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Background. Lysine-specific demethylase 1 (LSD1), catalysing demethylation of mono- and di-methylated histone H3-K4 or K9,
exhibits diverse transcriptional activities by mediating chromatin reconfiguration. The telomerase reverse transcriptase
(hTERT) gene, encoding an essential component for telomerase activity that is involved in cellular immortalization and
transformation, is silent in most normal human cells while activated in up to 90% of human cancers. It remains to be defined
how exactly the transcriptional activation of the hTERT gene occurs during the oncogenic process. Methodology/Principal

Findings. In the present study, we determined the effect of LSD1 on hTERT transcription. In normal human fibroblasts with a
tight hTERT repression, a pharmacological inhibition of LSD1 led to a weak hTERT expression, and a robust induction of hTERT
mRNA was observed when LSD1 and histone deacetylases (HDACs) were both inhibited. Small interference RNA-mediated
depletion of both LSD1 and CoREST, a co-repressor in HDAC-containing complexes, synergistically activated hTERT
transcription. In cancer cells, inhibition of LSD1 activity or knocking-down of its expression led to significant increases in levels
of hTERT mRNA and telomerase activity. Chromatin immunoprecipitation assay showed that LSD1 occupied the hTERT
proximal promoter, and its depletion resulted in elevated di-methylation of histone H3-K4 accompanied by increased H3
acetylation locally in cancer cells. Moreover, during the differentiation of leukemic HL60 cells, the decreased hTERT expression
was accompanied by the LSD1 recruitment to the hTERT promoter. Conclusions/Significance. LSD1 represses hTERT
transcription via demethylating H3-K4 in normal and cancerous cells, and together with HDACs, participates in the
establishment of a stable repression state of the hTERT gene in normal or differentiated malignant cells. The findings
contribute to better understandings of hTERT/telomerase regulation, which may be implicated in the development of
therapeutic strategies for telomerase dysregulation-associated human diseases including cancers.
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INTRODUCTION
The post-translational modification of nucleosomal histones,

including acetylation, phosphorylation, methylation, ubiquitina-

tion and sumoylation, plays a key role in the regulation of gene

transcription through remodelling chromatin structure [1]. Among

all above modifications, regulated methylation of six known lysine

(K) residues within the tails of histone H3 (H3-K4, H3-K9, H3-

K27, H3-K36 and H3-K79) and H4 (H4-K20) is unique as mono-

(M1), di- (M2) and tri- (M3) three modification states can be

generated [2,3]. These different states, together with the identity of

the modified lysine residues, result in diverse consequences on

transcriptional activities. Methylation of H3-K4, H3-K36 and H3-

79 is predominantly associated with transcriptionally active genes,

whereas methylation of H3-K9, H3-K27 and H4-K20 marks silent

genes or heterochromatin [1–3].

It is well known that histone acetylation and phosphorylation

are dynamic and reversible, while histone methylation has long

been thought as a static modification [1–3]. However, the recent

discovery of multiple histone demethylases (HDMs) has totally

changed this dogma, and thus the dynamic histone H3

methylation–mediated transcriptional regulation has emerged as

a subject of intense investigations [2–5]. Lysine-specific demethy-

lase 1 (LSD1), the first identified HDM [6], has attracted a great

deal of interest because of its broad functional activities in

transcriptional programs [7–15]. By interacting with diverse co-

factors and catalyzing demethylation of mono- and di-methylated

H3-K4 or K9, LSD1 is capable of either repressing or activating

the target genes. For instance, when recruited to the target

promoters by the androgen receptor, LSD1 removed the

repressive H3-K9(M2) mark, thereby driving the androgen target

activation [7,11–13]. On the other hand, LSD1 specifically

demethylates H3-K4(M1) and (M2) that in turn leads to gene

repression by maintaining a unmethylated H3-K4 status on its

target promoters [6,8,13,16,17]. By eliciting such dual effects,
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LSD1 has been implicated in embryonic development, cell

differentiation and proliferation, stem and cancer cell biology.

