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Abstract
A new induced dipole polarization model based on interacting Gaussian charge densities is presented.
In contrast to the original induced point dipole model, the Gaussian polarization model is capable of
finite interactions at short distances. Aspects of convergence related to the Gaussian model will be
explored. The Gaussian polarization model is compared with the damped Thole-induced dipole
model and the point dipole model. It will be shown that the Gaussian polarization model performs
slightly better than the Thole model in terms of fitting to molecular polarizability tensors. An
advantage of the model based on Gaussian charge distribution is that it can be easily generalized to
other multipole moments and provide effective damping for both permanent electrostatic and
polarization models. Finally, a method of parameterizing polarizabilities is presented. This method
is based on probing a molecule with point charges and fitting polarizabilities to electrostatic potential.
In contrast to the generic atom type polarizabilities fit to molecular polarizability tensors, probed
polarizabilities are significantly more accurate in terms of reproducing molecular polarizability
tensors and electrostatic potential, while retaining conformational transferability.
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Introduction
In recent years, including polarization in Molecular Dynamics Simulations has been the center
of a considerable amount of effort.1,2 It is known that molecular dipole moments change
significantly when transferred from gas to liquid phase; nonpolarizable classical force fields
based solely on additive models are not able to capture this effect. Rather, permanent molecular
dipole interactions are often enhanced to compensate.3

Including an explicit polarization term in the force field is a method to model these multibody
effects in condensed phase, while still being able to correctly calculate gas phase properties,
such as dimer geometries and interaction energies. Polarization is likely to be particularly
important in accurate descriptions of biomolecular interactions. A further important advantage
of using a polarizable force field relates to parameter development. If polarization is included,
a force field may be parameterized to reproduce accurate gas-phase quantum data and then still
be expected to do well in the liquid phase.

Several polarization models such as the Drude oscillator,4,5 fluctuating charges,6 and induced
dipoles7–9 have been suggested for use in water models. However, the induced dipole
model1,2,10 and the fluctuating charge model2,10 seems to have received the most attention
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in terms of force field development. The simplest induced dipole model places isotropic
inducible point dipoles on each atom. If hyperpolarization effects, as might arise from strong
electric fields, are absent, then the induced dipole responds linearly with respect to electric
field. In this case, the induced dipole μ⇀  on an atom is the product of the total electric field E⇀

and a scalar atomic polarizability α.
μ⇀ = αE⇀ (1)

The total electric field is composed of the external electric field from permanent charge sources
E⇀0 and the contribution from other induced dipoles. To reproduce molecular polarizability
tensors using isotropic atomic polarizabilities, induced dipoles within the same molecule
should interact with one another.11 Applequist et al. found parameters for this model by fitting
atomic polarizabilities to experimental molecular polarizability tensors.12

The development of the interacting induced point dipole model was an important step in
modeling polarization because it led to accurate calculations of molecular polarizability
tensors. The most serious drawback to using the original point dipole model is known as the
polarization catastrophe. This phenomenon happens when two mutually interacting inducible
dipoles with atomic polarizabilities α1 and α2 diverge at a finite distance, given by:

R = (4α1α2)1∕6 (2)

During a molecular dynamics simulation, this situation leads to nonphysical forces and
velocities causing the simulation to fail. Thole13,14 remedied this problem by applying a
damping function to dipole–dipole interactions. As an added feature, the damped model
resulted in an improved fit to the molecular polarizability tensor data relative to the Applequist
point dipole model.

An alternative to the damped interaction model by Thole, which has recently been suggested,
is to employ interacting Gaussian densities rather than point dipoles.15,16 An advantage of
using a charge distribution model over the Thole model is that it may be readily generalized
to other multipole moments. For example, a point charge could be replaced by a Gaussian ‘s’
orbital and a dipole could be replaced by a ‘p’ orbital.17 It has been shown that point multipoles
are the large exponent limit of Hermite Gaussian functions.18 Indeed, multipoles in current
force fields1 could be replaced by Hermite Gaussian functions,19 which effectively damp short
range electrostatic interactions and provide a more realistic description of penetration effects,
and which can be significant in dimer geometries.20,21

A peculiar aspect of the Gaussian model that relates to the polarization catastrophe should be
pointed out. If the inducible point dipoles are replaced by inducible Gaussian dipoles, it might
be expected that the interaction remains finite, since the interaction of two permanent Gaussian
dipoles is finite at all distances. However for large exponents, the Gaussian dipoles start to
behave like point dipoles, which interact strongly. If the exponents are too large, the interaction
is too strong and a polarization catastrophe occurs. A relationship between the minimum
diffuseness of the Gaussian exponent β and atomic polarizability α, namely:

β < 1

(α 4
3 8π )

1
3

(3)

will be derived in the Appendix that will prevent a polarization catastrophe.

A similar analysis was performed on the Thole model,13 {ρ(u) = 3a/4π exp((au3)}, and the
maximum value of the damping parameter a was found to be 1.0.
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Here, the Gaussian induced dipole model is compared with the damped Thole and the
Applequist point dipole models. In the same spirit as Thole and Applequist, transferable atom
type polarizabilities will be derived for all three models by fitting to molecular polarizability
tensors calculated at the B3LYP/cc-pVTZ level.

Polarizabilities generated by fitting to molecular polarizability tensor data are convenient in
that they are transferable among related molecular classes, however they are limited in accuracy
because they rely on the assumption of atom types. For example, all oxygen atoms are grouped
into one class and assigned the same polarizability, regardless of the neighboring environment.
In this paper, an independent procedure for generating atomic polarizabilities will be presented.
It is based on probing a molecule with point charges2,22 or external electric fields10 and
calculating the response electrostatic potential, which is the potential generated by the molecule
in the external field of the point charge probes minus the potential of the molecule in vacuum.
Atomic polarizabilities are then fit to this response potential on a grid of points encompassing
the molecule. Just as atomic charges fit to the electrostatic potential are found to reproduce
molecular dipole moments,3,23,24 probed polarizabilities fit to the electrostatic response
potential are found to reproduce molecular polarizability tensors. In contrast to atom type
polarizabilities, probed polarizabilities are optimized for specific molecules improving
accuracy.

While nontransferable, Gaussian probed polarizabilities are readily computed. Like fitted
atomic partial charges, probed polarizabilities are not transferable between molecules.
However, probed polarizabilities are conformationally invariant, which is important for
electrostatics of flexible molecules. The Gaussian polarization model is being incorporated
into the AMBER25 molecular dynamics simulation package. Probed polarizabilities will be
generated for the AMBER26,27 and GLYCAM28 force fields, and the fitting program will be
made available.

Method
Gaussian Model

In this section, aspects of implementing a Gaussian charge density model will be presented. In
particular, the dipole–dipole interaction matrix and relationships for electric potential and fields
will be needed for the Gaussian polarization model. Interaction energies can be expressed in
terms of ‘effective’ electric fields between Gaussian particles. The ‘effective’ electric field
rather than the ordinary electric field are used to induce polarization. It will be shown in a
future paper that the use of ‘effective’ electric fields is necessary for the energy, work, and
force for the Gaussian induced dipole model to have the same form as the induced point dipole
model.29 These results are stated below and a discussion of electric potential and fields is
provided in Appendix A.

