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ABSTRACT A strategy is outlined for obtaining the free
energy of a typical designed heteropolymer. The design pro-
cedure considers the probability that the target conformation
is occupied in comparison with all the other conformations
that could house the given sequence. Numerical calculations
on lattice heteropolymer models are presented to illustrate the
key physical principles.

Protein folding is an important example of the general class of
problems involving conflicting constraints and, thence, a rug-
ged energy landscape (1-6). The microscopic approaches of
polymer theory and the results obtained in the study of spin
glasses potentially add up to a powerful framework for the
study of a variety of systems including proteins, polyam-
pholytes, imprinted copolymers, and gels (1-13). Recently,
many papers have been published that have attempted to use
this framework for a sophisticated, analytic study of the phase
diagram of designed heteropolymers (7, 14-19).

The functionality of a protein is mainly controlled by its
structure in its native state (commonly assumed to be its
ground state). An optimal tailoring of the structure of the
native state of a protein by altering its amino acid sequence will
enable the creation of proteins with desired functionality and
will have applications in drug design. In general, a randomly
chosen sequence will not have protein-like properties of a
thermodynamically stable native state and rapid kinetic acces-
sibility to it. The evolution of naturally occurring proteins with
useful functionality and with native structures that are stable
against mutations and small changes in solvent properties is the
hallmark of a selection procedure or a design process.

The original idea for protein design (20-23) consists of
running through sequences of amino acids to determine which
sequence (or sequences) has the lowest energy in a target
conformation. In this approach, a constraint is usually placed
on the composition of amino acids in the test sequences, to
avoid populating a sequence with just those amino acids that
are most attractive to each other.

This idea has been formalized by noting that the probability
for a particular sequence s to occur in a specific target
conformation I' is proportional to

PX(FaTdcs) = exp[_Hs(F)/Tdcs]7 [1]
where Hy(I') is the energy of the sequence s in conformation
I, and Ty is a temperature at which the design is thought to
occur. When Ty = 0, the design is thought to be perfect and
the sequence (or sequences) with the lowest energy in the
target conformation are chosen, whereas for an infinite value
of Tges, there is no design at all and all sequences have the same
P corresponding to what is known as the random heteropoly-
mer case. In this problem, the annealed variables are the
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conformations, whereas the role of quenched random vari-
ables is played by the sequences.

We note that Eq. 1 is merely an approximation that requires
modification to carry out the selection procedure for protein-
like heteropolymers rigorously. Py is affected by the probability
of the sequence to be in other competing conformations and,
thus, the design should maximize the relative probability of the
sequence being in the target conformation. Such a correct
design procedure thins out the competing low-lying energy
states thereby inducing a funnel topography in the energy
landscape (24, 25).

The free energy of a given sequence s at temperature 7 is
given by

F(s.T) = = T log Yexp[ ~H,(I")/T), [2]
r
where the sum is over all the conformations of a self-avoiding
walk.

The free energy of a typical random heteropolymer at a
temperature 7 is obtained by averaging over the free energies
of all sequences (with equal weight or corresponding to the
infinite T4cs limit) (26):

S F(s,T)
<F(T)>random = Tsl . [3]
This equation was generalized (9, 14-19) to designed se-
quences by postulating that the ensemble-averaged free energy
was obtained as a weighted average over all sequences and
given by

2 i"EsPs(Fs Tdes)F(sa T)
E%Esps(l—"Tdes) ’

<F(T’Tdes)> = [4]

where the primed sum is over selected conformations that
house the designed sequences. In refs. 14-19, these confor-
mations were selected to be the compact ones.

To obtain the quenched average involving the logarithm in
Eq. 2, one introduces n replicas. Further, because the sum over
conformations also appears in Eq. 4, one needs yet another
replica that couples to the previous n replicas after the
summation over sequences which are the quenched variables.

