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ABSTRACT The method of optimal prediction is ap-
plied to calculate the future means of solutions to the
Klein–Gordon equation. It is shown that, in an appropriate
probability space, the difference between the average of all
solutions that satisfy certain constraints at time t 5 0 and
the average computed by an approximate method is small
with high probability.

1. Introduction

The method of optimal prediction was introduced by Chorin
et al. (1–3) to study complicated flows, hopefully including tur-
bulence at a future time. Instead of solving a particular initial
value problem, we ask for the average of all solutions that sat-
isfy certain constraints at time t = 0. The constraints may be
local averages of the initial data or a small number of Fourier
coefficients. Neither will determine the initial data uniquely.
The idea then is to use statistical information to compensate
for the incompleteness of the initial data. In its most elemen-
tary version, the method of optimal prediction is more ex-
pensive than solving the original initial value problem. The
savings are achieved by finding an evolution equation for the
constraints and, from this, determining the average of the so-
lutions for t , 0. For nonlinear problems, this can only be
done approximately. However, for linear problems, we can
estimate the difference between the exact averages and the
averages computed by the approximate method. We get the
sharpest bound if the constraints are close to an invariant sub-
space for the adjoint of the differential equation. We apply the
theory to the Klein–Gordon equation and prove that the dif-
ference between the exact mean at time t and the outcome
of an approximate calculation is small with high probability.
We also show that the exact averages converge with proba-
bility 1 as we increase the dimension of the trial space. This
remains true even if the measure is carried by weak solutions
that are difficult to obtain individually. We confine ourselves
to a single case, but the arguments can be extended to the
linear Schrödinger equation and to linear Korteveg de Vries
equations.

2. Two Methods

In this section, we will present an exact and an approximate
method for finding the average of the solutions to a differen-
tial equation. Let L be a real m 3 m matrix and let G be a
real m 3 n matrix of rank n + m. We will look at the solutions
u�t� of

u̇�t� = Lu�t� [1]

and assume that the initial conditions satisfy the constraint

GTu�0� = v0: [2]
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If S�t� = etL is our fundamental matrix, then u�t� = S�t�u�0�.
To find the average of all u that satisfy 2, we need a measure.
Let A be a positive definite matrix of order n and define

P�u � B� =
∫
B

Z−1e−
1
2 u

TAu du;

where Z is chosen so that P��m� = 1. If LTA+AL = 0; then
P is an invariant measure, i.e., P�B� = P�S�t�B� for all t. The
matrix A may be chosen in many ways, but there is a natural
choice if 1 is a Hamiltonian system. By restricting P to the set
GTu = v0 and normalizing again, we get a measure P ′ that
satisfies

�u� =
∫
GTu=v0

udP ′ = A−1GM−1v0; [3]

where M = GTA−1G (see refs. 1–3). Since u�t� = S�t�u�0�,
we can determine the average of all solutions that satisfy
GTu�0� = v0 and get

�u�t��exact = S�t��u�0�� = S�t�A−1GM−1v0: [4]

The approximate method is harder to motivate. We would
not expect that GTu�t� = v0 for all t , 0; but there may ex-
ist a function v�t� such that GTu�t� = v�t� for all u�t� that
satisfy GTu�0� = v0. The arguments for t = 0 are then ap-
plicable. After replacing v0 in 3 by v�t� we see that �u�t�� =
A−1GM−1v�t�. In addition, v�t� = GT �u�t��, and it follows
from 1 that v̇�t� = GTL�u�t��. We can now formulate the ap-
proximate method. Let K = LA−1. Then

�u�t��approx = A−1GM−1v�t� [5]

v̇�t� = GTKGM−1v�t�; v�0� = v0: [6]

If n � m, it should be cheaper to find the approximate
solution than the exact solution. The question is: “How good
is the approximation?” To answer this question, we set

e�t� = �u�t��approx − �u�t��exact
E = LTG+GM−1GTKG:

Suppose LTA + AL = 0. Then A−1LT + LA−1 = 0, and it
follows from 4, 5, and 6 that