Telomerase, a RNA-dependent DNA polymerase silent in most

normal human somatic cells, is frequently activated during the

oncogenic process [18,19]. The compelling evidence suggests that

activation of telomerase is essential for cellular immortalization and

malignant transformation [18,19]. Moreover, telomerase and/or its

components have also been implicated in the regulation of stem cell

mobilization and proliferation [20,21]. It has been established that

the stable repression of the telomerase catalytic subunit, encoded by

the telomerase reverse transcriptase (hTERT) gene, is a predominant event

resulting in the lack of telomerase activity in most normal cells [22–

26]. Therefore, in order to acquire telomerase activity, it is necessary

to erase negative regulators suppressing hTERT transcription.

However, it remains incompletely understood how the repression or

activation of the hTERT gene in normal and cancerous cells is

achieved, despite great efforts in elucidating the underlying

mechanisms during the past years.

Recent studies have started to uncover a close association

between histone modifications including methylation and tran-

scriptional activity of the hTERT gene in human cells [27–35].

Lack of histone H3-K4 methylation generally marks the repressive

hTERT transcription in telomerase-deficient cells while the over-

expression of SMYD3, a histone methyltransferase (HMT) that

specifically di- and tri-methylates histone H3-K4, leads to the

induction of hTERT mRNA expression via enhancing methylated

H3-K4 at the hTERT proximal promoter region [34,35]. It has

been shown that the transcription factor c-MYC, a key activator of

the hTERT gene [36,37], is capable of binding to its target

promoters only when the H3-K4 is methylated within appropriate

regions of target promoters [38]. Conceivably, histone H3-K4

demethylation at the hTERT promoter may be required to lock

the chromatin in a closed state in telomerase-deficient cells.

However, it remains unknown which HDMs are associated with

the hTERT promoter and responsible for maintaining H3-K4

demethylation locally. In the present study, we sought to address

this issue by determining the potential role for LSD1 in controlling

hTERT transcription.

RESULTS

Tranylcypromine treatment or depletion of LSD1

expression induces hTERT mRNA expression in

MRC5 fibroblasts
The amino oxidase inhibitor tranylcypromine has been identified

to potently suppress the enzymatic activity of LSD1 [17].

Therefore, to elucidate a potential role for LSD1 in the

transcriptional regulation of the hTERT gene, we first incubated

normal human MRC5 fibroblasts exhibiting a stable hTERT

repression in the presence of tranylcypromine. As shown in

Fig. 1A, hTERT transcripts were not observed in control MRC5

cells while tranylcypromine treatment induced a weak but

detectable expression of hTERT mRNA. To rule out possible

LSD1-independent, non-specific effects of tranylcypromine, we

Figure 1. The effect of LSD1 inhibition on the hTERT mRNA
expression or gene transcription in human normal fibroblast MRC5
cells. (A) The induction and synergistic up-regulation of hTERT mRNA
expression in MRC5 cells by the LSD1 inhibitor tranylcypromine alone
and its combined treatment with the histone deacetylase (HDAC)
inhibitor TSA, respectively. The cells were incubated with either
tranylcypromine at 25.0 mM or TSA 0.1 mM, or both of them overnight
and then harvested for hTERT mRNA analyses using RT-PCR. Trans:
tranylcypromine. (B) The synergistic effect of LSD1 and CoREST
depletion on the induction of hTERT mRNA in MRC5 cells. The
knocking-down of LSD1 and CoREST expression was performed using
the specific siRNA targeting LSD1 and CoREST. Arrow: primer dimmers.
(C) The demonstration of efficient down-regulation of the target genes
in siRNA-transfected cells. Lane 1: Control siRNA; lane 2: LSD1 (Upper)
and CoREST siRNAs (Lower), respectively; and lane 3: LSD1+CoREST
siRNAs. Note the results in (B) and (C) were from the same set of cDNA,
and therefore, b2 –M was only shown in (B). (D) The up-regulation of
the hTERT promoter activity by tranylcypromine. The p181 reporter

r

construct that harbors the hTERT proximal promoter sequence was
transfected into MRC5 cells in the absence or presence of tranylcypro-
mine, and then analysed for luciferase activity 48 hours later. Variation
in transfection efficiency was normalized by the TK-driven Renilla
luciferase activity. Columns: Relative luciferase activity arbitrarily
expressed as the ratio of p181/TK; Bars: SD.
doi:10.1371/journal.pone.0001446.g001
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knocked-down LSD1 expression by using the specific LSD1

siRNA. siRNA treatment of MRC5 cells resulted in silencing of

LSD1 expression, and consistent with the finding described above,

hTERT mRNA was induced in these LSD1-depleted cells

(Fig. 1B). Taken together, both pharmacological inhibition of

LSD1 activity and depletion of its expression are capable of de-

repressing the hTERT transcription in normal human fibroblasts,

although the effect was not robust.