In summary, the conventional analysis attempts to interpo-
late between two limits: a trivial one at infinite T4es, in Which
all sequences have equal weight and no selection procedure is
employed, and the second at Tyes = 0, in which only certain
special sequences contribute. The goal is to have these special
sequences be ones that are protein-like in the sense of having
large thermodynamic stability. From Eq. 1, in the Tg4es = 0
limit, nonzero weights are assigned only to those sequences
whose ground-state energies have the lowest value among the
ground-state energies of all sequences. Such sequences do not
necessarily correspond to ones that are thermodynamically
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FiG. 1. Plot of the order parameter (P?) versus T at Tges = O for the
HP model applied to chains of N = 9 and N = 12 beads. The number
1 or 5 in parentheses denotes the use of the corresponding equation
in the text.

stable, but instead may very well be characterized by high
degeneracies or low-lying excited states, thus making them
physically uninteresting. As a consequence, the conventional
analysis possibly may not interpolate between physically rele-
vant limits.

We now proceed to the rigorous way of implementing this
problem. Egs. 2 and 4 are correct, whereas Eq. 1 will be
replaced. It is still true that the free energy of a typical random
heteropolymer at a temperature 7 is obtained by averaging
over the free energies of all sequences (with equal weight or
corresponding to the infinite Tge, limit) (25). The key error in
the analysis is Eq. 1, which should be replaced by

PS(F’Tdcs) = exp{i[Hr(r) - F(sdees)]/Tdss}7 [5]

where F(s, Tqes) is defined in Eq. 2. Physically, Eq. 4 arises from
the observation that the probability that a sequences is in the
conformation I' at a temperature 7T4es, depends not only on the
energy of the sequence in the conformation, but also involves
the partition function in the denominator as a normalization
(27-30). Thus, it does not suffice to merely consider the target
conformation energy but the probability that the target con-
formation is occupied in comparison with all the other con-
formations that could house the given sequence. The correct
procedure is clearly more cumbersome than the previous
approaches and will entail the introduction of more replicas.

It is important to note that Eq. 1 is a special case of the
correct Eq. 5, when the free energies of the protein-like
sequences are essentially the same independent of sequence,
i.e., self-averaging. It would be interesting to assess whether the
free energies of protein-like sequences do become sequence-
independent in the thermodynamic limit.

To illustrate the difference between the sequences selected
by the two procedures, one based on Eq. 1 and the other on Eq.
5, we studied some representative quantities of an ensemble of
sequences with the aid of numerical calculations with T set
equal to zero.

We begin by studying the behavior of an effective order
parameter defined as

2 izsps(ra Tdes)sz(T)
2 i"zxpx(r7 Tdes) ’

<P2(T5Tdcs)> = [6]

where
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Fi1G. 2. The histogram of the ground-state energies of the 1,569
good sequences of 16 beads with two types of amino acids (HP model)
on a square lattice.

the unprimed sum is over all conformations and the primed
sum is again over selected target conformations that house the
designed sequences. The selected conformations in Eq. 1 are
the maximally compact ones (conformations having the largest
number of contacts), whereas those in Eq. 5 are the good
conformations—conformations that are the unique native
state of at least one sequence (some maximally compact
conformations may be good as also ones that are not maximally
compact).
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FiG.3. (A) The plot of the ground-state energies of 1,146 randomly
picked good sequences of 16 beads with 4 types of amino acids versus
the energy gaps. (B) The plot of the ground-state energies of 1,517
randomly picked good sequences of 16 beads with 8 types of amino
acids versus the energy gaps.
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Physically, as T — o, one expects that any sequence will have
an equal probability to be in any of the numerous conforma-
tions available, thus making the order parameter small. In the
T — 0 limit, if the selected sequences have a nondegenerate
ground state, then the order parameter approaches 1. If the
selected sequences have degenerate ground states with a
degeneracy g(s), then (P%(0, 0)) is less than 1 and given by
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tions. Each location of the chain was assigned an amino acid
selected at random with equal probability and the interaction
energy matrix was taken to be

