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Summary
Imprinting occurs in the endosperm of flowering plants. Endosperm, produced by fertilization of the
central cell in the female gametophyte, is essential for embryo and seed development. Several
imprinted genes play an important role in endosperm development. The mechanism of gene
imprinting involves DNA methylation and histone modification. DNA methylation is actively
removed at the imprinted alleles to be activated. Histone methylation mediated by the Polycomb
group complex provides another layer of epigenetic regulation at the silenced alleles. Endosperm
gene imprinting can be uncoupled from seed development when fertilization of the central cell is
prevented. Imprinting may be a mechanism to ensure fertilization of the central cell thereby
preventing parthenogenic development of the endosperm.

Introduction
Genomic imprinting is the phenomenon in which a set of genes is expressed according to their
parent of origin. Imprinting occurs primarily in the placenta of mammals and in the endosperm
of flowering plants. Both structures support the developing embryo, and according to the
parental conflict theory [1], imprinting is implemented to allocate limited resources to the
offspring over which both paternal and maternal parents are competing. A decade ago, a
specific class of mutants was identified that shows fertilization-independent seed development
(for review, see [2]). Later studies revealed that these mutants are impaired in the Polycomb
group (PcG) complex in the endosperm [2]. This PcG complex plays a crucial role in genomic
imprinting in the endosperm, and interestingly, several of its components are imprinted.

Several years ago, DNA methylation was found to be involved in the regulation of endosperm
gene imprinting [3,4]. DNA methylation is a well-known epigenetic mark often associated with
gene silencing. DNA methylation is an essential factor, regulating imprinting in both plants
and mammals. Recent studies revealed that imprinting is a consequence of dynamic processes
of DNA methylation and demethylation, and histone modification [5••,6•,7•]. In this review,
we discuss the recent findings towards the understanding of imprinting mechanisms at the
molecular level in Arabidopsis.

Seeds – Where Imprinting Occurs
A seed is the ripened ovule in gymnosperms and angiosperms that contains the embryo. A new
plant grows from the embryo under proper conditions, which again endeavors to produce seeds
for the next generation. The life cycle of Spermatophyta (seed-bearing plants) therefore begins
with and ends up with seeds. Gymnosperms and angiosperms differ in seed structure and
fertilization processes. In gymnosperms such as cycads or conifers, seeds are not enclosed
within the ovary (thus they are called naked seeds) and the fertilization process is relatively
simple. The gymnosperm female gametophyte has several archegonia in the ovule. Upon
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fertilization, sperm cells are released from the growing pollen tube penetrating the archegonium
in which the egg cell is located. The resulting zygotic embryo absorbs nutrients from the
surrounding female gametophyte tissue for growth and maturation. In contrast, the angiosperm
seeds contain the endosperm, a product of double fertilization that is a distinguishing feature
of flowering plants. Upon double fertilization, two sperm are released from the pollen tube into
the embryo sac - a female gametophyte in angiosperms. One sperm fertilizes the egg cell and
the other fertilizes the central cell. The resulting embryo and endosperm are genetically
identical except for their ploidy level: the embryo is diploid and the endosperm is triploid. The
endosperm, analogous to the mammalian placenta, supports and nurtures the growing embryo
as does the gymnosperm female gametophyte. In the endosperm, specialized transfer cells
facilitate nutrient uptake [2]. And, surprisingly, the endosperm in a developing seed is the only
place where imprinting is known to occur.

Polycomb Group Genes Control Endosperm Development and are Imprinted
In angiosperms, double fertilization initiates two organs – embryo and endosperm – and their
development is highly coordinated. Crosstalk between these two organs and fertilization
signals appear to ensure synchronized development of each organ residing in the same ovule.
However, mutations in a specific class of genes disrupt such developmental synchrony and
seeds eventually abort. The Arabidopsis FIS class genes – MEDEA (MEA), FERTILIZATION-
INDEPENDENT SEED2 (FIS2), FERTILIZATION-INDEPENDENT ENDOSPERM (FIE) –
encode PcG components and their mutations allow the unfertilized central cell to proliferate
autonomously without fertilization forming an endosperm-like structure [8,9,10,11]. The
characteristic seed abortion phenotype is observed only when the mutation is maternally
inherited. Paternal mutations do not affect seed development.

Several imprinted genes have been identified in maize and Arabidopsis (Table 1). We discuss
here the mechanisms and imprinted genes revealed in Arabidopsis and recommend to readers
the following reviews [12] and [13] on maize genomic imprinting.

