)}$ was suppressed by additional glucose, levcromakalim and a 'chemical phosphatase', BDM, each induced a glibenclamidesensitive K-current and simultaneously inhibited $I_{K(V)}$. Again, the total outward current at the most positive test potentials remained constant. In rat portal vein cells, margatoxin, a potent inhibitor of voltage-dependent K-channels (K_{V1.3}; Garcia-Calvo *et al.*, 1993), surprisingly had no effect on $I_{K(V)}$. Nevertheless, this agent antagonized the combined induction of $I_{K(ATP)}$ and the inhibition of $I_{K(V)}$ by levcromakalim.

We cannot yet totally exclude the possibility that K_v and K_{ATP} are two independent K-channel types. However, in both RINm5F cells and in rat portal vein cells, evidence is accumulating which suggests that K_{ATP} and K_v are not separate entities. $K_{(v)}$ and $K_{(ATP)}$ possess almost identical conductances and, in general, share a common pharmacology (see Edwards *et al.*, 1993). Although glibenclamide is a reasonably selective inhibitor of K_{ATP} , high concentrations of this agent do inhibit K_v (Beech *et al.*, 1993). Furthermore, glibenclamide binding is inhibited under phosphorylating conditions (Schwanstecher *et al.*, 1991).

We thus conclude that modification of K_v (probably by partial dephosphorylation as [ATP]_i falls or by levcromakalim or BDM) removes its voltage-sensitivity and simultaneously imparts increased glibenclamide-sensitivity. It is thus possible that insulin secretion in β -cells is not regulated by the voltage-insensitive channel, K_{ATP} , but rather by a modification of the voltage-sensitivity of K_v in response to fluctuating concentrations of [ATP]_i. Such a modification can be effected by a metabolic change or by agents such as levcromakalim or BDM which probably also reduce the degree of phosphorylation of K_v .

The authors thank Drs G.J. Kaczorowski and L. Best for kind gifts of margotoxin and RINm5F cells, respectively. G.E. was supported by Pfizer Central Research.

- HARDING, E.A., JAGGAR, J.H., AYTON, B.J. & DUNNE, M.J. (1993). Properties of diazoxide and cromakalim-induced activation of potassium channels in cultured rat and RINm5F insulin-secreting cells; effects of GTP. *Exp. Physiol.*, 78, 25–34.
- SCHWANSTECHER, M., LÖSER, S., RIETZE, I. & PANTEN, U. (1991). Phosphate and thiophosphate group donating adenine and guanine nucleotides inhibit glibenclamide binding to membranes from pancreatic islets. *Naunyn-Schmied. Arch. Pharmacol.*, 343, 83-89.

(Received August 13, 1993) Accepted September 3, 1993)