A Gaussian ‘s’ orbital charge density with nuclear center at R→ , charge q, and exponent β is
given by:

ρs(r
→; R→) = q( β 2

π )
3
2
e−β 2∣r→−R→∣2 (4a)

Similarly, a Gaussian ‘p’ orbital density with dipole moment μ→  is given by:

ρp(r→; R→) = μ→ ⋅ ∇R ( β 2

π )
3
2
e−β 2∣r→−R→∣2 (4b)
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The interaction energies between two Gaussian ‘s’ and ‘p’ orbital densities at R→1 and R→2 with
exponents β1 and β2 are given by30,31

Uss = q1q2β12B0(x) (5a)

Usp = q1μ
→
2 ⋅ R→12β12

3 B1(x) (5b)

Upp = (μ→1 μ→2)β123 B1(x) − β12
6 (μ→1 R→12)(μ→2 R→12)B2(x) (5c)

where32,33

β12 ≡
β1β2

β1
2β2

2
(6)

R→12 ≡ R→1 − R→2

x ≡ β12R12
(7)

B0(x) ≡ erf (x)
x

B1(x) ≡ − 1
x

d
dx B0(x) = 1

x 2 ( erf (x)
x − 2

π
e−x 2)

B2(x) ≡ − 1
x

d
dx B1(x) = 1

x 4 (3 erf (x)
x − 2

π (3 + 2x 2)e−x 2)
(8)

and erf(x) is the error function defined by:

erf (x) ≡ 2
π ∫0xexp( − u2)du (9)

It should be noted that for large x, erf(x) → 1 and the point charge - point dipole behavior is
recovered.

Equation (5c) can be rewritten as:
Upp = μ→1 ⋅ T→

→12 ⋅ μ→2, (10)

in which T→
→12 is the symmetric dipole–dipole interaction matrix given by:

T→
→12 = β12

3 {B1(x)I→
→
− β12

2 R→12R
→
12B2(x)} (11)

The potential Vs at R→1 of a Gaussian ‘s’ orbital at R→2 with charge q2 and exponent β2 is given
by:

Vs(R→1) = q2β2B0(β2R12) (12)

Similiarly, the potential Vp at R→1 of a Gaussian ‘p’ orbital at R→2 with dipole q2 and exponent
β2 is given by:

Vp(R→1) = μ→2R
→
12β2

3B1(β2R12) (13)

The ordinary electric field at a single point from a Gaussian ‘p’ orbital can found by taking the
negative gradient of eq. (13).
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However, it proves much more convenient to define an ‘effective’ electric field E→
∼

p
2→1

 arising
from a Gaussian ‘p’ orbital with dipole μ→2 onto another Gaussian ‘p’ orbital with dipole μ→1
by:

Upp = − μ→1 ⋅ E→
∼
p
2→1

(14)

Using eq. (10), E→
∼

p
2→1

 can be written as:

E→
∼
p
2→1

= − T→
→12 ⋅ μ→2 (15)

The ordinary potential and electric field arises from a single charge distribution, while the
‘effective’ electric field from one Gaussian particle to another takes into account both charge
distributions. In Appendix A, ‘effective’ potentials and electric fields can be derived by
considering the variation in energy when an infinitesimal Gaussian test particle is added to the
system. Finally, the ‘effective’ electric field arising from a point charge source onto a Gaussian
particle is given by:

E→
∼
q
2→1

= q2β12
3 R→12B1(β12R12) (16)

Polarization Model
The Gaussian induced dipole model is essentially that of Applequist and Thole, except that the
dipole–dipole interaction matrix T→

→12 is given by eq. (11) and the electric fields used are
‘effective’ [eqs. (15) and (16)] between Gaussian particles. Each of the N particles has an
isotropic polarizability αi assigned to it. The induced dipole on particle i is the product of the
atomic polarizability αi and the sum of the external electric field due to permanent charges
E→0,i and the electric field due to other induced dipoles, − ∑ j≠i T

→→ ijμ→ j.

μ→i = αi(E→0,i − ∑
j≠i

T→
→ij ⋅ μ→ j) (17)

This is a linear equation in μ→ i, which can be solved and the molecular polarizability tensor can
be calculated as in ref. 12 To summarize, the symmetric molecular polarizability tensor,
αpq

mol, is defined by:

(μx
mol

μy
mol

μz
mol

) = (αxx
mol αxy

mol αxz
mol

αyx
mol αyy

mol αyz
mol

αzx
mol αzy

mol αzz
mol

)(Ex
0,mol

Ey
0,mol

Ez
0,mol

) (18)

where μ→mol is the molecular induced dipole and E→0,mol is an external electric field applied to
the molecule. To solve for αpq

mol, eq. (17) can be rewritten as

A
‒
μ
‒

= E
‒0

(19)

where μ
‒

 and E
‒0

 are 3N column vectors, and A
‒

 is a 3N × 3N matrix given by:

ELKING et al. Page 5

J Comput Chem. Author manuscript; available in PMC 2008 January 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



A
‒

=

α1
−1 0 0 0

0 α2
−1 … …

⋮ ⋮ ⋱ …

0 0 0 αN
−1

+

0 T 12 … T1N

T 21 0 … …

⋮ ⋮ ⋱ …

T N1 T N2 … 0

(20a)

or in tensor notation,

A
‒

pq
ij

= 1
αi

δijδpq + T pq
ij (21b)

Solving for μ
‒

 in eq. (19),

μ
‒

= B
‒
E
‒

(22)

where B
‒

≡ A
‒−1

. Since the total induced molecular dipole is found by summing the induced

atomic dipoles, the calculated molecular polarizability tensor αpq
mol is the direct sum of B

‒
 over

particle number.

αpq
mol = ∑

i=1

N
∑
j=1

N
B
‒

pq
ij

(23)

In the simple case of diatomic molecules, the polarizability tensor has two independent
components: one parallel to the bond axis α∥ and another perpendicular to the bond axis α⊥.
By considering two particles interacting in one dimension, these components can be derived
for the Gaussian model by solving for μx

1 and μx
2 in eq. (17) using eq. (11):

α∥ =
α1 + α2 + 2α1α2β12

3 F (x)

1 − α1α2β12
6 F (x)F (x)

(24a)

α⊥ =
α1 + α2 − 2α1α2β12

3 B1(x)

1 − α1α2β12
6 B1

2(x)
(24b)

F (x) ≡ x 2B2(x) − B1(x) (25)

where αi are the polarizabilities, R is the separation, and β, B1, B2, and x are given by eqs. (6),
(7), and (8).

Atom Type Polarizability Parameterization
To compare the Gaussian model with other induced dipole models, a set of atom type (AT)
specific atomic polarizabilities has been derived by fitting to molecular polarizability tensors
as in Thole13 and Applequist et al.12 The geometries were optimized and molecular
polarizability tensors were calculated at the B3LYP/cc-pVTZ level for a training set of 127
organic molecules. In this work all ab initio calculations were performed at the B3LYP/cc-
pVTZ level using Gaussian 98.34 Atomic polarizabilities were fit to this data using the
Gaussian Model, the damped Thole model, and the Applequist point dipole model. For the
Gaussian Model, the exponents β were fit with a single adjustable parameter a.
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β = a

(α 4
3 8π )

1
3

(26)

The Thole model studied in this work is the same as that implemented in the AMOEBA force
field.1

ρ(u) = 3a
4π exp( − au3) (27)

As in the Gaussian model, the parameter a in the Thole model was also allowed to vary. For
both the Gaussian and Thole model, the polarization condition (see APPENDIX B) requires

a ≤ 1 (28)

The atomic polarizabilities were fit to the six independent components of the molecular
polarizability tensor (αxx

mol, αyx
mol, αyy

mol, αzx
mol, αzy

mol, αzz
mol) over the molecular training

set.