The simultaneous inhibition of both LSD1 and

HDACs is required for the optimal induction of

hTERT mRNA expression in MRC5 cells
It has been previously shown that the inhibition of HDAC activity

by TSA activates hTERT transcription in human fibroblasts and

other cell types [27,28,31–33,39]. Moreover, an intimate interplay

between LSD1 and HDACs has been observed [40]. We thus

sought to probe whether a synergistic induction of hTERT

expression could be achieved by inhibiting both LSD1 and HDAC

activities. For this purpose, MRC5 cells were exposed to either

tranylcypromine or TSA alone, or tranylcypromine plus TSA. A

weak expression of hTERT mRNA was observed in cells treated

with tranylcypromine at 25 mM or TSA at 0.1 mM, whereas the

cell exposure to both tranylcypromine and TSA led to a robust

increase in hTERT transcripts (Fig. 1A). The data suggest that

LSD1 and HDACs cooperate to maintain a repressive state of the

hTERT transcription in normal human MRC5 cells.

It is known that LSD1 interacts with CoREST, a co-repressor that

exists in the HDAC-containing complex [8,16]. To corroborate the

specific effect of tranylcypromine and TSA, we thus depleted both

LSD1 and CoREST expression in MRC5 cells using a siRNA

approach. The efficient knocking-down of these transcripts was

verified with use of RT-PCR (Fig. 1C). The transfection of LSD1 but

not CoREST siRNA into MRC5 cells induced minimal amounts of

hTERT mRNA whereas the depletion of both of them synergisti-

cally activated hTERT transcription (Fig. 1B), which was in good

accordance with the results achieved in MRC5 cells incubated with

both tranylcypromine and TSA.

The hTERT promoter is activated in MRC5 cells in the

presence of tranylcypromine
Next we sought to examine the effect of tranylcypromine on the

hTERT promoter activity. p181, a reporter construct with an

insert of the core hTERT promoter sequence [37], was transfected

into MRC5 cells and luciferase activity driven by the hTERT core

promoter was assessed 48 hours post-transfection in the presence

or absence of tranylcypromine. As expected, the p181 activity in

untreated MRC5 cells was very low, consistent with earlier

observations. The exposure of the cells to tranylcypromine

substantially increased the hTERT promoter activity in a dose-

dependent manner (Control vs tranylcypromine treatment at 10

and 100 mM, p,0.05, paired Wilcoxon two sample test) (Fig. 1D).

Tranylcypromine up-regulates hTERT expression

and telomerase activity concomitant with elevated

H3-K4(M2) and H3 acetylation at the hTERT proximal

promoter in cancer cells
Having demonstrated an inhibitory role for LSD1 in the hTERT

transcription in human normal fibroblasts, we wanted to further

clarify its regulatory effect on hTERT expression in different

cancer cells. The cervical cancer lines HeLa, SiHa and SW756,

and a lung cancer line A549 cells were incubated with different

concentrations of tranylcypromine overnight and were then

analyzed for changes in hTERT mRNA and telomerase activity.

The results documented in Fig. 2A showed a significant up-

Figure 2. The tranylcypromine-induced up-regulation of hTERT
mRNA expression and telomerase activity accompanied by increase
in H3-K4(M2) and H3 acetylation at the hTERT proximal promoter
region in human cancer cells. (A) The dose-dependent up-regulation
of hTERT mRNA expression in A549, HeLa, SiHa and SW756 cells treated
with tranylcypromine. (B) Telomerase activity in the same sets of cells
treated with tranylcypromine (Trans) at 100 mM (for A549, HeLa and
SW756) or 50 mM (for SiHa) as in (A). Telomerase activity was assessed
using a telomerase PCR ELISA kit and arbitrarily expressed as
absorbance (OD450–OD690). Columns: Relative telomerase activity;
Bars: SD. (C) The western blot analysis of global histone H3 acetylation,
H3-K4, and H3-K9 mono-, di- and tri-methylation in HeLa and SiHa cells
treated with tranylcypromine (Trans). Pansus staining was shown for
equal histone protein loads. (D) The increased histone H3-K4(M2) and
H3 acetylation at the hTERT proximal promoter in tranylcypromine-
treated HeLa and SiHa cells. Representative ChIP results were shown.
doi:10.1371/journal.pone.0001446.g002
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regulation of hTERT mRNA expression in all tranylcypromine-