DNA Methylation and Demethylation in Gene Imprinting
Arabidopsis METHYLTRANSFERASE 1 (MET1), the homolog of mammalian Dnmt1, is the
primary DNA methyltransferase that maintains cytosine methylation at CG sites [14]. met1
mutants display a global reduction of cytosine methylation accompanied with developmental
abnormalities [15]. From genetic studies, it was shown that imprinting of MEA, FIS2, and the
FWA transcription factor gene, involves MET1-mediated DNA methylation [4,16•,17]. Further
studies revealed that there exists differential DNA methylation between the paternal and
maternal alleles of MEA, FIS2, and FWA [5••,16•]. Maternal alleles of these imprinted genes
are hypomethylated, whereas the paternal alleles are hypermethylated in the endosperm.
Therefore, it was hypothesized that the differential expression activity between the two parental
alleles was determined by the status of DNA methylation that has been epigenetically inherited
from the gametes. Unlike mammals, however, the maternal-specific expression of imprinted
genes is not achieved by paternal-specific de novo methylation during gametogenesis. Rather,
the default state of these imprinted genes is more likely to be MET1-dependent methylation
and transcriptional silencing. Thus, a maternal-specific activator(s) releases the default
silencing and activates maternal expression only in the female gametophyte. In the male
gametophyte, by contrast, the paternal allele would remain silent due to an absence of a
maternal-specific activator(s).

What is the maternal-specific activator(s) in the female gametophyte? Does DNA methylation
serve as a silencing mark and is it removed directly or indirectly by the activator(s)?
DEMETER (DME) has been identified as a transcriptional activator positively regulating
MEA in the central cell [3]. DME is a parent-of-origin effect gene because only the maternal
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DME is important for seed viability. DME expression is confined to the central cell and its
expression disappears after fertilization, whereas maternal MEA allele expression persists in
the endosperm. Ovules carrying mutant dme do not express MEA and as a result the seeds
eventually abort. The finding that the met1 mutation suppresses dme seed abortion by restoring
MEA expression suggests DME and MET1 antagonistically regulate MEA [4]. It was thus
hypothesized that DME removes DNA methylation at the maternal MEA allele in the central
cell and the hypomethylated maternal MEA is exclusively expressed in the early endosperm
while the methylated paternal MEA is transcriptionally silenced (Figure 1).

A recent study demonstrated that DME is necessary for demethylation and transcriptional
activation of the maternal MEA in the endosperm [5••]. DME encodes a DNA glycosylase that
specifically removes 5-methylcytosine from DNA [5••,18]. DNA glycosylases are repair
enzymes that initiate the base excision repair by removing damaged or mismatched bases
[19]. DNA glycosylase activity of DME is required for removal of cytosine methylation both
in vivo and in vitro [5••,20]. Only the paternal MEA is methylated and silenced in the wild type
endosperm, whereas, both parental alleles are methylated in the dme mutant endosperm,
indicating maternal allele-specific hypomethylation [5••]. This finding suggests a mechanism
of active DNA demethylation because expression of DME and its demethylation take place in
the mature central cell after cell divisions within the female gametophyte have ceased. Thus,
DME demethylation does not likely involve a passive demethylation process via a series of
cell division without maintenance of DNA methylation. In vitro, DME removes 5-
methylcytosine at any sequence contexts, whereas in vivo DME demethylation occurs in a
locus-specific manner [5••]. Moreover, such DNA demethylation activity is observed at
specific sites even within the same locus. For example, regulation of DNA methylation and
demethylation at the maternal MEA only takes place in the 5’ and 3’ of the coding region
[5••]. How DME is targeted to a specific region is still unknown. DME is also required for
maternal activation of two other imprinted genes FIS2 and FWA, and their DNA methylation/
demethylation pattern in both parental alleles is very similar to that of MEA [16•,17].

Therefore, imprinting of MEA, FIS2, and FWA in the endosperm is initiated and established
by DME-mediated active DNA demethylation in the central cell, while the paternal alleles
remain methylated and silenced (Figure 1). The methylation state of each allele is likely to
persist via epigenetic mechanisms throughout nuclear divisions during early endosperm
development. The on/off switch of DNA methylation is sufficient for the establishment and
maintenance of both FIS2 and FWA imprinting [16•]. By contrast, MEA imprinting requires
an additional regulatory mechanism, which is discussed below.