ė�t� = A−1GM−1v̇�t� − Ṡ�t�A−1GM−1v0

= A−1GM−1GTKGM−1v�t� − LS�t�A−1GM−1v0

= A−1GM−1GTKGM−1v�t� − L�A−1GM−1v�t� − e�t��
= Le�t� +A−1�LTG+GM−1GTKG�M−1v�t�:

Using the explicit solution of inhomogeneous linear equations,
(see ref. 4, p. 78), we obtain

e�t� =
∫ t

0
S�t − s�A−1EM−1v�s�ds: [7]
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Lemma 1. If LTA+AL = 0, then

�A1/2e�t�� � t �A−1/2EM−1/2� �M−1/2v0�:
Proof: To bound e�t�, we need two facts:

�A1/2S�t�A−1/2�T �A1/2S�t�A−1/2� = I [8]

vT �t�M−1v�t� = vT0 M−1v0: [9]

Eq. 8 says that A1/2S�t�A−1/2 is orthonormal, while 9 corre-
sponds to conservation of energy for 6. Both are consequences
of the assumption LTA+AL = 0. To prove 8, we differentiate
with respect to t, use Ṡ = LS, and obtain

d

dt
�A−1/2ST �t�AS�t�A−1/2�
= A−1/2ST �t��LTA+AL�S�t�A−1/2 = 0:

The matrix A−1/2ST �t�AS�t�A−1/2 is, therefore, independent
of time and equal to the identity when t = 0. To prove 9, we
differentiate with respect to t, use 6 and KT +K = 0, and get

d

dt
�vT �t�M−1v�t�� = vT �t�M−1GT �KT +K�GM−1v�t� = 0:

This shows that vT �t�M−1v�t� is independent of time. We can
now complete the proof of Lemma 1. Multiplying both sides
of 7 by A1/2 and using 8, 9 yields

�A1/2e�t�� �
∫ t

0
�A1/2S�t − s�A−1/2�

3 �A−1/2EM−1/2� �M−1/2v�s��ds
� t �A−1/2EM−1/2� �M−1/2v0�:

This completes the proof.
It follows from Lemma 1 that e�t� A 0 if E = 0. This will

occur if G is a left invariant subspace for L. To prove this, let
LTG = GB. Then GTA−1LTG = GTA−1GB, and we see that
B = −M−1GTKG and E = LTG + GM−1GTKG = LTG −
GB = 0.

3. Hamiltonian Systems

It is not true that, for every L, there is a positive definite
matrix A such that LTA+AL = 0. You need the eigenvalues
of L to be purely imaginary and L must be diagonalizable.
However, A exists for linear Hamiltonian systems. Lets look at
q̈�t� = −A2

0q�t�, where A0 is positive definite. This equation
describes small oscillations around equilibrium. Setting q̇�t� =
p�t�, we arrive at

d

dt

[
q�t�
p�t�

]
=
[

0 I

−A2
0 0

][
q�t�
p�t�

]
:

The Hamiltonian for this system is h = 1
2 �pTp+ qTA2

0q�, i.e.,
q̇i = ∂pih and ṗi = −∂qih. It is natural to constrain p and q
separately: [

GT
q 0

0 GT
p

][
q�0�
p�0�

]
=
[
vq�0�
vp�0�

]
:

More complicated relations between p�0� and q�0� are pos-
sible and may be preferable in special cases. Letting u�t� =[
q�t�
p�t�
]
, we have u̇ = Lu, GTu�0� = v0, and h = 1

2u
TAu, as in

1 and 2, where

L =
[

I

−A2
0

]
; G =

[
Gq

Gp

]
; A =

[
A2

0
I

]
:

Set �u�A = �A1/2u� = �2h�1/2. Since M = GTA−1G and K =
LA−1, we obtain

M =
[
GT
qA
−2
0 Gq

GT
pGp

]
;

GTKG =
[

GT
qGp

−GT
pGq

]
:

Note that M is positive definite and that GTKG is skew sym-
metric. To simplify the analysis, we assume that Gp = Gq = G
and hope that the double use of G will not cause confu-
sion. The differential equation for the approximate method
can then be written as

d

dt

[
vq�t�
vp�t�

]
=
[

I

−�GTG��GTA−2
0 G�−1

][
vq�t�
vp�t�

]
[10]