—0.485 —1.677 0.697 —0.223

-1.677 —0.837 0.182 —0.656
0.697 0.182 —10.676 0.160 |

—0.223  —0.656 0.160 0.515

(P%(0,0)) s [7] o
’ S1 (The results are qualitatively the same for other sets of
interaction parameters). The corresponding matrix for the 8
where the sum is over these sequences. amino acid model (H1, H2, H3, H4, P1, P2, P3, P4) was
- 0.522 0.144 -0.966 —1.679 0.638 0.745 —0.378 0.395
0.144 -1.078 —2.380 —1.682 —0.002 1.407 —0.947 0.037
-0.966 —2.380 —0.516 -0.451 -0.120 -0.309 0.172 - 1.506
-1.679 —1.682 —0.451 —1.543 0.160 0.998 —1.044 —0.697
0.638 —0.002 —0.120 0.160 —1.370 —0.448 —-0.219 -0.193 [

0.745 1.407 —0.309 0.998 —0.448 —0.210 1.007 0.050
—0.378 —0.947 0.172 —1.044 —0.219 1.007 0.950 0.781
0.395 0.037 —1.056 —0.697 —0.193 0.050 0.781 —0.184

Let us now specialize to the HP (hydrophobic H and polar
P) model introduced by Lau and Dill (31). It has been
demonstrated (4, 31) that the properties of real proteins are
mimicked reasonably well by those of chains of N beads made
of only two types of amino acids (hydrophobic H and polar P)
with the conformational space consisting of all self-avoiding
walks on a two-dimensional square lattice. The advantage of
the model is that, for moderate values of N, one may exactly
enumerate both the sequences and the conformations. The
interaction energies between the two types of amino acids are
set to the values egyyg = —1, egp = 0, and epp = 0.

Our numerical calculations using the HP model for chains
with N = 9 and N = 12 are summarized in Fig. 1. The two sets
of data represented by circles were determined using Eq. 5 for
Py(T', 0), whereas the two sets of data represented by triangles
were determined using Eq. 1 for Py(I', 0). Strikingly, the
behavior at low temperature is qualitatively different in the
two cases. For the HP model, the great majority of sequences
with the ground state in maximally compact conformations
with the lowest possible energy are degenerate with g(s) that
increases with the length N of the chain. This accounts for the
low value of the order parameter as measured from Eq. 1.
Furthermore, the size dependence (from Fig. 1) is also dif-
ferent for the two cases, with Eq. 5 leading to the correct
behavior.

For the HP model, one may define protein-like sequences
as those that have a unique ground-state conformation (and
an associated energy gap between the ground state and the
first excited state that is at least 1). Fig. 2 shows a histogram
of the ground-state energies of the 1,569 such sequences for
N = 16. The key point is that the selection procedure based
on Eq. 1 would pick out all sequences (including the trivial
HHHHHHHHHHHHHHHH sequence) that have a
ground-state energy of —9 (corresponding to a maximally
compact conformation with the maximum number of 9 HH
possible contacts) irrespective of the ground-state degener-
acy. The sequences thus selected would not be representative
of the 1,569 protein-like sequences, which have a range of
ground-state energies.

To assess the role of the number of types of amino acids in
possibly removing the degeneracy, we now proceed to consider
the N = 16 model, but with 4 and then 8 types of amino acids.
The first model consisted of an ensemble of chains with 16
beads made of 4 types of amino acids (H1, H2, P1, P2)
mounted on all possible 802,075 two-dimensional conforma-

Approximately 60% of the former sequences have a unique
ground state, whereas this number increases to 76% for the
case with 8 amino acids.

Two measures (2, 6, 20, 33, 34) of the thermodynamic
stability of a sequence in its native state are the energy gap,
defined as the difference between the first excited state and the
native state energies, and the z-score z, given by

(E) — Ey

g

(8]

z,(s) =

Here, (E) and o are the average energy of a sequence s over
all alternative conformations and the corresponding SD, re-
spectively. Eq represents the ground-state energy of that
sequence.

For each sequence with 16 beads the alternative conforma-
tions were taken to be all conformations with 6, 7, 8, and 9
contacts (a total of 30,169 conformations), but the native one.
The graphs of the ground-state energies of these sequences
versus the corresponding energy gaps (Fig. 3) indicate a broad
distribution of ground-state energies. Notably, protein-like
heteropolymers with a high thermodynamic stability charac-
terized by large energy gaps do not necessarily have the lowest
ground-state energy.