Maintenance of Gene Imprinting by PcG Silencing
Both MEA and FIS2 are imprinted in the endosperm. MEA is homologous to Drosophila E(z)
whose SET domain has methyltransferase activity on lysine 27 of histone 3 (H3K27) [9,11].
FIS2 is a zinc-finger transcription factor homologous to Drosophila Suppressor of Zeste12 [Su
(z)12] [21]. The FIS class gene products, MEA, FIS2, and FIE appear to function in a large
PcG complex along with additional components such as MULTI-COPY SUPPRESSOR OF
IRA1 (MSI1) and retinoblastoma-related protein RBR1[22,23,24]. This multimeric PcG
complex is predicted to repress gene transcription via histone modification and chromatin
remodeling, and the established patterns are stably propagated through mitotic cell cycles
[25]. This PcG complex is thought to negatively regulate endosperm cell proliferation because
autonomous central cell divisions occur in mea, fis2, or fie mutants in the absence of fertilization
[8,9,10,11].

Activation by demethylation of the maternal MEA allele is accomplished by DME in the central
cell [3,5••], while the paternal allele is methylated and silenced. The differential methylation
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patterns are inherited in the endosperm after fertilization. However, DNA methylation is not
directly involved in the maintenance of paternal MEA silencing because even the unmethylated
paternal MEA allele contributed by met1 mutants is not expressed in the endosperm [5••].
Rather, the FIS-PcG complex containing MEA itself seems to keep the silenced paternal
MEA repressed [5••,6•,7•]. Disruption of the FIS-PcG complex causes loss of MEA imprinting
as silencing of the paternal allele is released [5••,6•,7•]. In addition, MEA is physically
associated with the MEA promoter sequence [7•]. These findings propose a self-imprinting
mechanism of MEA, in which maternally expressed MEA replenishes the FIS-PcG complex,
and in turn, the complex keeps repressing the silenced paternal MEA allele (Figure 1) [5••].

PHERES1 (PHE1) is another imprinted gene in the Arabidopsis endosperm [26]. Whereas
MEA, FIS2, and FWA are maternally expressed, paternal PHE1 expression predominates in
the endosperm, while the maternal PHE1 is silent or very weakly expressed [27]. The silenced
maternal PHE1 allele is a direct target of the FIS-PcG complex [27]. In mea mutant seeds, for
example, silencing of the maternal PHE1 is released leading to biallelic expression [27]. Unlike
other imprinted genes, however, the role of DNA methylation in PHE1 imprinting is not
reported. Rather, histone modification via the FIS-PcG complex likely both establishes and
maintains the silencing of the paternal PHE1 (Figure 1).

Notably, MEA is required for H3K27 methylation, one of the epigenetic silencing marks, at
the silenced paternal MEA and the maternal PHE1 alleles [5••,6•,28•]. Silencing of the paternal
MEA is released in the mea mutant endosperm accompanied with loss of H3K27 methylation
[5••]. Repression of the PHE1 allele is also associated with H3K27 methylation [28•]. A
mutation in the catalytic center of the MEA SET domain abolishes PHE1 repression, suggesting
that histone methyltransferase activity of MEA is necessary for its function in PcG silencing
and gene imprinting [28•].

Imprinting Bypass and Seed Development
Genomic imprinting in the Arabidopsis endosperm is regulated by both DNA methylation and
PcG silencing. Is imprinting an integral feature of seed development that cannot be uncoupled?
A recent study demonstrated that seeds are produced without double fertilization by bypassing
genomic imprinting [29••]. Mutants for CDKA;1 which encodes a Cdc2/Cdc28 homologue
produce pollen with only one sperm [30•,31•]. This mutant pollen preferentially fertilizes the
egg cell while the binucleate central cell remains unfertilized. Embryos from eggs fertilized
with cdka;1 mutant pollen abort about 3 days after pollination and only a few divisions of the
unfertilized central cell occurs [31•]. This suggests that a positive signal is generated from a
developing embryo to initiate central cell proliferation independent of second fertilization.
Strikingly, disruption of PcG inhibition in the female gametophyte allows single-fertilized
seeds with unfertilized homodiploid endosperm [29••]. When PcG mutants such as mea, fis2,
and fie are pollinated with cdka;1 pollen, viable seeds form albeit the seed size is smaller than
wild type [29••]. This implies that genomic imprinting in the endosperm is not necessary for
seed development under certain circumstances and that an unfertilized diploid central cell in
the female gametophyte has the full potential to develop functional endosperm without a
paternal contribution. These results support the hypothesis that during the evolution of plants,
the multicellular gymnosperm female gametophyte was reduced to the central cell in the
angiosperm female gametophyte, and that fertilization of the central cell is the trigger that
activates development of the multicellular endosperm. [29••].