(compare with 6). If G consists of eigenvectors of A2
0, then

each eigenfrequency of 10 agrees with an eigenfrequency of
the original problem and e�t� = 0. To estimate the error in
the approximate method, we must bound �A−1/2EM−1/2� in
Lemma 1. Since E = LTG + GM−1GTKG, it follows that
A−1/2EM−1/2 = [ 0 F

0 0

]
, where

F = −A0G�GTG�−1/2

+A−1
0 G�GTA−2

0 G�−1�GTG�1/2: [11]

Thus, �A−1/2EM−1/2� = �F �, and it is enough to bound the
2-norm of

FTF = �GTG�−1/2�GTA2
0G��GTG�−1/2

− �GTG�1/2�GTA−2
0 G�−1�GTG�1/2: [12]

To continue the analysis, we turn to a specific problem.

4. Klein–Gordon

In the papers by Chorin et al. (1–3), the method of optimal
prediction was applied to linear and nonlinear Schrödinger
equations. Here, we will study the Klein–Gordon equation

utt = uxx − u [13]

on the interval 0 � x � 2π with periodic boundary conditions.
The equation describes dispersive waves on a string subject
to a restoring force. A similar equation occurs in relativistic
quantum field theory (5). The Hamiltonian for 13 is

h�t� = 1
2

∫ 2π

0
�ut�2 + �ux�2 + �u�2 dx: [14]

The corresponding Hamiltonian system is

∂t

[
u�x; t�
π�x; t�

]
=
[

0 I

∂2
x − I 0

][
u�x; t�
π�x; t�

]
; [15]

where π�x; t� = ut�x; t�. Note that A2
0 = −∂2

x+I (for a deriva-
tion, see ref. 6). We constrain the initial data by prescrib-
ing local averages around the points xα = 2πα/�2n + 1� for
α = 0; 1; : : : ; 2n: Specifically,∫ 2π

0
g�x− xα�u�x; 0�dx = vq;α�0�;∫ 2π

0
g�x− xα�π�x; 0�dx = vp;α�0�:

[16]

Let us imagine that vp�0�, vq�0� are given and set v0 =[ vq�0�
vp�0�

]
. Following Chorin et al. (1–3), we let

g�x� = 1√
2π

:∑
k=−:

e−k
2σ2/4 e

ikx

√
2π
: [17]
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The function g is positive and 2π periodic, has norm 1, and
decreases away from the origin. As σ → 0, g tends to a delta
function. Since the measure P is finite dimensional, we assume
that there is an integer m � 0 such that all u�x; t� and π�x; t�
can be written as

m∑
k=−m

ck
eikx√

2π
;

where c̄k = c−k and m = n+ r�2n+ 1�. The complex notation
is equivalent to

a0√
2π
+

m∑
k=1

(
ak

coskx√
π
+ bk

sinkx√
π

)

when c0 = a0 and ck = �ak − ibk�/
√

2 for k = 1; 2; : : : ;m.
In the expansion of g�x�, we replace exp�−k2σ2/4� in 17 by
0 if �k� , m, thus obtaining Projm g�x�. Our basic variables
are not the trigonometric functions but their Fourier coeffi-
cients. Let �ai; bi� be the Fourier coefficients for u�x; t�, and
let �αi; βi� be the Fourier coefficients for π�x; t�. Set qT =
�am; : : : ; a0; b1; : : : ; bm� and pT = �αm; : : : ; α0; β1; : : : ; βm�.
We can then rewrite 15 as

d

dt

[
q�t�
p�t�

]
=
[

0 I

−32 0

][
q�t�
p�t�

]
; [18]

where 3 = diag�ωm; : : : ; ω0; : : : ; ωm� and ω2
k = k2 + 1. Ob-

serve the shift in notation: the constants m and n from Section
2 have been replaced by 2�2m+ 1� and 2�2n+ 1�. To find the
analogue of 16, we expand u�x; t� in a complex Fourier series,
use 17, and get

vq;α�0� =
1√
2π

m∑
`=−m

e−`
2σ2/4ei`xα c`:

Since the points xα are equidistant, we have an aliasing effect.
Let ` = k+ j�2n+ 1� with −n � k � n and −r � j � r. Then

vq;α�0� =
n∑

k=−n

eikxα√
2n+ 1

·
√

2n+ 1
2π

3
r∑

j=−r
e−�k+j�2n+1��2σ2/4 ck+j�2n+1�

=
n∑

k=−n
Uαk ·wk:

Note that w̄k = w−k. The matrix U is the building block for
the discrete Fourier transform and is unitary. Set

0 =
√

2n+ 1
2π

diag
(
e−m

2σ2/4; : : : ; 1; : : : ; e−m
2σ2/4):

If cT = �c−m; : : : ; c0; : : : ; cm�, we can write 16 as vq�0� =
U�I · · · I�0c with 2r + 1 blocks of Is. To express the con-
straints as a product of real matrices, we let X and Y be of
orders 2n+ 1 and 2m+ 1, respectively, and of the form

1√
2



1 i
1 i

1 i√
2

1 −i
1 −i

1 −i


:

Note that X, Y are unitary. The matrix Q = UX is orthonor-
mal and the αth row of Q is√

2
2n+ 1

[
cos�nxα�; : : : ; cos�xα�;

1√
2
; sin�xα�; : : : ; sin�nxα�

]
:

Since c = Yq and 0Y = Y0, we finally obtain vq�0� =
UXX∗�I · · · I�Y0q = QZT0q. Because vq�0�, Q, 0, and q are
real, Z must also be real. Let GT = QZT0 = U�I · · · I�Y0.
The analogue of 16 is then[

GT

GT

][
q�0�
p�0�

]
=
[
vq�0�
vp�0�

]
: [19]

We can now solve 18 and 19 by the exact method 4 and by
the approximate method 5. To estimate the difference, we use
Lemma 1 and need the following result.

Lemma 2. If n � 1 and �2n+ 1�σ2 � 2, then

�A−1/2EM−1/2� � �1:6� �2n+ 1� e−�2n+1�σ2/4:

Proof: To bound �F �, we will determine GTG, GTA2
0G,

GTA−2
0 G in 12 explicitly. Observe that A0 = 3. By using the

complex representation of G, Y0 = 0Y , and YY ∗ = I, we see
that GTG = UD1U

∗, where

D1 =
2n+ 1

2π
diag
−n�k�n

( r∑
j=−r

e−�k+j�2n+1��2σ2/2
)
:

Interchanging k and j with −k and −j shows that �D1�−k =
�D1�k, which implies that X∗D1 = D1X

∗. Since U = QX∗,
we conclude that GTG = QD1Q

T . Similar arguments give
GTA2

0G = QD2Q
T and GTA−2

0 G = QD3Q
T , where

D2 =
2n+ 1

2π
diag
−n�k�n( r∑

j=−r
e−�k+j�2n+1��2σ2/2��k+ j�2n+ 1��2 + 1�

)

D3 =
2n+ 1

2π
diag
−n�k�n( r∑

j=−r
e−�k+j�2n+1��2σ2/2��k+ j�2n+ 1��2 + 1�−1

)
:

We can now determine 12 explicitly. Since Q is orthonormal,
it follows that

FTF = Q�D−1
1 D2 −D1D

−1
3 �QT :

If r = 0, then E = F = 0 and the approximate and exact
method agree. Let r � 1 and suppose that the largest term in
the diagonal matrix D−1

1 D2−D1D
−1
3 occurs in the kth position.

Set dj = exp�−�k + j�2n + 1��2σ2/2� and λj = �k + j�2n +
1��2+1. Extracting the leading order term in each sum, we get

�D−1
1 D2 −D1D

−1
3 �k

=
∑
djλj∑
dj
−

∑
dj∑

djλ
−1
j

= �d0λ0 + a��d0λ
−1
0 + b� − �d0 + c�2

�d0 + c� �d0λ
−1
0 + b�

= a�d0λ
−1
0 + b� − d0�c − λ0b� − c�d0 + c�
�d0λ

−1
0 + b� �d0 + c�

:
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Since c , λ0b and the 2-norm is invariant under orthonormal
transformations, we see that

�F �2 � a

d0
=

r∑
�j�=1

e�k
2−�k+j�2n+1��2�σ2/2

3 ��k+ j�2n+ 1��2 + 1�:
[20]

To estimate the exponential, we observe that

k2 − �k+ j�2n+ 1��2
� −j2�2n+ 1�2 + 2�k��j��2n+ 1�
= −�j2 − �j���2n+ 1�2 − �j��2n+ 1�
− 2�j��n− �k���2n+ 1�:

[21]

Combining 20 and 21 with �k� � n results in

�F �2�
r∑
j=1

e−�2n+1�σ2/2e−�j
2−j��2n+1�2σ2/22 �j2�2n+ 1�2+k2+ 1�:

Since k2 + 1 � �2n + 1�2/4 when �k� � n and n � 1, we
conclude that

�F �2 � �2n+ 1�2e−�2n+1�σ2/2
r∑
j=1

e−�j
2−j��2n+1�2σ2/2 2 �j2 + 1/4�:

The last sum is less than 2:53 when �2n + 1�σ2/2 � 1 and
n � 1. This completes the proof.

5. Stochastic Convergence

By combining Lemma 1 and Lemma 2, we can bound the dif-
ference between the exact and the approximate method. Since
�M−1/2v0� depends on 2n + 1, σ , and v0, we have not estab-
lished convergence. Suppose vp�0� and vq�0� are generated by
two particular random functions u and π, with u�x; 0� look-
ing like Brownian motion and π�x; 0� resembling white noise.
We can then show that the approximate method is close to the
exact method if n is large. The rate of convergence is high if
there is a substantial overlap of the kernels in the constraints.
To measure the error we use the norm � · �A, the square of
which equals twice the total energy.

Theorem 1. Let n � 1, and assume that �2n+1�σ2 � 6�ν+
1� log�2n + 1� with ν , 0. Let p and q be picked at random
with respect to P and set vp�0� = GTp, vq�0� = GTq. Consider
all solutions of 15 that satisfy 16. Then∣∣∣∣∣

〈(
u�x; t�
π�x; t�

)〉
exact

−
〈(
u�x; t�
π�x; t�

)〉
approx

∣∣∣∣∣
A

�
2:3 t
�2n+ 1�ν

with probability greater than 1− �2n+ 1�−ν .
Proof: It follows from Lemmas 1 and 2 that

�A1/2e�t�� � �1:6� t �2n+ 1� e−�2n+1�σ2/4�M−1/2v0�;

where v0 =
[ vq�0�
vp�0�

]
. To complete the proof, we use Chebyshev’s

inequality. Let E be the expected value corresponding to P .
Since 2:3 , 1:6

√
2 and σ is bounded below, we obtain

P

(
�A1/2e�t�� , 2:3 t

�2n+ 1�ν
)

� P

(
�M−1/2v0� ,

√
2e�2n+1�σ2/4

�2n+ 1�ν+1

)
�
E��M−1/2v0�2�
2�2n+ 1�ν+1

:

[22]

Using the definition of M from Section 3 in conjunction with
A0 = 3 and 19, we get

E�vT0 M−1v0� = E��3q�T3−1G�GT3−2G�−1GT3−1�3q��
+ E�pTG�GTG�−1GTp�:

Since 3 is diagonal, the measure P is given by

dP = Z−1e−
1
2 �a2

0+α2
0+
∑m

k=1 ω
2
k�a2

k+b2
k�+�α2

k+β2
k�� da0 · · ·dβm

Z = 2π
m∏
k=1

(
2π
ω2
k

· 2π
)
:

The components of 3q and p are, therefore, independent
Gaussian random variables with mean 0 and variance 1, and
it follows that

E�vT0 M−1v0� = tr�3−1G�GT3−2G�−1GT3−1�
+ tr�G�GTG�−1GT �

= tr��GT3−2G�−1�GT3−2G��
+ tr��GTG�−1�GTG��

= 2�2n+ 1�:
Here, tr = trace, and we have used tr�AB� = tr�BA� if A is an
n 3 m matrix and B is m 3 n. Combining the last result with
22 and taking the complementary event finishes the proof.

We remark that the components of v0 are strongly corre-
lated. Indeed, it follows from 19 that

E�v0v
T
0 � =

[
GT3−1

GT

]
E

[ �3q��3q�T
ppT

]
3

[
3−1G

G

]
=M:

Using the spectral decomposition of GTG, we can calculate
the variances explicitly and get

var�vp;α�0�� =
n∑

k=−n
�Qα;k�2�D1�k =

1
2π

m∑
`=−m

e−`
2σ2/2

=
∫ 2π

0
�Projm g�x��2 dx:

The variance of vp;α�0� is, therefore, of order 1/�√2πσ�. For
vq;α�0� we get an additional factor of �`2+1�−1, and 1/�2π� +
var�vq;α�0�� + coth�π�/2.

Suppose the components of v0 are chosen as independent,
normally distributed random variables with mean 0 and vari-
ance 1. If n � 4 and �2n + 1�σ2 � 6�ν + 1� log�2n + 1�, we
can show that any interval longer than 4 contains points t for
which

E
(�e�t��2A) � �2n+ 1��ν+1��2n+1�/4−1:

The initial constraint v0 must, therefore, be consistent with
the mathematical model if we want convergence.

6. Convergence in L2

In Section 5, we compared the outcome of two numerical
methods. Both are defined on finite dimensional spaces and
involve a finite number of Fourier coefficients. What happens
if we fix the number of constraints but increase the dimension
of the space? Each random choice of the Fourier coefficients
�ai; bi; αi; βi�:i=0 yields a sequence of constraint values. Such
a sequence may or may not converge. We will show that the
sequence of exact solutions generated by the constraints con-
verges with probability 1. Note that we are not comparing
results for different values of n. They differ by large amounts.
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Let m = n+ r�2n+ 1�. By solving 18 and 19 explicitly and
using 4, we find that the Fourier coefficients for the average
of all solutions of 13 with the constraints 14 satisfy[
3

I

] 〈[
q�t�
p�t�

]〉
exact;r

=
[

cos3t sin3t
− sin3t cos3t

][
3−1

I

]
3

[
G

G

][ �GT3−2G�−1

�GTG�−1

][
GTq

GTp

]
:

The index r reminds us of the dimension. Since GT =
U�I · · · I�0Y and Y3 = 3Y , it follows that

�3q�0��exact;r

= Y ∗
 1−r:::
1r

[12
−r + · · · + 12

r

]−1[
1−r · · · 1r

]
Y3q;

where 1j = 0j3−1
j . We get the formula for �p�0�� by replacing

3q by p and 1j by 0j . Next, let Pr be the probability measure
from Section 5 on �r = �2�2m+1�. Since the random variables
ai, bi, αi, and βi are independent, the measures Pr are con-
sistent, and there is a probability space ��;& ; P� such that
Pr = P��r ; see Billingsley (ref. 7, section 36). We can now
formulate the following theorem.

Theorem 2. Let n � 1, and assume that �2n+1�σ2 � 6�ν+
1� log�2n+ 1� with ν � 0. Set εr = 4�2n+ 1�−�ν+1��1+r+r2�2n+1��.
The limit of the exact method exists for almost all choices of the
random Fourier coefficients, and∣∣∣∣∣

〈(
u�x; t�
π�x; t�

)〉
exact;r

−
〈(
u�x; t�
π�x; t�

)〉
exact;:

∣∣∣∣∣
A

+ εr

with probability greater than 1− εr .
Proof: Our proof is based on Borel-Cantelli (see ref. 7,

p. 53). Here is an outline. Let ψr�x; t;ω� = �
(
u�x;t�
π�x;t�

)�
exact;r

,
and define !r = �ωx �ψr − ψr+1�A � εr�. Since P�!r� + εr
and

∑
εr + :, it follows that P�⋃:

s=0

⋂:
r=s !c

r � = 1. The se-
quence �ψr�:r=0 is, therefore, Cauchy for almost all ω � �
and converges to an element in H1 ⊕H0. Instead of working
with the random functions, we work with the Fourier coeffi-
cients and embed the smaller space into the larger space. Let
r + s, and set

BT1 = �1−s · · ·1s�
BT2 = �1−s · · ·1−r−1 0 · · · 0 1r+1 · · ·1s�
BT3 = �0 · · · 0 1−r · · ·1r 0 · · · 0�

Note that BTi Bi are diagonal matrices of order 2n+ 1. We can
now write

�3q�0��exact;s − �3q�0��exact;r = b1 + b2 + b3;

where

b1 = Y ∗B2�BT1 B1�−1BT1 Y3q

b2 = Y ∗B3�BT1 B1�−1BT2 Y3q

b3 = −Y ∗B3�BT1 B1�−1BT2 B2�BT3 B3�−1BT3 Y3q

Using Chebyshev’s inequality and Cauchy-Schwarz, we see
that

P

(∣∣∣∣ 3∑
i=1

bi

∣∣∣∣ , ε) � ε−2E

∣∣∣∣ 3∑
i=1

bi

∣∣∣∣2 � 3ε−2
3∑
i=1

E�bi�2:

Since 3q are independent Gaussian random variables with
mean 0 and variance 1 and YY ∗ = I, we get

E�bT1 b1� = tr�Y ∗B1�BT1 B1�−1BT2 YY
∗B2�BT1 B1�−1BT1 Y �

= tr��BT1 B1�−1BT2 B2�:

Now ω2
k/ω

2
k+j�2n+1� is less than 1 if jk + 0 and less than 0:2

if jk � 0 and j 6= 0. Combining �BT1 B1�−1 + 1−2
0 with Eq. 21

and using �2n+ 1�σ2 � 6 and 2n+ 1 � 3, we obtain

E�b1�2 �
n∑

k=−n

s∑
j=r+1

e−��j
2−j��2n+1�2−j�2n+1�−2j�n−�k���2n+1��σ2/2 �1:2�

� e−r
2�2n+1�2σ2/2e−�r+1��2n+1�σ2/2

:∑
`=1

�1:2� e−�`2−`�3·3

3
n∑

k=−n
e−�n−�k��6:

Since �2n+ 1�σ2 � 6�ν+ 1� log�2n+ 1� and the product of
the two sums is less than 2:5, we conclude that

E�b1�2 � 2:5 �2n+ 1�−3�ν+1��1+r+r2�2n+1�� = ε′:
By almost the same arguments, we get E�b2�2 � ε′ for the

second term and for the third term, we find that E�b3�2 �
tr��1−2

0 B
T
2 B2�2�. Since 1−2

0 B
T
2 B2 is diagonal with all terms less

than 1, it follows that E�b3�2 � ε′. The arguments for the p
terms are similar and by combining all estimates, we obtain

P
(�ψr − ψs�A � �0:9�εr) � �0:9εr�−2 3 · 2 · 3 · ε′

+ �0:9�εr:
[23]

Thus P�!r� + εr . Since
∑
εr + :, we conclude from Borel-

Cantelli that P�⋂:
s=0

⋃:
r=s !r� = 0. The sequence �ψr� is,

therefore, a Cauchy sequence with probability 1 and ψr → ψ:
in H1 ⊕H0. To estimate ψr −ψ:, we set "s =

⋃:
r=s !r . Since

"1 � "2 � · · ·, there exists an s , r such that P�"s� + �0:1�εr .
Let !rs = �ωx �ψr − ψs�A + �0:9�εr�. It follows from 23 that

1− �0:9�εr � P�!rs ∩ "c
s� + P�!rs ∩ "s�:

The last term is less than �0:1�εr , and for almost all ω �
!rs ∩ "c

s , we have

�ψr − ψ:�A � �ψr − ψs�A + �ψs − ψs+1�A + · · ·

+ �0:9�εr +
:∑
j=s
εj + εr:

Since ��ψr−ψ:��x; t;ω��A does not depend on time, this com-
pletes the proof.

Suppose the constraints in 16 are generated by a smooth
solution

(
u0
π0

)
of 15. If n � 1 and �2n+1�σ2 � 6�ν+1� log�2n+

1� with ν � 0, we can show that∣∣∣∣∣
〈(
u�x; t�
π�x; t�

)〉
exact;r

−
(
u0�x; t�
π0�x; t�

)∣∣∣∣∣
A

�
3
√

2:5
�2n+ 1��3/2��ν+1�

∣∣∣∣( u0
π0

)∣∣∣∣
A

+ 1
�n+ 1�s

∣∣∣∣∂sx�I − Projn�( u0
π0

)∣∣∣∣
A

The method of optimal prediction can therefore also be used,
in principle, to solve the Klein–Gordon equation with smooth
initial data.
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