Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1993 Oct;110(2):724–735. doi: 10.1111/j.1476-5381.1993.tb13872.x

Repeated administration of desipramine and a GABAB receptor antagonist, CGP 36742, discretely up-regulates GABAB receptor binding sites in rat frontal cortex.

G D Pratt 1, N G Bowery 1
PMCID: PMC2175914  PMID: 8242244

Abstract

1. GABAB receptor binding site densities within laminar regions of the rat frontal cortex were examined autoradiographically following repeated administration (21 days) of the antidepressants desipramine, paroxetine and amitriptyline in addition to the GABAB receptor antagonists, CGP 35348 and CGP 36742. beta 1-Adrenoceptor autoradiography was studied in parallel with that for GABAB receptor sites. 2. The effects of these compounds were examined concomitantly on the GABAB receptor-mediated inhibition of forskolin- and enhancement of noradrenaline-stimulated cyclic AMP production. 3. GABAB receptor binding was increased by both desipramine (20 mg kg-1, p.o. and 10 mg kg-1, i.p.) and CGP 36742 (100 mg kg-1, i.p.) in the outer laminar region of the frontal cortex by around 50% above control levels. Conversely, no significant changes were mediated by paroxetine, amitriptyline, CGP 35348 or the GABAB receptor agonist, baclofen. 4. With the exception of paroxetine, all compounds down-regulated the total beta-adrenoceptor population throughout frontal cortical laminae which was attributable to the beta 1-adrenoceptor subtype. In contrast, the reduction in beta-adrenoceptors mediated by CGP 35348 and CGP 36742 did not occur as a consequence of reduced beta 1-adrenoceptor numbers. 5. Protracted treatment with CGP 35348, failed to influence forskolin-stimulated cyclic AMP production; however, a significant increase in the accumulation of cyclic AMP produced in response to forskolin was seen after treatment with CGP 36742. 6. Such discretely localized changes in GABAB receptor densities induced by desipramine and CGP 36742 may provide an explanation for the discrepancies reported in membrane binding studies and possibly implicate a role for GABAB receptor antagonists in antidepressant therapy.