Conclusions
Two epigenetic mechanisms, DNA methylation and histone modification involving PcG
proteins, regulate gene imprinting in seed development. Initiation of gene imprinting requires
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DME in the female gametophyte for allele-specific DNA demethylation. Differential
methylation distinguishes the two parental alleles in the endosperm after fertilization and
results in parent-of-origin patterns of gene expression. These allele-specific epigenetic marks
are maintained and fortified by the PcG complex, which, in turn, auto-regulates its own
components. Such epigenetic regulation and imprinting are vital to proper endosperm
development and seed viability since mutations in the components of this regulatory circuit
produce unviable seeds.

Nevertheless, loss of imprinting (i.e., gain of biallelic expression) does not always compromise
seed development. When the paternal genome is derived from met1 mutants, FIS2 and FWA
are biparentally expressed in the endosperm producing viable seeds [16•]. Fertilization of a
fis mutant ovule with cdka;1 pollen produces viable seeds with homodiploid endosperm in the
absence of paternal genome contribution, thus bypassing the requirement of gene imprinting
[29••]. That the diploid condition is sufficient for a viable seed is evident by the presence of
biparental diploid endosperm in Nuphar polysepalum, a basal angiosperm [32]. Therefore it is
reasonable to speculate that endosperms of most flowering plants might have evolved a unique
imprinting mechanism to ensure that fertilization of the central cell takes place, and that the
male contributes to the production of healthy endosperm for the next generation. Thus, in
flowering plants and mammals, imprinting prevents parthenogenic development of the
endosperm and embryo, respectively [33].
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Figure 1. Gene imprinting during Arabidopsis seed development
Both maternal and paternal alleles of imprinted genes are methylated by MET1 as a default
state in the central cell and sperm, respectively. DME, 5-methylcytosine DNA glycosylase in
the central cell, demethylates and activates MEA, FIS2, and FWA alleles [5••,16•]. Upon
fertilization, maternally expressed but paternally silenced MEA and FIS2 participate in a PcG
complex. In turn, the PcG complex represses its targets such as the paternal MEA and the
maternal PHE1 through histone modifications involving H3K27 methylation [5••,28•].
Maternal MEA and FIS2, which are not repressed by the PcG complex, are continuously
expressed replenishing the PcG complex, which forms an auto-regulatory feedback loop
[5••]. Silencing of the paternal FIS2 and FWA appears to be solely dependent upon DNA
methylation, which is inherited from the gametes [16•]. Consequently, MEA, FIS2, and FWA
are maternally expressed and PHE1 paternally expressed in the early endosperm.
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Table 1
List of imprinted genes in flowering plants.

Gene Product Functiona Allelic expressionb References

Arabidopsis thaliana
FERTILIZATION-
INDEPENDENT
SEED2 (FIS2)

Zinc-finger transcription factor PcG silencing Maternal 8,16•,21,34

FWA Homeodomain transcription factor Unknown Maternal 16•,17,35
MEDEA (MEA) PcG SET-domain protein PcG silencing/

H3K27 methylation
Maternal 4,5••,6•,7•,9,

11,21,22,26,
28•,34,36,37

PHERES1 (PHE1) MADS-box transcription factor Unknown Paternal 26,27,28•
Zea mays
fertilization-
independent
endosperm1 (fie1)

WD-40 repeat protein Unknown Maternal 38,39,40•,41

fertilization-
independent
endosperm2 (fie2)

WD-40 repeat protein Unknown Maternal 38,39,40•

maternally expressed
gene1 (meg1)

Cys-rich glycosylated protein Structural role in basal
endosperm transfer
region (?)

Maternal 42

maize E(z)-like gene1
(mez1)

PcG SET-domain protein Unknown Maternal 43

no-apical-meristem-
related protein (nrp)

NAM family transcription factor Unknown Maternal 44

Paternally expressed
gene1 (peg1)

Unknown Unknown Paternal 39

a
Function known in the endosperm.

b
Allelic expression pattern observed in the endosperm.
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