treated cells although the sensitivity varied from cell line to cell

line. HeLa cells were most sensitive to tranylcypromine treatment

and the concentration at 10 mM induced optimal increases in

hTERT mRNA. Consistently, an increase in telomerase activity

was observed in the same sets of A549, SiHa and SW756 cells as

well (Fig. 2B). HeLa cells treated with 100 mM tranylcypromine

exhibited slight enhancement in telomerase activity, in accordance

with hTERT mRNA results.

Given tranylcypromine’s inhibitory effect on LSD1 activity [17],

we next asked whether potential alterations in histone H3

methylation occurred in cells treated with tranylcypromine. We

first recorded a change in global histone H3 methylation and

acetylation profile in control and treated cells, but failed to find a

significant difference in total methylated H3-K4 and K9 or H3

acetylation (Fig. 2C). Chromatin immunoprecipitation (ChIP)

assays were then applied to determine histone H3 modifications at

the hTERT promoter region by using the PCR primers spanning

the proximal promoter regions (between –296 and –22 relative to

ATG). The treatment of HeLa cells with the LSD1 inhibitor led to

substantial enrichments in H3-K4(M2) at the hTERT core

promoter region (Fig. 2D). Similar alterations were observed in

SiHa cells following tranylcypromine treatment: H3-K4(M2) at

the hTERT promoter was increasingly enriched. Furthermore,

highly increased histone H3 acetylation at the hTERT promoter

region was found in both HeLa and SiHa cells in the presence of

tranylcypromine (Fig. 2D). In contrast, no significant H3-K9

methylation(M2) was detected at the hTERT proximal promoter

(Fig. 2D). These data indicate that LSD1 specifically demethylates

H3-K4 rather than K9 associated with the hTERT proximal

promoter, consistent with its inhibitory effect on the hTERT

transcription. Additionally, we found that the altered H3-K4

modification was limited to the core promoter region and did not

extend to the promoter nucleosomes further upstream (.2700

and beyond; data not shown).

Depleting LSD1 expression induces higher levels of

hTERT mRNA and telomerase activity via inhibiting

H3-K4 demethylation at the hTERT proximal

promoter in cervical cancer cells
To obtain independent evidence for the inhibitory effect of LSD1 on

hTERT transcription and telomerase activity, LSD1 expression was

further knocked-down in HeLa and SiHa cells again using a siRNA

strategy. As shown in Fig. 3A, LSD1 could be efficiently depleted in

HeLa and SiHa cells. The up-regulation of hTERT mRNA and

telomerase activity was observed in both cells, consistent with those

documented in tranylcypromine-treated cells (Fig. 3A and B).

The depletion of LSD1 in HeLa and SiHa cells did not lead to

global changes in the histone H3 methylation and acetylation

profile (Fig. 3C). We then performed ChIP analyses to define

potential alterations in H3 methylation associated with the

hTERT proximal promoter in LSD1-depleted cells. The presence

of LSD1 on the hTERT promoter was readily observed in the

control cells while it became undetectable following LSD1-specific

siRNA treatment (Fig. 3D). The depletion of LSD1 expression was

accompanied by significant increases in H3-K4(M2) and histone

H3 acetylation at the hTERT promoter in both HeLa and SiHa

cells (Fig. 3D). There were no detectable histone H3-K9(M2) at

the hTERT promoter region in either control or LSD1-depleted

cells (Fig. 3D). These results provide evidence that LSD1 targets

the hTERT gene and represses hTERT transcription via

specifically demethylating histone H3-K4 (M2) at the hTERT

proximal promoter in cervical cancer cell lines.

The recruitment of LSD1 to the hTERT promoter

accompanied by a loss of H3-K4(M2) and down-

regulation of hTERT expression occur concomitantly

during the terminal differentiation of leukemic HL60

cells
It has been well clarified that HL60 leukemic cells, when induced to

undergo terminal differentiation, exhibit a stable repression of

hTERT transcription [39,41–45]. To explore whether LSD1 is

involved in the establishment of such a repressive state of the hTERT

gene in the differentiated HL60 cells, we treated the cells with

DMSO, a differentiation inducer, and then analysed binding of

LSD1 to the hTERT proximal promoter. As expected, the DMSO

exposure of HL60 cells triggered complete cessation of hTERT

transcription within 48 hours (Fig. 4A). The ChIP results showed

that LSD1 recruitment to the hTERT promoter did not occur in

undifferentiated cells while it was readily observed in differentiated

cells treated with DMSO for 48 hours, concomitant with the loss of

H3-K4(M2) at the hTERT proximal promoter (Fig. 4B).

DISCUSSION
The methylated histone H3-K4 and K9 mark gene activation and

repression, respectively [1–3]. LSD1, the first identified histone

demethylase [6], has been shown to either repress a cohort of

target genes through demethylation of H3-K4(M2) or activate

other targets via removing the repressive mark H3-K9(M2),

dependent on its interaction with different partners [6–8,12,17]. In

the present study, we provide evidence that LSD1 is required for

transcriptional repression of the hTERT gene in both normal and

cancerous human cell lines.

Previous observations showed that the entire hTERT gene was

embedded in a highly condensed chromatin in human normal

fibroblasts with a tight repression of hTERT transcription [29,30].

When treated with a HDAC inhibitor, the local chromatin

became open due to the increased histone acetylation, which thus

allowed the transcriptional activation of the hTERT gene [22–26].

These data indicate an important role for HDAC-mediated

histone deacetylation in repressing hTERT expression in telome-

rase-deficient cells. It is evident from the present investigation that

LSD1 is similarly required for the establishment of repressive

hTERT chromatin in normal fibroblasts. The activation of an

optimal hTERT transcription can be achieved only when LSD1

and HDACs are both inhibited. Taken together, LSD1-mediated

H3-K4 demethylation and HDAC-mediated histone deacetylation

cooperate to establish a repressive transcriptional environment at

the hTERT promoter region in human normal fibroblasts.

Moreover, the recruitment of LSD1 to the hTERT promoter

observed in differentiated HL60 cells provides independent

evidence for its participation in the stable repression of the

hTERT gene. It is currently unclear whether other histone

demethylases are involved in the H3-K4 demethylation at the

hTERT chromatin. This issue is now being addressed in our

laboratory.

Intriguingly, the temporal patterns of expression of specific

components of the LSD1 complex during the mammalian

development cause a switch of LSD1 function from repression to

activation, or reverse [13]. Therefore, we compared the

transcriptional effect of LSD1 on the hTERT gene between cancer

and normal cells. All the tested cancer cells including HeLa, SiHa,

SW756 and A549 expressed hTERT mRNA and telomerase

activity, but the pharmacological inhibition of LSD1 activity or

depletion of its expression was capable of further up-regulating

hTERT mRNA and telomerase activity levels, which clearly

hTERT Repression by LSD1
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indicates an identical inhibitory effect of LSD1 on hTERT

transcription in both normal and cancer cells. More importantly,

the ChIP result demonstrated the LSD1 occupancy on the

hTERT proximal promoter. Consistent with its functional activity,

inhibition of LSD1 led to increased histone H3-K4 (M2) at the

hTERT promoter region. In contrast, there were no detectable

changes in H3-K9 methylation locally. It seems that LSD1 only

targets H3-K4 for its demethylation at the hTERT promoter.

Moreover, the LSD1-mediated H3-K4 demethylation was con-

fined to the core promoter region without a further extension to

upstream nucleosomes based on our unpublished data.