The root mean squared deviation (RMSD) in the tensor elements for a given molecule, αrmsd,
is defined by:

αrmsd ≡ 1
6 ∑

p,q

6
(αpq

mol − αpq
0,mol)2 (29)

where αpq
mol is the tensor calculated by the model and αpq

0,mol is the ab initio reference tensor.
The fitting function χ2 is defined as the sum of the squares of individual molecular tensor
RMSDs:

χ2 ≡ 1
N ∑

i=1

N
αrmsd,i

2 (30)

where N is the number of molecules. The total RMSD over the data training set is then χ χ2

was optimized using the nonlinear least squares Levenberg-Marquardt algorithm.35 Tensor
errors Δα are defined for each molecule as the tensor RMSD divided by the average eigenvalue
of the molecular polarizability tensor αeigen.

Δα ≡
αrmsd
αeigen

(31)

Probed Polarizability Parameterization Algorithm
Molecules were probed with point charges positioned around the molecule. For each probe
charge, the electrostatic potential is computed on a grid of points encompassing the molecule.
The atomic polarizabilities along with the exponent parameter a were fit to the response
electrostatic potential comprised of the probed electrostatic potentials minus the vacuum
electrostatic potential.

The ChelpG24 electrostatic grid was employed with a grid spacing of 0.3 Å and an outer grid
radius of 2.8 Å for each atom. The inner grid radii used were 1.45 Å for H, 1.5 Å for C, 1.7 Å
for N, O, F, and 2.3 Å for second and third row elements. Point charges were placed along
bond axes outside the vdW surface of the molecule defined by probe radii on each atom. The
probe radii were chosen to be large enough to be outside the vdW radii of each atom, but close
enough to adequately sample the polarization response. The probe radii were set to 2.0 Å for
H, 2.5 Å for first row atoms (C, N, O, F), 3.0 Å for second row atoms (P, S, Cl), and 3.5 Å for
third row atoms (Br). For each bond, both atoms comprising the bond were probed separately.
A single probe charge was set along the bond axis. Initially, the probe was placed on the bond

ELKING et al. Page 7

J Comput Chem. Author manuscript; available in PMC 2008 January 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



axis at the probe radii distance. However, if the probe charge happened to be inside any other
atom's probe radius, the distance along the axis was increased in increments of 0.3 Å up to a
maximum of 5.0 Å. If at 5.0 Å the probe charge was still inside another atom's probe radii, the
probe charge was discarded. For sp2 hybridized atoms or atoms containing lone pairs, an
additional point charge was placed above and below the plane at the same distance from the
nuclei as the bond axis probes (Fig. 1).

While the molecular polarizability tensor error depends weakly on the magnitude of the probe
charge, it depends strongly on the sign of the charge. Thus, it was found that both positive and
negative charges at each probe position are necessary. The probe charge magnitudes needed
to be large enough to cause a measurable response in the electric potential, but not so large that
hyperpolarization effects occur. In Figure 2, the error in molecular polarizability tensor Δα is
plotted against probe charge magnitude for some sp3 and sp2 first row molecules. Optimal
probe charges of ±0.8e for first row sp3 atoms (C, H, O, N, F), ±0.5e for sp2 first row atoms
(C, O, N), and ±1.1e for second and third row atoms (P, S, Cl, Br) were inferred from the tensor
errors.

As an example, consider the probe positioning procedure for water in Figure 3. For each OH
bond, a separate positive probe is placed next to both atoms making up the bond. This gives
four bond axis probes. Since, water has an atom with lone pairs, positive probes are also placed
above and below the plane containing the lone pair atom, giving two out of plane probes and
six positive probes altogether. Negative charge probes are also placed at the same positions as
the positive probes, giving 12 probe charges total. Another example is methane with four bonds
and no lone pair or sp2 atoms. The number of probe charges for methane is therefore 16.

Probed polarizabilities for the Gaussian model were simultaneously fit to each grid of response
electrostatic potentials generated by the point charge probes. The response electrostatic
potential is the probed potential minus the vacuum potential. This response potential is directly
compared with the potential arising from the Gaussian dipoles [eq. (12)]. The induced dipoles
were allowed to interact through ‘effective’ electric fields with one another [eq. (15)] and the
external probe charges [eq. (16)]. The induced dipoles were determined iteratively using eq.
(17).

For each molecule, the optimizable parameters were the atomic polarizabilities and a single
Gaussian exponent parameter a [eq. (26)]. If M is the number of grid of points from the ChelpG
scheme and P is the number of charge probes, the fitting function χ2 is defined by:

χ2 = 1
M ⋅ P ∑

i=1

M
∑
j=1

P
(Vij

Gauss − Vij
QM)2 (32)

V ij
Gauss [eq. (13)] and ΔV ij

QM are the model Gaussian potential and ab initio response potential

at the ith grid point of the jth probe charge, respectively. The response potential ΔV ij
QM is given

by:
ΔVij

QM ≡ Vij
QM − Vi

QM(vacuum) (33)

where V ij
QM is the ab initio potential at the ith grid point with the jth probe charge and V i

QM

(vacuum) is the ab initio vacuum potential at the ith grid point. χ2 was optimized using the
nonlinear least squares Levenberg-Marquardt algorithm.35 The RMSD in response potential
Vrmsd is given by the square root of χ2 in eq. (32).

Vrmsd = χ2 (34)
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Since the induced dipoles are linearly related to external electric field [eq. (19)], the
contribution from intramolecular polarization is constant and only the response potential need
be considered. By subtracting the vacuum potential from the total potential, the only
contribution to the response potential is from induced dipoles arising from the external point
charge source. The Gaussian inducible dipoles are allowed to interact with one another and the
probe charge. In this way, the computed polarizabilities are unaffected by either the
intramolecular polarization or the choice of the permanent electrostatic model (e.g., point
charges,3,23,24 point multipoles,1,36 Hermite Gaussian functions,19 etc.). Thus, the
permanent electrostatic model may be selected and optimized subsequent to the derivation of
the polarizabilities.37

Results
Tensor Fit Atom Type Polarizabilities

The Gaussian, Thole, and Point Dipole models were fit to ab initio molecular polarizability
tensors for selected atom types (see Table1). For both the Gaussian and Thole models, the
optimized parameters included the atomic polarizabilities and a single adjustable variable a,
which represents the diffuseness or strength of the interactions. Generally, the larger the value
of a, the stronger the induced dipole–induced dipole interactions. The optimized value of a for
the Gaussian model (0.957), and for the Thole model (0.662) were both below 1.0, satisfying
the catastrophe condition (see Appendix). The point dipole model has no damping correction,
which is equivalent to allowing a → ∞ in either the Thole or Gaussian models.

