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Abstract
During the past decade, there has been a renewed interest in using P. aeruginosa as a model system
for biofilm development and pathogenesis. Since the biofilm matrix represents a critical interface
between the bacterium and the host or its environment, considerable effort has been expended to
acquire a more complete understanding of the matrix composition. Here, we focus on recent
developments regarding the roles of alginate, Psl, and Pel polysaccharides in the biofilm matrix.

Introduction
The bacterium Pseudomonas aeruginosa is a remarkably adept opportunist. If provided a
breach in local or systemic immunity, the organism can cause severe, life-threatening
infections. These infections persist despite aggressive antimicrobial therapy and a robust
inflammatory response. Perhaps the most widely recognized P. aeruginosa persistent infection
occurs in individuals with the genetic disease cystic fibrosis (CF).

The persistence of P. aeruginosa during CF infections has been linked, in part, to its ability to
form biofilms [1,2]. Biofilms, which are defined as communities of microorganisms that are
attached to a surface, play a significant role in infectious disease [3]. Bacteria within biofilms
are usually embedded within a matrix, which can consist of protein, polysaccharide, and nucleic
acid. The matrix provides a critical role in the biofilm resistance phenotype. A complete
understanding of the organization and composition of the P. aeruginosa biofilm matrix may
assist in the development of novel therapeutics aimed at disrupting biofilms, which will
translate into improved clearance of these infections. Here, we focus on the polysaccharide
components of the extracellular polymeric substance (EPS) of P. aeruginosa biofilms.

Alginate
The CF lung is initially colonized with nonmucoid P. aeruginosa strains, but with time, mucoid
variants emerge and become the predominant lung pathogen [4]. The mucoid phenotype is due
to the overproduction of alginate, a capsular polysaccharide virulence factor that confers a
selective advantage for P. aeruginosa in the CF airway. Alginate is a high molecular weight,
acetylated polymer composed of non-repetitive monomers of β-1,4 linked L-guluronic and D-
mannuronic acids. Alginate-producing variants arise in vivo most frequently due to mutations
in the negative regulator mucA [5]. There is a distinct correlation between the appearance of
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mucoid P. aeruginosa and a worsening clinical prognosis for CF patients [4]. Infection of the
CF lung causes inflammatory cells to be recruited to the site of infection, where they release
reactive oxygen species and cause extensive tissue damage [4,6]. Alginate appears to protect
P. aeruginosa from the consequences of this inflammation, since it scavenges free radicals
released by activated macrophages in vitro and appears to provide protection from phagocytic
clearance [4,6]. Although antibodies to alginate are found in the sera of chronically infected
CF patients, these antibodies fail to mediate opsonic killing of P. aeruginosa in vitro [7]. Likely
each of these properties contributes to the ability of mucoid P. aeruginosa to persist and
establish chronic infections in the CF lung. Since aspects regarding the genetics, pathogenesis,
and biochemistry of alginate have been reviewed elsewhere [4,8,9], we focus attention on
observations regarding the role of alginate in biofilms of mucoid P. aeruginosa.

Results from several independent laboratories have shown that overproduction of acetylated
alginate leads to significant architectural and morphological changes in the biofilm [10–13].
This translates into increased resistance to antimicrobials [10] or IFN-gamma-mediated killing
by cells of the innate immune system [14]. In support of this, Alkawash and colleagues showed
that degradation of mucoid P. aeruginosa biofilms by alginate lyase led to enhanced killing
by gentamicin [15]. Surprisingly however, studies from two of these groups and our work
showed that alginate synthesis is not required for biofilm development [11,12,16]. In these
studies, alginate proficient and deficient P. aeruginosa formed morphologically similar
biofilms. However, overproduction of alginate, which occurs primarily as a result of mucA
mutations, clearly affects resistance properties of the biofilm.

Psl
The above-mentioned studies were performed in alginate overproducing strains (i.e. mucA
mutants). During the past decade, there has been a renewed interest in using P. aeruginosa as
a model system for biofilm development and pathogenesis. Most of these studies have been
performed with nonmucoid (i.e. mucA+) P. aeruginosa strains such as PAO1 or PA14, which
produce little to no detectable alginate in vitro. Furthermore, when the alginate genes were
disrupted in PAO1 and PA14, these strains were fully capable of forming biofilms. The biofilms
formed by these mutants retained what appeared to be polysaccharide matrix material [16].
This suggested that one or more polysaccharides independent of alginate might be essential
for biofilm development in nonmucoid P. aeruginosa strains. Several groups initiated studies
to identify alternative polysaccharide-encoding genes, and two loci were discovered. The first,
pel (Fig. 1), was found to be involved in pellicle formation in strain PA14 [17]. The role of
pel in the biofilm matrix will be discussed below. The second polysaccharide locus designated
psl (polysaccharide synthesis locus, Fig. 1), is an operon composed of 15 genes encoding the
Psl biosynthetic machinery. The psl operon was shown to be essential for biofilm formation
in strains PAO1 and ZK2870 [18–21]. In these studies, inactivation of the psl gene cluster led
to a significant defect in cell-surface and cell-cell interactions. Psl is also required for adherence
to mucin-coated surfaces and airway epithelial cells; biotic surfaces that are clearly relevant
to CF [20]. A study in 2006 utilizing an inducible psl construct found that in addition to being
required for cell-surface and cell-cell interactions, psl is also needed for maintenance of the
biofilm structure post-attachment. This led the authors to conclude that Psl functions as a
scaffold, holding biofilm cells together in the matrix [20].

Carbohydrate and lectin staining analyses indicate that Psl is a mannose- and galactose-rich
polysaccharide, however the precise Psl structure has not been elucidated [19,21,22]. This is
an area requiring future research. Overhage and Campisano et al. demonstrated that pslA and
pslD, which encode a putative UDP-glucose lipid carrier and exporter, respectively, are
essential for biofilm formation in strain PAO1 [23,24]. They also demonstrated that while
psl is constitutively expressed in planktonic cells, its expression is localized to the center of
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developing biofilm microcolonies [24]. This implies that Psl has a role in biofilm
differentiation. Our lectin staining studies show Psl is equally distributed in undifferentiated,
flat multiple-layer biofilms. However, mature microcolonies reveal peripheral staining of Psl
with minimal staining of matrix in the center of the microcolonies. Instead, this region has
numerous motile cells representing a biofilm at a developmental stage just prior to dispersion
(L. Ma and D.J. Wozniak, unpublished data).

Pel
P. aeruginosa is able to form biofilms not only on mucosal and other solid surfaces but also
at the air-liquid interface of standing cultures. The genetic basis for these structures, known as
pellicles, was elucidated by screening a PA14 transposon library for pellicle-deficient mutants.
This revealed a seven-gene operon, named pel (Fig. 1), which is necessary for maintenance of
biofilm structure in strain PA14 [17]. The authors hypothesized that pel is involved in the
production of an extracellular matrix material. To determine the nature of this pel-associated
matrix material, mutants lacking one or more pel genes were evaluated for biofilm initiation,
colony morphology, and mature biofilm integrity. While biofilm initiation per se was not
significantly affected in PA14 pel mutants, the colony morphology was affected as well as the
ability of these cells to bind Congo red [17]. Carbohydrate and linkage analyses provide
evidence that pel encodes a glucose-rich matrix polysaccharide polymer, which does not appear
to be cellulose [17,19]. As with Psl, the Pel structure is unknown and further biochemical
analyses of Pel polysaccharide is necessary.

In a similar study using a non-piliated PAK strain, a transposon screen for nonadherent mutants
generated several mutations that mapped to the pel locus [25]. The authors suggested that any
role for pel in attachment might not be observed because type IV pili may compensate for a
lack of pel during attachment [25]. As predicted, biofilm initiation was significantly reduced
in non-piliated PAK pel mutants. Clearly the roles of pel and type IV pili in the initial
attachment process will need to be delineated.

Genes pelA-G (Fig. 1) are highly conserved in other P. aeruginosa strains, including the
common laboratory strain PAO1 [17]. The Gram-negative plant pathogen Ralstonia
solanacearum contains a homologous gene cluster that, when mutated, resulted in a biofilm-
defective phenotype similar to that observed in P. aeruginosa pel mutants [25]. Putative
functions in polysaccharide processing have been assigned to most of the pel genes, (Fig. 1)
and [17,19,25,26].

Thus, the pel locus produces a glucose-rich matrix polysaccharide that is essential for pellicle
formation and biofilm structure in P. aeruginosa strains PA14 and PAK. The pel-encoded
polysaccharide is biochemically and genetically distinct from Psl. To date, no immunological
or lectin reagents are available to probe Pel expression or localization in developing P.
aeruginosa biofilms.

Regulation of Psl and Pel polysaccharide
Currently, little is known regarding the regulation of Psl and Pel but several seemingly disparate
findings have begun to shed some light on this issue. D’Argenio et al. performed transposon
mutagenesis of strain PAO1 and isolated a number of colonies that exhibited a “wrinkly”
colony phenotype [27]. Genetic analysis of these mutants revealed that mutations in the
wspF gene lead to the hyperaggregative phenotype. The wsp locus was first described in P.
fluorescens and appears to encode a chemosensory system involved in the wrinkly spreader
phenotype [28]. Here, WspF controls the methylation state of WspA, which subsequently
controls activation of the response regulator WspR. If wspF is inactivated, WspA is
hypermethylated and WspR is constitutively active.
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In a later study, Kirisits et al. reported similar hyperaggregative and hyperadherent PAO1-
derived colony variants isolated from biofilm reactors [29]. Transcriptional profiling of these
variants showed increased psl and pel expression, when compared with the parental PAO1
strain. Disruption of the psl operon in the variant reversed the hyperaggregative and
hyperadherent phenotype but colonies still retained a wrinkled phenotype, presumably due to
Pel overexpression. Therefore, the authors conclude that psl, in addition to pel and perhaps
other components are expressed at a higher level and responsible for the hyperaggregative and
hyperadherent variant phenotype [29]. Similar conclusions were drawn by Friedman and Kolter
when analyzing the autoaggregative P. aeruginosa variant ZK2870 [19]. In support of this,
over-expression of Psl via a pBAD-derived promoter system is sufficient to convert P.
aeruginosa to a phenotype that resembles the above-mentioned autoaggregative variants
[20].

It is reasonable to assume that the wrinkled colonies in the aforementioned D’Argenio study
[27] also overexpress psl and pel and that this overexpression is caused by activation of WspR.
In fact, a later study by Hickman et al. showed an increase in psl and pel expression in a
wspF mutant [30]. This study further evaluated the effect of the Wsp system by investigating
the role of WspR as a diguanylate cyclase. Proteins with this activity generate cyclic-di-GMP,
a small signaling molecule involved in many cellular processes [31]. The levels of cellular c-
di-GMP appear to correlate with the biofilm forming ability of P. aeruginosa. When WspR
was constitutively activated, as seen in a wspF mutant, c-di-GMP levels were high and biofilm
formation was greater than in the wild type strain. As seen in the above-mentioned
autoaggregative variants, a transcriptional profile of wspF mutant bacteria revealed elevated
levels of psl and pel transcription, when compared with the parental strain. This study also
elegantly illustrated that when c-di-GMP was degraded, biofilm formation decreased
substantially. This strengthens the relationship between psl and pel expression, the Wsp
chemosensory system, and cellular levels of c-di-GMP.

Another regulatory system controlling psl and pel expression is the GacS/GacA/rsmZ system.
In a study of two-component systems in strain PAK, a mutation in retS, encoding a hybrid
sensor kinase/response regulator, elevated psl and pel expression resulting in enhanced biofilm
formation [32]. A second round of transposon mutagenesis in the retS strain revealed that
mutations in the GacS/GacA/rsmZ regulatory pathway reversed the retS phenotype. GacS and
GacA are a sensor-regulator two-component pair and rsmZ is a small regulatory RNA that
represses the activity of the posttranscriptional RNA binding protein RsmA. The model for
how this system functions is as follows [33]: signals that activate RetS repress expression of
rsmZ whereas signals that activate GacS induce rsmZ expression. When rsmZ levels are high,
RsmA is inactive and this results in increased psl and pel expression. The opposite is true: low
levels of rsmZ favor repression of pel and pel.. More recent work identified LadS, encoding a
hybrid sensor kinase, which also modulates rsmZ levels [34] and therefore indirectly affects
psl and pel expression.

Conclusions and perspectives
Since discovery of the Psl and Pel polysaccharides four years ago, much progress has been
made in our understanding of the P. aeruginosa biofilm matrix. This has forced us to reconsider
the notion that all P. aeruginosa biofilms are composed of alginate. We also must consider that
the relationship between biofilm formation by nonmucoid strains and those in which
conversion to mucoidy has occurred does not appear to be a change in the alginate levels in
the biofilm matrix, but a fundamental change in its carbohydrate constituents. In the context
of CF infections, the discovery of alternative polysaccharides that contribute to biofilm
formation in nonmucoid strains, which are believed to be the first to colonize, implies that
during initial infection, biofilm formation may precede the switch to mucoidy. Clearly the
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potential role of Psl and Pel in P. aeruginosa pathogenesis is an area needing further
investigation.

Future studies aimed at an understanding of individual psl and pel gene functions and regulation
of their expression will provide more information about the selective advantage of individual
P. aeruginosa polysaccharides. Additionally, the potential overlapping or redundant functions
of the Pel and Psl polysaccharides of nonmucoid P. aeruginosa is an area in need of study. A
seminal question is whether individual cells have the capacity to produce more than one
polysaccharide simultaneously. Do mucoid biofilms also contain Pel and/or Psl? Collectively,
the regulation studies illustrate that psl and pel appear to be coordinately regulated and that c-
di-GMP levels play a critical role in this control. The challenge in the coming years will be to
discern how the Wsp and RsmA/rsmZ pathways are integrated to control the acute vs. biofilm
lifestyle of P. aeruginosa. Finally, the role of polysaccharide-independent components, such
as extracellular DNA, LPS, membrane vesicles, lectins, and cup fimbriae must be placed in
context with emerging data regarding alginate, Psl, and Pel polysaccharides.

Since Psl and Pel polysaccharides are expressed on planktonic P. aeruginosa cells, play a
critical role in biofilm development, and are conserved among P. aeruginosa strains examined,
these polysaccharides clearly represent attractive targets for agents aimed at disrupting the
matrix. As chronic infections due to mucoid P. aeruginosa are almost impossible to eradicate,
targeting Psl and Pel may allow us to prevent initial infection or enhance the clearance of an
existing nonmucoid infection. Once a better understanding of the chemical nature of the
polysaccharide matrix and its link to colonization and pathogenesis of P. aeruginosa develops,
this may be feasible.
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Fig. 1.
Structure of psl and pel operons. Putative functions and localization of Psl and Pel enzymes
are shown (M-membrane, C-cytoplasm, S-secreted).
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