Full text

PDF
727

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banerjee S. P., Kung L. S., Riggi S. J., Chanda S. K. Development of beta-adrenergic receptor subsensitivity by antidepressants. Nature. 1977 Aug 4;268(5619):455–456. doi: 10.1038/268455a0. [DOI] [PubMed] [Google Scholar]
  2. Beer M., Hacker S., Poat J., Stahl S. M. Independent regulation of beta 1- and beta 2-adrenoceptors. Br J Pharmacol. 1987 Dec;92(4):827–834. doi: 10.1111/j.1476-5381.1987.tb11387.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berrettini W. H., Nurnberger J. I., Jr, Hare T., Gershon E. S., Post R. M. Plasma and CSF GABA in affective illness. Br J Psychiatry. 1982 Nov;141:483–487. doi: 10.1192/bjp.141.5.483. [DOI] [PubMed] [Google Scholar]
  4. Borsini F., Giuliani S., Meli A. Functional evidence for altered activity of GABAergic receptors following chronic desipramine treatment in rats. J Pharm Pharmacol. 1986 Dec;38(12):934–935. doi: 10.1111/j.2042-7158.1986.tb03389.x. [DOI] [PubMed] [Google Scholar]
  5. Bowery N. G., Hill D. R., Hudson A. L., Doble A., Middlemiss D. N., Shaw J., Turnbull M. (-)Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature. 1980 Jan 3;283(5742):92–94. doi: 10.1038/283092a0. [DOI] [PubMed] [Google Scholar]
  6. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  7. Brown B. L., Ekins R. P., Albano J. D. Saturation assay for cyclic AMP using endogenous binding protein. Adv Cyclic Nucleotide Res. 1972;2:25–40. [PubMed] [Google Scholar]
  8. Byerley W. F., McConnell E. J., McCabe R. T., Dawson T. M., Grosser B. I., Wamsley J. K. Chronic administration of sertraline, a selective serotonin uptake inhibitor, decreased the density of beta-adrenergic receptors in rat frontoparietal cortex. Brain Res. 1987 Sep 22;421(1-2):377–381. doi: 10.1016/0006-8993(87)91312-6. [DOI] [PubMed] [Google Scholar]
  9. Byerley W. F., McConnell E. J., McCabe R. T., Dawson T. M., Grosser B. I., Wamsley J. K. Decreased beta-adrenergic receptors in rat brain after chronic administration of the selective serotonin uptake inhibitor fluoxetine. Psychopharmacology (Berl) 1988;94(1):141–143. doi: 10.1007/BF00735896. [DOI] [PubMed] [Google Scholar]
  10. Cross J. A., Cheetham S. C., Crompton M. R., Katona C. L., Horton R. W. Brain GABAB binding sites in depressed suicide victims. Psychiatry Res. 1988 Nov;26(2):119–129. doi: 10.1016/0165-1781(88)90066-2. [DOI] [PubMed] [Google Scholar]
  11. Cross J. A., Horton R. W. Effects of chronic oral administration of the antidepressants, desmethylimipramine and zimelidine on rat cortical GABAB binding sites: a comparison with 5-HT2 binding site changes. Br J Pharmacol. 1988 Feb;93(2):331–336. doi: 10.1111/j.1476-5381.1988.tb11438.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. De Paermentier F., Cheetham S. C., Crompton M. R., Horton R. W. Beta-adrenoceptors in human brain labelled with [3H]dihydroalprenolol and [3H]CGP 12177. Eur J Pharmacol. 1989 Aug 29;167(3):397–405. doi: 10.1016/0014-2999(89)90448-2. [DOI] [PubMed] [Google Scholar]
  13. DeBlasi A., O'Reilly K., Motulsky H. J. Calculating receptor number from binding experiments using same compound as radioligand and competitor. Trends Pharmacol Sci. 1989 Jun;10(6):227–229. doi: 10.1016/0165-6147(89)90266-6. [DOI] [PubMed] [Google Scholar]
  14. Gold B. I., Bowers M. B., Jr, Roth R. H., Sweeney D. W. GABA levels in CSF of patients with psychiatric disorders. Am J Psychiatry. 1980 Mar;137(3):362–364. doi: 10.1176/ajp.137.3.362. [DOI] [PubMed] [Google Scholar]
  15. Gray J. A., Goodwin G. M., Heal D. J., Green A. R. Hypothermia induced by baclofen, a possible index of GABAB receptor function in mice, is enhanced by antidepressant drugs and ECS. Br J Pharmacol. 1987 Dec;92(4):863–870. doi: 10.1111/j.1476-5381.1987.tb11392.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gray J. A., Green A. R. Increased GABAB receptor function in mouse frontal cortex after repeated administration of antidepressant drugs or electroconvulsive shocks. Br J Pharmacol. 1987 Oct;92(2):357–362. doi: 10.1111/j.1476-5381.1987.tb11331.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Heal D. J., Butler S. A., Hurst E. M., Buckett W. R. Antidepressant treatments, including sibutramine hydrochloride and electroconvulsive shock, decrease beta 1- but not beta 2-adrenoceptors in rat cortex. J Neurochem. 1989 Oct;53(4):1019–1025. doi: 10.1111/j.1471-4159.1989.tb07389.x. [DOI] [PubMed] [Google Scholar]
  18. Hill D. R. GABAB receptor modulation of adenylate cyclase activity in rat brain slices. Br J Pharmacol. 1985 Jan;84(1):249–257. [PMC free article] [PubMed] [Google Scholar]
  19. Karbon E. W., Duman R., Enna S. J. Biochemical identification of multiple GABAB binding sites: association with noradrenergic terminals in rat forebrain. Brain Res. 1983 Sep 12;274(2):393–396. doi: 10.1016/0006-8993(83)90725-4. [DOI] [PubMed] [Google Scholar]
  20. Karbon E. W., Enna S. J. Characterization of the relationship between gamma-aminobutyric acid B agonists and transmitter-coupled cyclic nucleotide-generating systems in rat brain. Mol Pharmacol. 1985 Jan;27(1):53–59. [PubMed] [Google Scholar]