As in the original Thole13 paper, the atom types were generally the elements. An extra atom
type was also set aside for an aromatic/alkene carbon atom. To study ionic parameters relevant
to amino acids, ammonium N and H and carboxylate O atom types were also added. The
optimized parameters, the RMSD values for the fits, and the errors for all three models are
given in Table 1. For the 127 molecules studied, the Gaussian model (3.67% average error)
performed slightly better than the Thole model (3.81% error) and much better than the point
dipole model (7.78% error).

The original polarizabilities found by Thole13 and Applquist et al.12 (Table 1) were derived
by fitting to experimental gas phase molecular polarizability tensors. In general, these
polarizabilities should be larger in magnitude than those fit from the B3LYP/cc-pVTZ data.
Diffuse functions were not included in the cc-pVTZ basis set, in order to underestimate the gas
phase polarizability to better approximate what is believed to be the liquid state polarizability.
38–40

The point dipole polarizabilities are smaller than the damped Thole or Gaussian polarizabilities.
Point dipoles interact more strongly, because there is no damping and the parameters are
smaller to compensate. A similar trend also exists between the Thole and Gaussian model; for
most atom types, the polarizabilities in Thole are slightly smaller than in the Gaussian model.
The reason for this is probably due to the fact that the Thole model density ρ ∼ exp(−βr3)
decays faster than the Gaussian density ρ ∼ exp(−βr2). This would imply that the damping in
the Thole model decays quicker than in the Gaussian model. Therefore, the Thole model is
slightly more similar to the point dipole model than is the Gaussian model. To compensate for
this behavior, the Thole polarizabilities and the damping parameter a are smaller than in the
Gaussian model (a was defined in both models so that the polarization catastrophe occurs at
a = 1.0).

The molecular polarizability tensor calculated from ab initio (QM) and the three models (Gauss,
Thole, Point Dipole) are given, along with percent errors, for the illustrative case of benzene
(Table 2). The results for the Gaussian model are almost identical to the Thole model, both
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with a tensor error Δα of 2.7%. For the point dipole model, Δα is significantly larger at 11.0%.
Benzene was chosen as an example because aromatic compounds are a well-known case in
which the point dipole model does not adequately reproduce the molecular polarizability
tensor. Specifically, the component of the tensor perpendicular (z) to the molecular plane
(xy) is underestimated. This is due to weak point dipole parameters interacting strongly with
each other in the plane but not perpendicular to the plane.

Though the Gaussian model gave a better fit than did the Thole model, the performance
difference between the two models is small. This is in agreement with Thole's original work,
in which seven different damping functions all gave similar RMSD fits to the data. As stated
earlier, the main advantage of the Gaussian model over the Thole model is that point multipoles
can be readily generalized to Hermite Gaussian charge densities.

Probed Polarizabilities
Comparison With Atom Type Polarizabilities—The probed method was applied to
several test organic molecules. For each molecule, the error in the molecular polarizability
tensor Δα [eq. (31)] and the RMSD in the response field Vrmsd [eq. (34)] are calculated using
the probed polarizabilities and presented in Table 3. To compare with the generic atom type
(AT) parameters, Δα and Vrmsd are also calculated using the set of AT polarizabilities. In
virtually all cases, Δα and Vrmsd are significantly smaller for the molecule specific probed
polarizabilities than the transferable AT polarizabilities.

Since the probed polarizabilities are fit to the response field, it is not surprising that these
parameters perform significantly better than the AT parameters. For example, the Vrmsd (in
10−3 e/Å) for water is 1.02 using the probe polarizabilities and 3.02 using the AT
polarizabilities. Another example is ammonia, in which Vrmsd is 1.67 using the probe
polarizabilities and 2.72 using the AT parameters. The average of Vrmsd over all 28 molecules
was found to be 2.01 for the probed polarizabilities and 3.04 for the AT polarizabilities. In
other words, the RMSD in the response potential was on average 50% larger using the AT
polarizabilities over the probed polarizabilities.

As seen in Table 3, the probed polarizabilities also resulted in much better tensor fits Δα than
did the AT polarizabilities. The probed parameters had an average tensor error of 1.37% with
a maximum error of 2.65%. This can be compared with the transferable AT parameters, which
had an average error of 6.42% and a maximum error of 21.76%. This is remarkable since the
AT parameters were fit to the tensor, while the probed polarizabilities used no tensor
information in the fit.

The AT parameters do reasonable well if the molecule of interest was included in the atom
type training set. As an example from Table 3, the probed polarizabilities gave a tensor error
Δα of 1.44% for dimethyl ether and 1.79% for dimethyl sulfide. The AT parameters gave
acceptable results for both molecules (2.32% and 2.99% errors, respectively). However, both
of these molecules were used in the atom type (AT) training sets. On the other hand, sulfate
and sulfuric acid were not included in the AT training set. For sulfate, Δα = 20.77% and for
sulfuric acid, Δα = 21.76% using the AT parameters. This can be compared with the results
using the probe polarizabilities: Δα = 0.88% for sulfate and Δα = 1.15% for sulfuric acid. The
large errors in the AT parameters can be understood by examining the sulfur (S) polarizability.
The probed parameters predicted α = 1.2 Å3 for S in sulfate, while the AT parameters used a
generic sulfur value of α = 2.7 Å3. The AT polarizability for S of 2.7 Å3 might be appropriate
for thiols, however sulfate S is oxidized which should shift much of the electron density to the
oxygens thereby lowering the polarizability of S. Of course, a new atom type could be added
for sulfate S, and the parameters refit. An advantage of the probed molecule approach is that
it eliminates the need to arbitrarily assign atom types or refit parameters.
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The AT parameters were fit over a large collection of data to get the overall optimal molecular
polarizability tensors. It is possible that the fitting procedure for the AT parameterization
incorrectly assigned the atomic polarizabilities, but is still able to reproduce the tensor. As an
example, the probed and AT atomic polarizabilities are given for acetamide in Figure 4. In
Table4, the molecular polarizability tensor is given for both models and compared with the
reference ab initio (QM) value. Since Δα = 1.30% for the probed and Δα = 2.33% for the AT
parameters, both sets are able to reproduce the tensor. However, the AT polarizabilities are
20% smaller than probed polarizabilities for the amido C, N, and O atoms, while the AT
polarizabilities on the polar H atoms are 30% larger to compensate. The probed polarizabilities
suggest that the amido C (αC = 1.20 Å3) is more polarizable than the methyl C (αC = 1.08
Å3). In general, the probe polarizabilities find that sp2 C is more polarizable than sp3 C (e.g.,
αC = 1.05 Å3 for ethane and αC = 1.40 Å3 for ethene).

A final example of the performance of the probed polarizabilities is given by the important
case of water. The atomic polarizabilities are given in Figure 5 and the molecular polarizability
tensors are given in Table5. The tensor error Δα is 2.09% using the probed polarizabilities and
15.04% for AT parameters. As noted earlier, the RMSD in response potential Vrmsd (10−3e/Å)
is three times smaller using the probed polarizabilities (1.02) than the AT parameters (3.02).
The poor results for water using the AT parameters are somewhat surprising since water was
included in the AT training set. Furthermore, when two new AT polarizabilities were added
specifically for water, αO and αH, and these polarizabilities were fit only to the tensor for water,
then Δα was found to be 2.02% (the exponent parameter a was constrained to 0.879 to avoid
overfitting). This would imply that the probed polarizabilities with Δα = 2.09% is near the
limit, which would best reproduce the molecular polarizability tensor in the context of the
isotropic induced Gaussian dipole model.

Limitations With the Isotropic Model—The probed polarizability scheme works well for
ordinary organic containing C, O, N, H, S, and P. The optimized exponent parameter a has an
average value of 0.926, which is below the polarization catastrophe upper bound of 1.0. In
general, sp3 hybridized molecules performed slightly better than sp2 molecules, (e.g., Δα =
1.10% for ethane, Δα = 2.65% for ethene). A possible reason for this is that the isotropic atomic
polarizability model studied in this paper assumes spherically symmetric induced dipoles on
each atom. The electron density around a sp3 hybridized molecule should be more spherically
isotropic than a molecule which is sp2 hybridized. Further evidence suggest that highly
symmetric molecules give better results than molecules of lower symmetry, (e.g., Δα = 0.10%
for ammonium cation and Δα = 2.22% for ammonia).

To further test the limits of the isotropic atomic polarizability Gaussian model, polarizabilities
were computed for diatomic halides (Table6). During the optimization, the exponent parameter
a diverged to infinity implying point dipole behavior and large errors occurred in the molecular
polarizability tensors. These discrepancies can be rationalized by looking at the two
independent tensor components: α∥ which is the tensor component parallel to the bond axis
and α⊥ which is perpendicular to the bond axis [eqs. (24a) and (24b)]. In the diatomic halides,
α∥ is too small and α⊥ is too large. For example in F2, the ab initio values are α∥ = 1.567 and
α⊥ = 0.431, and the optimized model values are α∥ = 1.197 and α⊥ = 0.722. In a purely additive
polarization model, in which the isotropic induced dipoles do not interact with each other, the
molecular polarizability tensor is isotropic, e.g. α∥ = α⊥ in the diatomic case. It is the interaction
between the isotropic induced dipoles that causes anisotropy in the tensor, and α∥ > α⊥ in the
diatomic molecule case. The larger the interaction, the greater the difference between α∥ and
α⊥. The largest possible interaction is that of no field damping or induced point dipoles. For
the diatomic halides, even point dipoles did not provide a sufficiently strong interaction to
accurately reproduce α∥ and α⊥. The worst case is F2, with Δα = 27.9%. These large differences
between ab initio and derived values for α∥ and α⊥ implies that isotropic atomic polarizabilities
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on atoms alone are not a good approximation for diatomic halides or any other highly
anisotropic molecule. If anisotropic atomic polarizabilities were employed,10 then the atomic
polarizability tensor could have different components parallel and perpendicular to the bond
axis. This would allow for the possibility of correctly calculating α∥ and α⊥ for the molecule
even in the absence of induced dipole–induced dipole interactions. Anisotropic induced dipoles
would be necessary to reproduce the tensor correctly for highly anisotropic molecules such as
F2. Anisotropic induced dipoles can be represented by generalizing the scalar atomic
polarizability α to an atomic polarizability tensor αpq.

The poor performance of the isotropic Gaussian model for the diatomic halides is due to a
limitation in assuming isotropic atomic polarizabilities and not to the Gaussian model or the
probed polarizabilities. To illustrate this, polarizabilities were fit solely to the tensor of F2 for
the point dipole, Gaussian, and Thole models (Table7). For the Gaussian and Thole models,
the exponent parameter a was constrained to the maximum value of 1.0. The tensor errors
Δα were 26.8% for the point dipole model, 27.2% for the Thole model, and 30.3% for the
Gaussian model. The Thole model agreed more with the point dipole model than did the
Gaussian model. This is a further evidence that the Thole model behaves slightly more like
point dipoles than the Gaussian model. As mentioned earlier, a solution to this problem would
be to employ anisotropic atomic polarizabilities.

However, the results for the diatomic halides mentioned above do not pose a serious limitation
to the isotropic induced Gaussian model. Reasonable results were obtained when the probed
method was applied to acid halides and halogenated organic molecules (Table8). The exponent
parameter a for the nonhalide atoms was allowed to optimize (except for HF) while the halide
exponent parameter was constrained to the maximum value of 1.0. The tensor errors Δα are
much smaller for these halogen containing compounds cases (0.6−4.4%). Other anisotropic
molecules not presented in Table 3 were also studied, many of which gave reasonable results
for Δα: 2.0% for N2, 5.1% for CN− , 3.2% for CO, 2.4% for ethyne, 2.3% for CO2, and 2.0%
for CS2.

Effects of Molecular Conformation—It would be highly desirable if the probed atomic
polarizabilities could be fit to a single molecular conformation. To examine the extent to which
polarizabilities were sensitive to conformation, probed polarizabilities derived for a single
geometry were tested on other conformations generated by rotating internal torsion angles. It
was found that probed polarizabilities generated from a single geometry could reproduce both
the molecular polarizability tensor and also the response potential.

The effects of multiple torsion conformations on molecular polarizability tensor using a single
set of atomic polarizabilities were tested on glycine dipeptide (Fig. 6). The torsion angles φ ≡
C1-N1-C2-C3 and ψ ≡ N1-C2-C3-N2 along the main axis were considered. The geometry was
fully optimized at the B3LYP/cc-pVTZ level (φ, ψ = 180°, 180°), and atomic polarizabilities
were generated for this single geometry using the probed method. The torsion angles φ and
ψ were then rotated from 45° to 315° in increments of 30°. The two angles were constrained
to the rotated values, while the rest of the geometry was allowed to relax. The molecular
polarizability tensors for these constrained geometries were then calculated using the probed
atomic polarizabilities generated from the single optimized geometry (φ,ψ = 180°, 180°) and
then compared with the reference ab initio values at those rotated geometries. The error in the
tensor Δα is presented for φ and ψ in Figure 7. Over the conformational space, the variation in
the tensor between the optimized and the rotated geometries reached as high as 17.2% and
averaged to 12.8%. Despite the large variation in the tensor, the error in the tensor Δα never
increased above 1.5%, and the average of Δα over all conformations was found to be 0.87%.
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Similar results were found by rotating a single torsion angle along the X-C-C-Y axis for ethylene
glycol, fluoropropane, and NH2CH2CH2CO2

−

The RMSD in the response potential Vrmsd was also found to be essentially invariant across
multiple torsion conformations. The geometry of NH2CH2CH2CO2

− was optimized and a set of
probed polarizabilities were generated for this geometry, α0. At the fully optimized geometry,
the torsion angle along the main axis of NH2CH2CH2CO2

−, ωNCCC, was found to be 65.9°.
ωNCCC was then rotated and constrained to 0°, 60°, 120°, and 180° while the rest of the
geometry was allowed to relax. Four new sets of probed polarizabilities were generated at each
new torsion configurations, αi (i = 1.4). In Figure 8, the response field RMSD Vrmsd was plotted
for each of the rotated geometries using the optimized geometry set of polarizabilities, α0, and
also the set of polarizabilities generated specifically for that geometry, αi. It was found the
relative error for Vrmsd between the two sets of polarizabilities was less than 1.0% for all four
torsion geometries (see Fig. 8). This can be compared with an average relative error for
Vrmsd between the probed and the AT polarizabilities of ∼50% (Table 3). Similar results were
also found for ethylene glycol and fluoropropane.

Conclusions
The Gaussian polarization model has been examined as an alternative to the Thole model.
Originally, the Thole model was designed to fix the polarization catastrophe problem
associated with the point dipole model. In the Thole model, a damping function is applied to
keep short-range induced dipole–induced dipole interactions finite. A more recent model based
on replacing point dipoles with ‘p’ orbital Gaussian charge densities has also been suggested.
13,14 In the Appendix, it is shown that the Gaussian model is also capable of finite induced
dipole–induced dipole interactions at short range. However, in order to prevent a polarization
catastrophe at all distances, the Gaussian exponent should be sufficiently ‘diffuse’. A
relationship on the maximum size of the Gaussian exponent and the polarizability was derived.
A similar condition was also derived for the Thole model. In both the Gaussian and Thole
models, the catastrophe condition is satisfied if the exponent parameter a is less than 1.0 [eqs.
(26) and (27)].

The performance of the point dipole, Thole, and Gaussian isotropic induced dipole models
have been compared by optimizing atom type atomic polarizabilities to molecular polarizability
tensors calculated at the B3LYP/cc-pVTZ level on a data set of 127 organic molecules. The
Gaussian model (3.67% avg. tensor error) performed slightly better the Thole model (3.81%)
and much better than point dipole model (7.78%). The limits of using isotropic atomic
polarizabilities can be seen by analyzing highly anisotropic molecules, such as diatomic
halides. For these examples, the parameters tended towards strongly interacting point dipoles.
To better represent these less common cases, anisotropic atomic polarizabilities are needed.

When atom type polarizabilities are derived by fitting to a data set of molecular polarizability
tensors, a question arises: how transferable are these atom type parameters. Here, it was found
that atom type polarizabilities are transferable only to the extent that the atom types are
appropriately identified. An alternative method of optimizing polarizabilities, which is
molecule specific, was also presented. It is based on probing a molecule with point charges
and fitting the polarizabilities to the response field. The approach is similar to the derivation
of atomic partial charges by electrostatic potential fitting, and many of the ideas were borrowed
from the well-known ChelpG method. The probed polarizabilities were tested against atom
type polarizabilities over 28 molcules. In all cases, the probed polarizabilities showed a
significant improvement over the transferable atom type parameters. The probed method gave
an average tensor error Δα of 1.41% and a maximum tensor error of 2.7%. This can be compared
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with the transferable atom type polarizabilities that yielded an average tensor error of 6.5%
and a maximum error of 21.8%. The probed polarizabilities also predicted the response
potential significantly better than the transferable atom type parameters. The average of
response potential RMSD Vrmsd (in 10−3 e/Å) over the 28 molecules was 2.01 for the probed
polarizabilities and 3.04 for the AT polarizabilities.

The probe charge method is capable of generating polarizabilities that are specific to the
molecule and are therefore sensitive to each atoms chemical environment. For example, it was
found that the polarizability on the carbon atom for methane, methanol, and fluoromethane
was found to be 1.05, 0.85, and 0.75 Å3, respectively. These values agree with chemical
intuition in that electron withdrawing groups should lower the electron density and therefore
the polarizability on the carbon atom. In general, it would be difficult to arrive at this level of
sensitivity by fitting to tensor data alone because the molecular polarizability tensor has at most
six independent components. In most cases, polarizabilities for a single molecule containing
many atom types cannot be fit to the tensor alone because there is simply not enough data.
Notably, it may be possible to use the probe method to derive transferable atom type
polarizabilities. The probed charge method could be carried out separately on a large collection
of molecules. The resulting parameters could be compared and generalizations relating atom
types could then be made. However, if atom specific partial charges are used, it would seem
natural to also assume atom specific polarizabilities.

It was also found that atomic polarizabilities are not sensitive to geometric rotations about
torsion angles, as shown in the glycine dipeptide and NH2CH2CH2CO2

−. Both the molecular
polarizability tensor and the response potential could be accurately reproduced over multiple
conformations using a single set of probed polarizabilities. This very fortunate result is
important in the construction or application of force fields for molecular simulation.

All of the atomic polarizabilities presented in this work are independent of the permanent
electrostatic model used. The atom type polarizabilities were fit to molecular polarizability
tensors and the probed polarizabilities were fit to the response electrostatic potential.
Intramolecular polarization effects can be accounted for later when the permanent electrostatic
model is fit. In this way, the atomic polarizabilities generated could be used in any electrostatic
model; for example, point charges, point multipoles, or Hermite Gaussian functions.

Both the Thole and Gaussian isotropic polarizability models perform well for most organic
molecules. Although the Gaussian model did slightly better than the Thole model over the 127
molecule atom type training set, the difference between the two in terms of performance is
small. Although it was not tested, the probed procedure could be applied to the Thole model
and still be expected to generate accurate results. The Thole model is somewhat arbitrary, since
in the original Thole paper, seven different damping functions performed equally well in terms
of fitting to tensor data. The main advantage of the Gaussian model over the Thole model is
the possible generalization of other point multipoles to Gaussian charge densities.
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Appendix A
In this section, results pertaining to potential and electric fields for Gaussian particles will be
discussed. In particular an ‘effective’ electric field between Gaussian particles was introduced
in eq. (14). The use of ‘effective’ electric potentials and fields is convenient because it explicitly
takes into account the charge distributions from both particles. The ‘effective’ potential form
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a Gaussian particle can be derived by considering the variation in interaction energy of an
infinitesimal Gaussian test charge with the Gaussian particle.

As noted earlier, the point charge limit can be found by taking the limit of large exponent β.
For example, the interaction energies of a point charge q1 with a Gaussian ‘s’ or ‘p’ charge
density with exponent β2, Uqs and Uqp, can be found by letting β1 → ∞ and β12 → β2 in eqs.
(5a) and (5b).

Uqs = q1q2β2B0(β2R12) (A1a)

Uqp = q1μ
→
2 R→12β2

3B1(β2R12) (A1b)

The ordinary electrostatic potential of a charge distribution can be defined as the variation in
interaction energy δUδq1

 41 when an infinitesimal point charge is added to the system. Therefore,

the electrostatic potential (13a and 13b) of a Gaussian ‘s’ and ‘p’ orbital distribution can be
obtained by differentiating eqs. (A1a) and (A2a) with respect to q1.

Now consider a system composed only of Gaussian particles. It proves very convenient to
define an analogous ‘effective’ potential Ṽ as the variation in interaction energy δU

δq1
 when an

infinitesimal Gaussian charge q1 with exponent β1 is added to the system. The ‘effective’
potential on a Gaussian charge with exponent β1 at R→1 from a Gaussian ‘s’ and ‘p’ orbital at
R→2 with exponent β2 can be found by differentiating eqs. (5a) and (5b) with respect to q1:

V
∼

s(R→1) = q2β12B0(β12R12) (A2a)

V
∼

p(R→1) = μ→2 ⋅ R→12β12
3 B1(β12R12) (A2b)

The analogous ‘effective’ electric fields E→
∼

 between Gaussian particles can be found by taking
the negative gradient of eqs. (A2a) and (A2b):

E→
∼
s
2→1

= q2β12
3 R→12B1(β12R12) (A3a)

E→
∼

p
2→1

= μ→2β12
3 B1(β12R12) − β12

6 (μ→2R
→
12)R→12B2(β12R12) (A3b)

Using eq. (11), eq. (A3b) can be rewritten in terms of the dipole–dipole interaction matrix
T→
→12 as

E→
∼

p
2→1

= − T→
→12μ→2 (A4)

The interaction energy a Gaussian ‘p’ orbital with another Gaussian ‘s’ or ‘p’ orbital [eqs. (5b)
and (5c)] can be conveniently be rewritten in terms of ‘effective’ electric fields.

Usp = − μ→1 E→
∼
s
2→1

(A5)

Upp = − μ→1 E→
∼

p
2→1

(A6)
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Finally, the ‘effective’ electric field arising from a point charge source onto a Gaussian particle
is found from eq. (A3a), with β2 → ∞ and β12 → β1

E→
∼
s
2→1

= q2β1
3R→12B1(β1R12) (A7)

Appendix B
In both the Gaussian and Thole models, it was stated previously that the exponent parameter
a [eqs. (28) and (29)] should be less than 1.0 in order to prevent a polarization catastrophe. For
the Gaussian model, this implies the induced charge density should be sufficiently diffuse. This
condition will now be derived.

Consider two interacting inducible dipoles with polarizabilities α1 and α2 separated by a
distance R along the x-axis. Since induced dipoles parallel to the separation axis interact more
strongly than dipoles that are perpendicular to their separation axis, it suffices to consider
dipoles interacting parallel to their separation axis. In order for the interaction between two
dipoles to be finite, the denominator in eq. (26a) should be positive.

1 > α1α2β12
6 F (x)F (x) (B1)

where
F (x) ≡ x 2B2(x) − B1(x) (B2)

and β12 and x are defined by eqs. (6) and (7). F(x) is plotted in Figure 9.

Let
F0 ≡ max{ ∣ F (x) ∣ } = 4

3 π
≈ 0.752252778 (B3)

which occurs at x = 0.

If β1 and β2 are chosen such that
βi < 1.0

(αi
4

3 8π )
1
3

i = 1, 2 (B4)

then eq. (A1a) is valid for all x. [Note this equivalent to a < 1.0 in eq. (28)].

Proof:
1

β12
2 = 1

β1
2 + 1

β2
2 = ( 1

β1
− 1

β2
)2 + 2

β1β2
≥ 2

β1β2
(B5)

or

β12
2 ≤

β1β2
2 (B6)

Using eqs. (B3) and (B6), eq. (B1) becomes

α1α2β12
6 F (x)F (x) ≤ α1α2β12

6 F0
2 ≤ α1α2( β1β22 )3F0

2 (B7)

If βi [eq. (B4)] and F0 [eq. (B3)] is substituted into eq. (B7), eq. (B1) is satisfied.

A similar analysis can be applied to the Thole model. The dipole–dipole interaction is:8
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T→
→Thole = 1

R 5 {R 2(1 − e−au3)I→→ − 3R→R→(1 − (1 + au3)e−au3)} (B8)

where
u ≡ R

(α1α2)
1
6

(B9)

The sign convention is that used in Applequist et al.12 and Thole.13 In one dimension, the
tensor can be solved for explicitly:

α∥ =
α1 + α2 + 2 α1α2F

∼
(u)

1 − F
∼
(u)2

(B10a)

α⊥ =
α1 + α2 − 2 α1α2G

∼
(u)

1 − G
∼
(u)2

(B10b)

where F(̃u) and G̃(u) are defined by:

F
∼
(u)

≡ 1

u3 (2 − (2 + 3au3)e−au3)

G
∼
(u)

≡ 1

u3 (1 − e−au3)
(B11)

A catastrophe doesn't occur as long as the denominator of eq. (B10a) is positive.

1 − F
∼
(u)2 > 0 (B12)

Let

F
∼
0 ≡ max{ ∣ F

∼
(u) ∣ } = a (B13)

which occurs at u = 0. The catastrophe condition then becomes:

F
∼
(u)2 ≤ F

∼
0
2

< 1 (B14)

i.e., a < 1.0.

References
1. Ren, P.; Grossfield, A.; Ponder, JW. AMOEBA Force Field. Available at ftp://dasher.wustl.edu/pub/

tinker/params
2. Kaminski GA, Stern HA, Berne BJ, Friesner RA, Cao YX, Murphy RB, Zhou R, Halgren TA. J Comput

Chem 2002;23:1515. [PubMed: 12395421]
3. Bayly CI, Cieplak P, Cornell WD, Kollman PA. J Phys Chem 1993;97:10269.
4. Lamoureux G, MacKerell AD Jr. Roux B. J Chem Phys 2003;119:5185.
5. Yu H, Hansson T, van Gunsteren WF. J Chem Phys 2003;118:221.
6. Rick SW, Stuart SJ, Berne BJ. J Chem Phys 1994;101:6141.
7. Caldwell J, Dang LX, Kollman PA. J Am Chem Soc 1990;112:9144.
8. Burnham CJ, Li J, Xantheas SS, Leslie M. J Chem Phys 1999;110:4566.
9. Ren P, Ponder JW. J Phys Chem B 2003;107:5933.
10. Palmo K, Mannfors B, Mirkin NG, Krimm S. Biopolymers 2003;68:383. [PubMed: 12601797]

ELKING et al. Page 17

J Comput Chem. Author manuscript; available in PMC 2008 January 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



11. Silberstein L. Philos Mag 1917;33(92):215, 521.
12. Applequist J, Carl JR, Fung KK. J Am Chem Soc 1972;94:2952.
13. Thole BT. Chem Phys 1981;59:341.
14. van Duijnen PT, Swart M. J Phys Chem A 1998;102:2399.
15. Paricaud P, Předota M, Chialvo AA, Cummings PT. J Chem Phys 2005;122:244511. [PubMed:

16035786]
16. Masia M, Probst M, Rey R. J Chem Phys 2005;123:164505. [PubMed: 16268710]
17. York DM, Yang W. J Chem Phys 1996;104:159.
18. Challacombe, M.; Schwegler, E.; Almlof, J. Computational Chemistry: Review of Current Trends.

Leszczynski, J., editor. World Scientific; Singapore: 1996. p. 53-107.
19. Piquemal JP, Cisneros GA, Reinhardt P, Gresh N, Darden TA. J Chem Phys 2006;124:104101.

[PubMed: 16542062]
20. Piquemal JP, Gresh N, Giessner-Prettre C. J Phys Chem A 2003;107:10353.
21. Freitag MA, Gordon MS, Jensen JH, Stevens WJ. J Chem Phys 2000;112:7300.
22. Ángyán JG, Chipot C, Dehez F, Hättig C, Jansen G, Millot C. J Comput Chem 2000;24:997.
23. Woods RJ, Khalil M, Pell W, Moffat SH, Smith VH Jr. J Comput Chem 1990;11:297.
24. Breneman CM, Wiberg KB. J Comput Chem 1990;11:361.
25. Case, DA.; Darden, TA.; Cheatham, TE., III; Simmerling, CL.; Wang, J.; Duke, RE.; Luo, R.; Merz,

KM.; Pearlman, DA.; Crowley, M.; Walker, RC.; Zhang, W.; Wang, B.; Hayik, S.; Roitberg, A.;
Seabra, G.; Wong, KF.; Paesani, F.; Wu, X.; Brozell, S.; Tsui, V.; Gohlke, H.; Yang, L.; Tan, C.;
Mongan, J.; Hornak, V.; Cui, G.; Beroza, P.; Mathews, DH.; Schafmeister, C.; Ross, WS.; Kollman,
PA. AMBER 9. University of California; San Francisco, CA: 2006.

26. Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Alagona G, Profeta S, Jr. Weiner P. J Am
Chem Soc 1984;106:765.

27. Weiner SJ, Kollman PA, Nguyen DT, Case DA. J Comput Chem 1986;7:230.
28. Woods RJ, Dwek RA, Edge CJ, Fraser-Reid B. J Phys Chem 1995;99:3832.
29. Ángyán JG, Colonna-Cesari F, Tapia O. Chem Phys Lett 1990;166:180.
30. Chelli R, Righini R, Califano S, Procacci P. J Mol Liq 2002;96:87.
31. Helgaker, T.; Jorgensen, P.; Olsen, J. Molecular Electronic-Structure Theory. Wiley; Chichester:

2004. p. 337-424.Ch. 9
32. Toukmaji A, Sagui C, Board J, Darden T. J Chem Phys 2000;113:10913.
33. Smith W. CCP5 Inf Q 1982;4:13.
34. Frisch, MJ.; Trucks, GW.; Schlegel, HB.; Scuseria, GE.; Robb, MA.; Cheeseman, JR.; Zakrzewski,

VG.; Montgomery, JA., Jr.; Stratmann, RE.; Burant, JC.; Dapprich, S.; Millam, JM.; Daniels, AD.;
Kudin, KN.; Strain, MC.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.;
Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, GA.; Ayala, PY.; Cui, Q.; Morokuma,
K.; Rega, N.; Salvador, P.; Dannenberg, JJ.; Malick, DK.; Rabuck, AD.; Raghavachari, K.; Foresman,
JB.; Cioslowski, J.; Ortiz, JV.; Baboul, AG.; Stefanov, BB.; Liu, G.; Liashenko, A.; Piskorz, P.;
Komaromi, I.; Gomperts, R.; Martin, RL.; Fox, DJ.; Keith, T.; Al-Laham, MA.; Peng, CY.;
Nanayakkara, A.; Challacombe, M.; Gill, PMW.; Johnson, B.; Chen, W.; Wong, MW.; Andres, JL.;
Gonzalez, C.; Head-Gordon, M.; Replogle, ES.; Pople, JA. Gaussian 98, Revision A. 11.3. Gaussian;
Pittsburgh PA: 2002.

35. Press, WH.; Flannery, BP.; Teukolsky, SA.; Vetterling, WT. Numerical Recipes in C: The Art of
Scientific Computing. 2nd. Cambridge University Press; Cambridge: 1992. p. 683Ch. 15

36. Stone AJ. J Mol Phys 1985;56:1047.
37. Ren P, Ponder JW. J Comput Chem 2002;23:1497. [PubMed: 12395419]
38. Kaminski GA, Stern HA, Berne BJ, Friesner RA. J Phys Chem A 2004;108:621.
39. Friesner RA, Murphy RB, Beachy MD, Ringnalda MN, Pollard WT, Dunietz BD, Cao YX. J Phys

Chem A 1999;103:1913.
40. Giese TJ, York DM. J Chem Phys 2004;120:9903. [PubMed: 15268007]
41. Jackson, JD. Classical Electrodynamics. 3rd. Wiley; New York: 1999. p. 27p. 170Ch. 1−4

ELKING et al. Page 18

J Comput Chem. Author manuscript; available in PMC 2008 January 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
(a) H—C bond axis probe on acetamide and (b) out of plane probe on amido N. [Color figure
can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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Figure 2.
(a) Tensor error dependence Δα on probe charge magnitudes for sp3 C,N,O,H and (b) tensor
error dependence Δα on probe charge magnitudes for sp2 C,N,O. [Color figure can be viewed
in the online issue, which is available at www.interscience.wiley.com.]
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Figure 3.
Positions of probe charges for water. [Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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Figure 4.
Probed and atom type (in parenthesis) polarizabilities in Å3 for acetamide. [Color figure can
be viewed in the online issue, which is available at www.interscience.wiley.com.]
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Figure 5.
Probed and atom type (in parenthesis) polarizabilities in Å3 for water. [Color figure can be
viewed in the online issue, which is available at www.interscience.wiley.com.]
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Figure 6.
Glycine Dipeptide. φ ≡ C1-N1-C2-C3 and φ ≡ N1-C2-C3-N2.
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Figure 7.
Tensor error Δα (%), dependence on φ and φ for glycine dipeptide.

ELKING et al. Page 25

J Comput Chem. Author manuscript; available in PMC 2008 January 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 8.
Vrmsd dependence on torsion angle for NH2CH2CH2CO2

−. Probed polarizabilities generated at
the fully optimized geometry are in (blue, ■) and polarizabilities generated specifically for
each torsion geometry is in (red, ▲).
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Figure 9.
F(x) ≡ x2B2(x) − B1(x). Note the maximum value of |F(x)| occurs at x = 0. [Color figure can be
viewed in the online issue, which is available at www.interscience.wiley.com.]
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Table 1
Atom Type (AT) Polarizabilities (Å3).

Atom type Gaussian a = 0.957 Thole a = 0.662 (0.572)a Applequist a → ∞

H 0.381 0.416 (0.427)a 0.181 (0.135)b
HP (ammonium H+) 0.141 0.119 0.051
C 1.090 1.010 (1.334)a 0.727 (0.878)b
C (aromatic, alkene) 1.362 1.407 0.620
N 0.801 0.709 (1.073)a 0.456 (0.530)b
NP (ammonium N+) 0.408 0.387 0.470
O 0.612 0.605 (0.837)a 0.303 (0.465)b
O2 (acid O−) 1.025 1.207 0.413
F 0.315 0.283 0.311 (0.320)b
Cl 1.921 1.844 1.778 (1.91)b
Br 2.934 2.791 2.734 (2.88)b
S 2.742 2.461 2.152
P 1.545 1.282 1.787
αrmsd (Å3) 0.260 0.280 0.615
Δα (%) 3.67 3.81 7.78

a
Values in parenthesis taken from ref. 12.

b
Values in parenthesis taken from ref. 11.
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Table 7
α∥ and α⊥ in Å3 for F2 Using Polarizabilities Fit to the Tensor for the Point Dipole, Thole, and Gaussian Models.

α∥ α⊥ Δα (%)

QM 1.566 0.430
Point dipole 1.340 0.771 26.8
Thole (a = 1.0) 1.325 0.772 27.2
Gauss (a = 1.0) 1.232 0.784 30.3
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Table 8
Tensor Error Δα and Exponent Parameter a for Halogenated Molecules.

aH,C Δα (%)

CH3F 0.954 0.6
CH3Cl 0.933 3.3
CH3Br 0.922 3.6
HF 1.000 4.4
HCl 0.834 1.5
HBr 0.779 1.0

a = 1.0 for F, Cl, Br and a was allowed to optimize for C and H (except for HF).
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