We turn now to a three-dimensional lattice model that has
been considered standard for heteropolymer freezing studies
(7). The sequences have 27 beads made up of all 20 types of
amino acids and the space of conformations is restricted to the
103,346 maximally compact conformations that fitona 3 X 3 X
3 lattice. Such a situation is expected to occur in this coarse-
grained model of a protein when there is an overall attractive
interaction between the amino acids. Each location of the
chain was assigned an amino acid generated according to its
frequency of occurrence in nature (35) and the 210 interaction
energies between the amino acids were taken from table 3 of
Miyazawa and Jernigan (36). For such a model, the great
majority of sequences (approximately 90%) have nondegen-
erate ground states, so that a protein-like sequence might be
defined as one having a thermodynamically stable ground
state. Fig. 44 represents a plot of the ground-state energies of
good sequences versus their energy gaps, and Fig. 4B is a graph
of the ground-state energies versus z;. Here, as alternative
conformations for each sequence, we took all maximally
compact conformations but the native one. There are two
notable features: first, the sequences having the lowest value of
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FiG.4. (A) The plot of the ground-state energies of 2,012 randomly
picked good sequences of 27 beads with 20 types of amino acids versus
the energy gaps. (B) The plot of the ground-state energies of the same
sequences as in A versus z,.

the ground-state energy (which would be the ones selected
using Eq. 1) do not have the highest energy gap or z,; second,
even if these could be considered protein-like sequences, there
are many other equally good sequences that are not taken into
account by Eq. 1 simply because their ground-state energies
are not equal to the lowest one in the ensemble.

We conclude with some general observations. First, the
rigorous approach does not require any constraints on the
composition of amino acids. Second, an improper modification
of Eq. 4 by allowing the sum over I' to extend over all
conformations would lead to a wrong result in which the
average free energy (F) becomes trivially independent of Tges
because X Py(I', T4es) = 1. Third, as pointed out before, it is
useful to consider the T4es = 0 case explicitly. There are two
possible scenarios for the ground state of typical sequences.
For simple models, such as the HP model of Lau and Dill (31),
some sequences have a unique ground state, whereas most of
them have degenerate ground states. The more generic situ-
ation is one in which, because of 20 kinds of amino acids and
a more realistic interaction matrix, virtually each sequence has
a unique ground state. However, the “well-designed” se-
quences have high thermodynamic stability with a small den-
sity of low-lying excited energy states. In such a scenario, for
small values of Tges, One obtains a sensible (F) as an average
over predominantly those sequences that have a stability gap
larger than or equal to T4es. The order of taking limits of Tes
— 0 and the system size going to © do not commute and the
correct approach would be to allow Ty — 0 after the
thermodynamic limit is taken. Indeed, if one were to consider
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Taes = 0 explicitly for finite systems, one would get the same
result as for Tges = .

We are indebted to Sasha Grosberg and Vijay Pande for useful
correspondence. This work was supported by Istituto Nazionale di
Fisica Nucleare (Italy), Komitet Badan Naukowych Grant 2P03B-025-
13, National Aeronautics and Space Administration, North Atlantic
Treaty Organization, and the Petroleum Research Fund administered
by the American Chemical Society.

1. Wolynes, P. G., Onuchic, J. N. & Thirumalai, D. (1995) Science
267, 1619-1620.
2. Bryngelson, J. D., Onuchic, J. N., Socci, J. N. & Wolynes, P. G.
(1995) Proteins 21, 167-195.
3. Bryngelson, J. D. & Wolynes, P. G. (1987) Proc. Natl. Acad. Sci.
USA 84, 7524-7528.
4. Dill, K. A., Bromberg, S. Yue, S., Fiebig, K., Yee, K. M., Thomas,
D. P. & Chan, H. S. (1995) Protein Sci. 4, 561-602.
5. Camacho, C. J. & Thirumalai, D. (1993) Proc. Natl. Acad. Sci.
USA 90, 6369-6372.
6. Klimov, D. K. & Thirumalai, D. (1996) Phys. Rev. Lett. 76,
4070-4073.
7. Pande, V. S., Grosberg, A. Y. & Tanaka, T. (1999) Rev. Mod.
Phys., in press.
8. Wolynes, P. G. (1997) Proc. Natl. Acad. Sci. USA 94, 6170-6175.
9. Plotkin, S. S., Wang, J. & Wolynes, P. G. (1997) J. Chem. Phys.
106, 2932-2948.
10.  Wang, J., Plotkin, S. S. & Wolynes, P. G. (1997) J. Phys. France
17, 395-421.
11.  Derrida, B. (1980) Phys. Rev. Lett. 45, 79-82.
12. Pande, V.S., Grosberg, A. Y., Joerg, C. & Tanaka, T. (1996) Phys.
Rev. Lett. 76, 3987-3990.
13.  Bryngelson, J. D. & Wolynes, P. G. (1989) J. Phys. Chem. 93,
6902-6915.
14. Ramanathan, S. & Shakhnovich, E. 1. (1994) Phys. Rev. E 50,
1303-1312.
15. Pande, V. S., Grosberg, A. Y. & Tanaka, T. (1994) Proc. Natl.
Acad. Sci. USA 91, 12976-12979.
16. Pande, V. S., Grosberg, A. Y. & Tanaka, T. (1995) Macromole-
cules 28, 2218-2227.
17. Pande, V.S, Grosberg, A. Y. & Tanaka, T. (1995) J. Chem. Phys.
103, 9482-9491.
18. Pande, V.S., Grosberg, A. Y. & Tanaka, T. (1995) J. Phys. A 28,
3657-3666.
19. Pande, V. S,, Grosberg, A. Y. & Tanaka, T. (1997) Physica D 107,
316-321.
20. Shakhnovich, E. I. & Gutin, A. M. (1993) Proc. Natl. Acad. Sci.
USA 90, 7195-7199.
21. Pande, V.S., Grosberg, A. Y. & Tanaka, T. (1994) J. Phys. France
11 4, 1771-1784.
22. Pande, V.S., Grosberg, A. Y. & Tanaka, T. (1994) J. Chem. Phys.
101, 8246-8257.
23. Pande, V.S, Grosberg, A. Y. & Tanaka, T. (1995) Phys. Rev. E
51, 3381-3392.
24. Onuchic, J. N., Wolynes, P. G., Luthey-Schulten, Z. & Socci,
N. D. (1995) Proc. Natl. Acad. Sci. USA 92, 3626-3630.
25. Gutin, A. M., Abkevich, V. I. & Shakhnovich, E. I. (1995) Proc.
Natl. Acad. Sci. USA 92, 1282-1286.
26. Shakhnovich, E. I. & Gutin, A. (1989) Biophys. Chem. 34,
187-199.
27. Kurosky, T. & Deutsch, J. M. (1995) J. Phys. A 28, 1387-1393.
28. Deutsch, J. M. & Kurosky, T. (1996) Phys. Rev. Lett. 76, 323-326.
29. Mirny, L. A. & Shakhnovich, E. 1. (1996) J. Mol. Biol. 264,
1164-1179.
30. Seno, F., Vendruscolo, M., Maritan, A. & Banavar, J. R. (1996)
Phys. Rev. Lett. 77, 1901-1904.
31. Lau, K. F. & Dill, K. A. (1989) Macromolecules 22, 3986-3997.
32. Chan, H. S. & Dill, K. A. (1993) Phys. Today (Feb.), 24-32.
33. Goldstein, R. A., Luthey-Schulten, Z. A. & Wolynes, P. G. (1992)
Proc. Natl. Acad. Sci. USA 89, 4918-4922.
34. Bowie, J. U.,, Luthy, R. & Eisenberg, D. (1991) Science 253,
164-170.
35. Creighton, T. E. (1993) Proteins: Structures and Molecular Prop-
erties (Freeman, New York), p. 4.
36. Miyazawa, S. & Jernigan, R. (1996) J. Mol. Biol. 256, 623—644.