  21. Korf J., Venema K. Desmethylimipramine enhances the release of endogenous GABA and other neurotransmitter amino acids from the rat thalamus. J Neurochem. 1983 Apr;40(4):946–950. doi: 10.1111/j.1471-4159.1983.tb08078.x. [DOI] [PubMed] [Google Scholar]
  22. Lloyd K. G., Morselli P. L., Depoortere H., Fournier V., Zivkovic B., Scatton B., Broekkamp C., Worms P., Bartholini G. The potential use of GABA agonists in psychiatric disorders: evidence from studies with progabide in animal models and clinical trials. Pharmacol Biochem Behav. 1983 Jun;18(6):957–966. doi: 10.1016/s0091-3057(83)80021-5. [DOI] [PubMed] [Google Scholar]
  23. Lloyd K. G., Thuret F., Pilc A. Upregulation of gamma-aminobutyric acid (GABA) B binding sites in rat frontal cortex: a common action of repeated administration of different classes of antidepressants and electroshock. J Pharmacol Exp Ther. 1985 Oct;235(1):191–199. [PubMed] [Google Scholar]
  24. McManus D. J., Greenshaw A. J. Differential effects of antidepressants on GABAB and beta-adrenergic receptors in rat cerebral cortex. Biochem Pharmacol. 1991 Sep 27;42(8):1525–1528. doi: 10.1016/0006-2952(91)90420-a. [DOI] [PubMed] [Google Scholar]
  25. Minneman K. P., Dibner M. D., Wolfe B. B., Molinoff P. B. beta1- and beta2-Adrenergic receptors in rat cerebral cortex are independently regulated. Science. 1979 May 25;204(4395):866–868. doi: 10.1126/science.35829. [DOI] [PubMed] [Google Scholar]
  26. Motohashi N., Ikawa K., Kariya T. GABAB receptors are up-regulated by chronic treatment with lithium or carbamazepine. GABA hypothesis of affective disorders? Eur J Pharmacol. 1989 Jul 4;166(1):95–99. doi: 10.1016/0014-2999(89)90687-0. [DOI] [PubMed] [Google Scholar]
  27. Nelson D. R., Palmer K. J., Johnson A. M. Effect of prolonged 5-hydroxytryptamine uptake inhibition by paroxetine on cortical beta 1 and beta 2-adrenoceptors in rat brain. Life Sci. 1990;47(18):1683–1691. doi: 10.1016/0024-3205(90)90375-2. [DOI] [PubMed] [Google Scholar]
  28. Olpe H. R., Karlsson G., Pozza M. F., Brugger F., Steinmann M., Van Riezen H., Fagg G., Hall R. G., Froestl W., Bittiger H. CGP 35348: a centrally active blocker of GABAB receptors. Eur J Pharmacol. 1990 Oct 2;187(1):27–38. doi: 10.1016/0014-2999(90)90337-6. [DOI] [PubMed] [Google Scholar]
  29. Ordway G. A., Gambarana C., Frazer A. Quantitative autoradiography of central beta adrenoceptor subtypes: comparison of the effects of chronic treatment with desipramine or centrally administered l-isoproterenol. J Pharmacol Exp Ther. 1988 Oct;247(1):379–389. [PubMed] [Google Scholar]
  30. Peroutka S. J., Snyder S. H. Long-term antidepressant treatment decreases spiroperidol-labeled serotonin receptor binding. Science. 1980 Oct 3;210(4465):88–90. doi: 10.1126/science.6251550. [DOI] [PubMed] [Google Scholar]
  31. Pilc A., Lloyd K. G. Chronic antidepressants and GABA "B" receptors: a GABA hypothesis of antidepressant drug action. Life Sci. 1984 Nov 19;35(21):2149–2154. doi: 10.1016/0024-3205(84)90515-0. [DOI] [PubMed] [Google Scholar]
  32. Rainbow T. C., Parsons B., Wolfe B. B. Quantitative autoradiography of beta 1- and beta 2-adrenergic receptors in rat brain. Proc Natl Acad Sci U S A. 1984 Mar;81(5):1585–1589. doi: 10.1073/pnas.81.5.1585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Suzdak P. D., Gianutsos G. Differential coupling of GABA-A and GABA-B receptors to the noradrenergic system. J Neural Transm. 1985;62(1-2):77–89. doi: 10.1007/BF01260417. [DOI] [PubMed] [Google Scholar]
  34. Suzdak P. D., Gianutsos G. Effect of chronic imipramine or baclofen on GABA-B binding and cyclic AMP production in cerebral cortex. Eur J Pharmacol. 1986 Nov 12;131(1):129–133. doi: 10.1016/0014-2999(86)90526-1. [DOI] [PubMed] [Google Scholar]
  35. Suzdak P. D., Gianutsos G. Parallel changes in the sensitivity of gamma-aminobutyric acid and noradrenergic receptors following chronic administration of antidepressant and GABAergic drugs. A possible role in affective disorders. Neuropharmacology. 1985 Mar;24(3):217–222. doi: 10.1016/0028-3908(85)90077-2. [DOI] [PubMed] [Google Scholar]
  36. Szekely A. M., Barbaccia M. L., Costa E. Effect of a protracted antidepressant treatment on signal transduction and [3H](-)-baclofen binding at GABAB receptors. J Pharmacol Exp Ther. 1987 Oct;243(1):155–159. [PubMed] [Google Scholar]
  37. Watling K. J., Bristow D. R. GABAB receptor-mediated enhancement of vasoactive intestinal peptide-stimulated cyclic AMP production in slices of rat cerebral cortex. J Neurochem. 1986 Jun;46(6):1755–1762. doi: 10.1111/j.1471-4159.1986.tb08493.x. [DOI] [PubMed] [Google Scholar]
  38. Wojcik W. J., Neff N. H. gamma-aminobutyric acid B receptors are negatively coupled to adenylate cyclase in brain, and in the cerebellum these receptors may be associated with granule cells. Mol Pharmacol. 1984 Jan;25(1):24–28. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES