Cotransductional Mapping of the trp-his Region of Bacillus megaterium

JAMES P. CALLAHAN,¹† IRVING P. CRAWFORD,² GERARD F. HESS,¹ AND PATRICIA S. VARY^{1*}

Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois 60115,¹ and Microbiology Department, University of Iowa, Iowa City, Iowa 522422

Received 12 October 1982/Accepted 18 March 1983

Eight trp mutations (four trpE, two trpB, one trpC, and one trpD) have been mapped in Bacillus megaterium QM B1551 and were found to be linked to two hisH mutations and unlinked to several other his mutations.

Bacillus megaterium is an industrially important organism which has been studied in several laboratories both because it is well suited for biochemical studies and because it undergoes 100% sporulation and synchronous germination during its cell cycle. Over the years, many interesting mutants have been isolated in this species, including some temperature-sensitive mutants blocked very early in germination (13) and a mutant resistant to oxidative phosphorylation uncouplers (7). Until recently, however, no genetic system was available to analyze these mutants. We have recently reported the isolation and characterization of a generalized transducing phage, MP13, for B. megaterium QM B1551 (14, 15) and preliminary crosses in the leu-ilv region (2). This region has now been more thoroughly mapped (J. C. Garbe, M. A. Franzen, and P. S. Vary, manuscript in preparation). We report here the mapping of two new regions, a cluster of trp genes cotransducible with hisH and an unlinked his region cotransducible with azi. All mutants were derived from prototrophic B. megaterium QM B1551 (ATCC 12872) and are listed in Table 1.

Conditions for cell growth, lysate production, and transductions were as previously described (15). Transductants were streaked for single colonies on the same selective medium, and two colonies from each streak were then tested by replica plating for unselected markers. Media employed included supplemented nutrient broth (10) and minimal glucose salt medium (6), omitting the Ca^{2+} , Mn²⁺, and Fe²⁺ salts for transductions.

To determine growth requirements and gene defects, the trp mutants were plated on supplemented nutrient broth plates and replica plated to minimal medium supplemented with tryptophan biosynthetic intermediates anthranilate (10

^t Present address: Northwestern University Hospital, Evanston, IL 62201.

 μ g/ml), indole (20 μ g/ml), or L-tryptophan (20 μ g/ml). The *trp* mutants were also streaked on minimal medium in close proximity to each other in every combination to test for crossfeeding ability. Growth was scored after 24 to 48 h. Accumulation of intermediates by the trp mutants was tested by growing the mutants in minimal medium plus 0.05% acid-hydrolyzed casein and 1 μ g of tryptophan per ml (16) with shaking at 240 rpm and 30°C. After 24 h, the cultures were centrifuged at $12,000 \times g$ for 10 min, and the supernatant was used for the following determinations. The presence of indole was assayed by a modification of the procedure of Yanofsky (17), substituting Kovac reagent for Ehrlich reagent. Indoleglycerol was detected using FeCl₃ reagent (18) . The presence of anthranilate or 1-(O-carboxyphenylamino)-1-deoxyribulose was determined by the chromatographic procedure of Gibson et al. (3).

For cell-free extract preparation, cultures were grown to the mid-exponential phase in minimal medium plus 0.1% acid-hydrolyzed casein and 10μ g of tryptophan per ml, centrifuged, suspended in an equal volume of the same medium without tryptophan, and incubated with shaking for an additional 3 h. Cells were then harvested, extracts were prepared, and three enzyme levels as well as total protein were determined as described earlier for Bacillus subtilis trp mutants (5).

The biosynthetic defect could be tentatively assigned in seven of the eight mutants by these procedures. Mutants JV56, JV59, JV61, and JV62 grew on minimal medium plus anthranilate, indole, or tryptophan; could not cross-feed, but were cross-fed by the other mutants; and did not accumulate anthranilate, indole, indoleglycerol, or 1-(O-carboxyphenylamino)-l-deoxyribulose. These are, therefore, probably $trpE$ mutants defective in anthranilate synthase, the first enzyme in the pathway. Mutant JV60 grew only on indole and tryptophan; cross-fed the $trpE$

TABLE 1. B. megaterium mutants used in this study

Strain ^a	Genotype	Mutagenesis ^b	
OM B1551	Prototrophic		
PV1	hisH20	NTG	
PV ₃	hisH21	NTG	
PV5	c ys-20	NTG	
PV44	his-24	EMS	
PV139	azi-1	Spontaneous	
PV140	azi-2	Spontaneous	
PV141	azi-3	Spontaneous	
JV56	trpEl	NTG	
JV57	trpB2	NTG	
JV58	trpB3	NTG	
JV59	trpE4	NTG	
JV60	trpC5 str-3	EMS	
JV61	trpE6 str-3	EMS	
JV62	trpE7 str-3	EMS	
JV63	trpED8	NTG	
JV65	thr-2	NTG	
JV78	leuC4	EMS	
JV80	$gly-2$	NTG	
JV89	his-4	NTG	
JV94	his-9 str-3	EMS	
JV97	his-12	NTG	
JV100	$ser-2 str-3$	EMS	
JV109	rib-2	NTG	

All mutants with a PV prefix were iso this study. Those with a JV prefix wer James C. Vary, University of Illinois Medical Center, Chicago, and were generously supplied by him. Only one of the strains, JV61, has previously been reported in the literature (12).

 b NTG, N -Methyl-N'-nitro-N-nitrosoguanidine; EMS, ethyl methane sulfonate.

mutants but not JV57, JV58, or JV63; and accumulated 1-(O-carboxyphenylamino)-1-deoxyribulose. It was tentatively designated as $trpC$, defective in indoleglycerol phosphate synthase (11). Mutants JV57 and JV58 gre tryptophan, cross-fed all of the other mutants, and accumulated indole and indolegive crol. This is characteristic of $trpB$ mutants, which are defective in the B subunit of tryptophan synthase (8). One mutant, JV63, grew on indole and tryptophan, did not cross-feed the other mutants, and did not accumulate any detectable intermediate. Since it grew on indole and tryptophan but not on anthranilate, it could not be $trpE$ auxotrophs or *trpB*. The rate of reversion in strain JV63 was found to be less than 6×10^{-8} , suggesting that the mutation in JV63 might be a deletion.

Enzymatic assays were performed ^Lon cell-free extracts of derepressed cultures of JV60 and JV63 to clarify the nature and extent of their genetic defect. The results (Table 2) confirm the assignment of JV60 to $trpC$ and show that JV63 lacks phosphoribosyl transferase, the second enzyme of the pathway, but has excellent levels of the third and fourth enzymes of the pathway.

Although we were unable to find conditions suitable for assaying the first pathway enzyme, anthranilate synthase, the failure of strain JV63 to accumulate anthranilate, coupled with the suggests that it is a multisite mutation affecting NTG suggests that it is a multisite mutation affecting
 $\frac{1}{2}$ both the E and the D Panding further study we NTG both trpE and trpD. Pending further study, we will designate the lesion in this strain $trpED8$.

Histidine auxotrophs JV89, JV94, JV97, PV1, and PV3 were crossed with trp mutants JV57, JV58, and JV59 to test for cotransduction of his with trp . Only his-20 of PV1 and his-21 of PV3 showed cotransduction (50 to 65%) with the trp loci tested. All other crosses yielded no detectable cotransduction $(<0.8\%)$. In B. subtilis there are two known his loci, one at 305 on the revised map near azi and $cysB$ and another, hisH, at 205 near trp, ser, rib, and $glyA$ (4). The two his mutations near trp were tested for cotransduction with JV80 $(gly-2)$, JV100 (ser-2), and JV109 (rib-2). Moreover, PV44 (his-24) was tested for cotransduction with PV5 (cys-20). None of these crosses gave positive results $\left(\langle 1\% \right)$.

Histidine auxotrophs JV94 and JV97, which EMS Final multipliers $\frac{1}{2}$ and \frac NTG had exhibited no cotransduction with trp , were used as recipients in crosses with three mutants, PV139, PV140, and PV141, resistant to 1 mM azide, to determine whether these mutations were linked to azi as in B. subtilis. Cotransduction frequencies of 9 to 28% were observed between the two his auxotrophs tested and the azide mutants (data not shown). The tentative order was his-9-his-12-azi.

> In an attempt to determine whether any of the histidine auxotrophs were either $hisH$ or hisD (two defects which can readily be tested), all 12 his mutants were grown on histidinol (150 μ g/ml) medium since $hisD$ mutants fail to grow on histidinol (1) . None were found to be mutant in $hisD.$ All 12 his mutants were also tested for inhibition by p -fluorophenylalanine (hisH) to determine whether $hisH$ or another his locus was linked to trp in B. megaterium. hisH mutants are deficient in aminotransferase, used also in the synthesis of phenylalanine, and thus are

TABLE 2. Enzyme assays of tryptophan

Strain	Enzyme activity ^a			
	Phosphoribosyl transferase	Phosphoribosyl- anthranilate isomerase	Indolegiycerol phosphate svnthase	
JV60	0.7	0.8		
JV63		3.7	13.4	

^a Activity levels are the average of two independent determinations for phosphoribosyl transferase and one for the other two enzymes; they are expressed in millimoles per minute per milligram of extract protein.

Donor ^a	Recipi- ent	Unse- lected/ selected	% Cotrans- duction ^b			
hisH21	trpEl	104/257	40			
trpE4	hisH20	41/124	33			
trpE4	hisH21	60/209	29			
hisH21	trpE4	63/169	37			
trpE6	hisH20	63/161	39			
trpE6	hisH21	51/113	45			
trpE7	hisH20	56/157	36			
trpE7	hisH21	30/128	23			
hisH21	trpE7	134/250	54			
trpD8	hisH20	33/75	44			
hisH20	trpD8	116/246	47			
trpD8	hisH21	63/223	28			
hisH21	trpD8	121/214	57			
trpC5	hisH20	78/172	45			
trpC5	hisH21	22/54	41			
trpB2	hisH20	63/100	63			
hisH20	trpB2	274/422	65			
trpB2	hisH21	102/175	58			
hisH21	trpB2	208/354	59			
trpB3	hisH20	12/21	57			
hisB21	trpB3	125/157	80			

TABLE 3. Transductional crosses between trp and hisH

^a Crosses were made as explained in the text, and when possible in both directions, although PV1 (hisH20) and JV58 (trpB3) were consistently poor donors.

^b The percent recombination was calculated as 100% cotransduction.

more susceptible to the phenylalanine analog fluorophenylalanine (9). Sterile filter disks (12 mm) containing 0.1 ml of a 20-mg/ml solution of p-fluorophenylalanine were placed on soft agar (0.75%) overlays of each of the 12 his mutants. The zones of inhibition were scored for size and clearness after 24 h. Only the his auxotrophs PV1 (his-20) and PV3 (his-21), previously shown to be cotransduced with trp, were inhibited and therefore were probably $histH$ mutants.

Crosses between hisH20 and hisH21 and the trp mutants are shown in Table 3. Most reciprocal crosses were consistent, but two reciprocal crosses (trpD8 and trpE7) with hisH21 showed discrepancies. When $hisH21$ was used as a recipient, less cotransduction was observed than when it was used as a donor. The average of the reciprocal crosses, however, was always consistent with the crosses of the trp mutant with hisH20. The largest discrepancy was observed in the trpB3 crosses. It was very difficult to obtain a donor lysate of $trpB3$. The one successful experiment gave 57% cotransduction (Table 3) with hisH20 as a tecipient. However, when hisH21 was used as a donor to $trpB3$, 80% cotransduction was found. The reciprocal cross was never successful, so we could not determine whether the same phenomenon seen with trpD8 and trpE7 was occurring. The consistent results observed in $trpB2$ crosses with both $hisH$ mu-

FIG. 1. Tentative map of the $trp-hisH$ loci as determined by the data in Tables 3 and 4. In reciprocal crosses, the recombinational frequency shown is the average of the frequencies in each direction.

^a Crosses were performed to determnine both the donor and the recipient abilities of the tryptophan mutants and the donor ability of the wild-type lysate. The top number in each cross is the average number of Trp+ colonies present per plate, based on two to three trials. (Numbers are corrected for rate of recipient reversion.) The number in parentheses is the frequency of cotransduction, determined as follows: the expected number of prototrophs for each cross (E) was calculated as $E = Md/Wd \times Wm$, where Md is the number of prototrophs observed using each trp mutant as a donor to the Leu⁻ recipient, Wd is the wild-type lysate crossed to the same recipient, and Wm is the number of prototrophs observed when the wild-type lysate was used as ^a donor to each trp mutant. The cotransduction frequency (CF) was then determined as $CF = (E - O)/E$, where O is the number of observed prototrophs in the tryptophan \times tryptophan crosses.

tants probably are more reflective of the distance between the two $hisH$ mutations and trpB. A tentative map of the trp mutants in relation to hisH based on the two-factor crosses is shown in Fig. 1. This is the first published map for B . megaterium.

The relative positions of the trpE, trpD, and trpC loci were determined through two-factor crosses (Table 4). These data are consistent with a multisite mutation of trpD8 extending into trpE. The order of the mutations tested appears to be consistent with the gene order in B. subtilis, that is, trpEDCFBA-hisH, with another his locus near azi. Other markers which are proximal to trp in B . subtilis (e.g., ser and rib) have not been found to be linked in B. megaterium.

We thank Margaret Franzen for excellent technical help. This work was supported in part by grant 07176 awarded by the Biomedical Research Support Grant Program, Division of Research Resources, National Institutes of Health, and by National Science Foundation grant PCM-7922162.

ADDENDUM IN PROOF

Strain JV63 reverts on minimal + anthanilate medium. These revertants can then revert on minimal medium. Therefore, JV63 contains two point mutations, trpD8 and trpE29, the latter which is not mapped.

LITERATURE CITED

- 1. Ames, B. N., B. Garry, and L. A. Herzenberg. 1960. The genetic control of the enzymes of histidine biosynthesis in Salmonella typhimurium. J. Gen. Microbiol. 22:369-378.
- 2. Garbe, J. C., and P. S. Vary. 1981. Bacteriophage MP13 transduction of Bacillus megaterium QM B15S1, p. 83-87. In H. S. Levinson, A. L. Sonenshein, and D. J. Tipper (ed.), Sporulation and germination. American Society for Microbiology, Washington, D.C.
- 3. Gibson, F. W. E., C. H. Doy, and S. B. Segall.-1958. A

possible intermediate in the biosynthesis of tryptophan: 1 deoxy-1-N-0-carboxyphenyl ribulose. Nature (London) 181:549-550.

- 4. Henner, D. J., and J. A. Hoch. 1980. The Bacillus subtilis chromosome. Microbiol. Rev. 44:57-82.
- 5. Hoch, S. O., C. Anagnstopoulos, and I. P. Crawford. 1969. Enzymes of the tryptophan operon of Bacillus subtilis. Biochem. Biophys. Res. Commun. 35:838-844.
- 6. Lammi, C. J., and J. C. Vary. 1972. Deoxyribonucleic acid synthesis during outgrowth of Bacillus megaterium QM B1SS1 spores, p. 277-282. In H. 0. Halvorson, R. S. Hanson, and L. L. Campbell (ed.), Spores V. American Society for Microbiology, Washington, D.C.
- 7. Lang, D. R., and S. J. Decker. 1977. Mutants of Bacillus megaterium resistant to uncouplers of oxidative phosphorylation. J. Biol. Chem. 252:5936-5938.
- 8. Lerner, P., and C. Yanofsky. 1957. An immunological study of mutants of Escherichia coli lacking the enzyme tryptophan synthetase. J. Bacteriol. 74:494-501.
- 9. Nester, E. W., and A. L. Montoya. 1976. An enzyme common to histidine and aromatic amino acid biosynthesis in Bacillus subtilis. J. Bacteriol. 126:699-705.
- 10. Shay, L., and J. C. Vary. 1978. Biochemical studies of glucose initiated germination in Bacillus megaterium. Biochim. Biophys. Acta 538:284-292.
- 11. Smith, O. H., and C. Yanofsky. 1960. 1-(O-carboxyphenylamino)-1-deoxyribulose-5-phosphate, a new intermediate in the biosynthesis of tryptophan. J. Biol. Chem. 235:2051-2057.
- 12. Vary, J. C. 1972. Spore germination of Bacillus megaterium QM B1551 mutants. J. Bacteriol. 112:640-642.
- 13. Vary, J. C., and A. Kornberg. 1970. Biochemical studies of bacterial sporulation and germination. XXI. Temperature-sensitive mutants for initiation of germination. J. Bacteriol. 101:327-329.
- Vary, P. S. 1979. Transduction in Bacillus megaterium. Biochem. Biophys. Res. Commun. 88:1119-1124.
- 15. Vary, P. S., J. C. Garbe, M. Franzen, and E. W. Frampton. 1982. MP13, a generalized transducing bacteriophage for Bacillus megaterium. J. Bacteriol. 149:1112-1119.
- 16. Whift, D. D., and B. C. Carlton. 1968. Non-coordinate regulation in 5-methyl tryptophan-resistant mutants of Bacillus subtilis. Biochem. Biophys. Res. Commun. 33:636-642.
- 17. Yanofsky, C. 1955. Tryptophan synthetase from Neurospora. Methods Enzymol. 2:233-238.
- 18. Yanofsky, C. 1956. The enzymatic conversion of anthranilic acid to indole. J. Biol. Chem. 233:171-184.