H3-K4 methylation alters the chromatin folding, leading to

increased accessibility of DNA to proteins that mediate transcrip-

tion [1–3]. It has been shown that the methylated H3-K4 is one of

the prerequisites for the E-box binding by c-MYC on MYC target

promoters [34,38]. Given the fact that hTERT gene is a direct

target of c-MYC [36,37], the LSD1-mediated H3-K4 demethyl-

ation might prevent the c-MYC binding to the hTERT promoter,

which in turn attenuates a transcriptional activity of the hTERT

gene. Consistent with this hypothesis, we indeed observed that the

depletion of LSD1 led to not only increased H3-K4(M2) but also

H3-K4(M3) at the hTERT proximal promoter in HeLa cells (data

Figure 3. LSD1-depletion mediated up-regulation of hTERT and telomerase expression through enhancing H3-K4(M2) and H3 acetylation at the
hTERT proximal promoter in cancer cells. (A) The up-regulation of hTERT mRNA expression induced by depletion of LSD1 in human cancer cells. RT-
PCR for LSD1 mRNA was shown to verify efficient depletion of LSD1 expression in those cells. The lower panel further demonstrated an inhibition of
LSD1 expression at protein levels in HeLa and SiHa cells treated with LSD1 siRNA. WB: Western blot. (B) The enhanced telomerase activity in HeLa and
SiHa cells with LSD1 depletion. (C) The western blot analysis of global histone H3 acetylation, H3-K4, and H3-K9 mono-, di- and tri-methylation in
HeLa and SiHa cells transfected with LSD1 specific siRNA. Pansus staining was shown for equal histone protein loads. (D) The abolishment of LSD1
concomitant with the increased H3-K4(M2) and H3 acetylation at the hTERT proximal promoter in LSD1-depleted HeLa and SiHa cells. Representative
ChIP results were shown. C and L: Control and LSD1 siRNA, respectively.
doi:10.1371/journal.pone.0001446.g003
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not shown). In addition, recent studies have revealed an intimate

cross-talk between LSD1 and deacetylating enzymes, and histone

demethylation can be a secondary target of HDAC inhibitors [40].

LSD1 interacts with CoREST which is in the HDAC-containing

complex [8,16], and thus it may further repress gene transcription

program via indirectly promoting histone deacetylation. Consis-

tently, we observed concomitant increases in histone H3-K4(M2)

and H3 acetylation in cervical cancer cells treated with either

LSD1 inhibitor or its specific siRNA. Taken together, LSD1 is

capable of regulating the chromatin structure of the hTERT

promoter region at multiple levels.

Although LSD1 was observed to occupy the hTERT proximal

promoter region, as demonstrated in our ChIP assay, it remains

unclear how it is recruited there. We examined a potential

interaction of LSD1 with the transcription factors Sp1 and MYC

family members, the key regulators for hTERT transcription, and

none of them were associated with LSD1 under our immunopre-

cipitation settings. It is thus plausible that LSD1 physically

associates with other co-factors that are in turn tethered to the

hTERT proximal promoter.

To conclude, the present study demonstrates that the histone

demethylase LSD1 is required for the transcriptional repression of

the hTERT gene in both normal and cancerous cells. By directly

demethylating H3-K4 and indirectly promoting H3 acetylation

associated with the hTERT core promoter, LSD1 participates in

the establishment of a stable repression state of the hTERT gene in

human normal or differentiated malignant cells. Our findings thus

provide insights into the regulatory mechanism underlying

telomerase silencing and activation in human cells, and have

implications in cancer and stem cell biology.

MATERIALS AND METHODS

Cell lines, culture conditions, and chemicals
Human cervical cancer cell lines HeLa, SiHa and SW756, lung

carcinoma cell line A549, normal fetal lung fibroblasts MRC5, and

leukemic cell line HL60 were cultured at 37uC/95%air/5%CO2 in

RPMI 1640 medium (Life Technologies, Paisley, Scotland, UK)

containing 10% fetal calf serum, 100 units/ml penicillin, and 2 mM

L-glutamine. The specific LSD1 inhibitor tranylcypromine and

histone deacetylase (HDAC) inhibitor trichostatin A (TSA) were

purchased from Biomol International LP (Plymouth Meeting, PA,

USA) and Sigma-Aldrich Sweden AB (Stockholm, Sweden),

respectively. HL60 cells were treated with 1.25% DMSO for

48 hours to induce their terminal differentiation [39].

siRNA treatment
Chemical modified StealthTM siRNA targeting LSD1 and CoREST,

and control siRNA were bought from Invitrogen (Carlsbad, CA,

USA). The sequences for LSD1 and CoREST were UUU CCA

UGA UAC CAG CAG CUU CUC C and AAG AUU GUC CCG

UUC UUG ACU GCG U, respectively. MRC5 and cervical cancer

cells were transfected with siRNA using Lipofectamine2000

(Invitrogen) according to the manufacturer’s protocol.

Total RNA extraction and RT-PCR
Total cellular RNA was extracted using ULTRASPECTM-II RNA

kit (Biotecx Lab, Houston, TX, USA). cDNA synthesis, the RT-

PCR primers and conditions for hTERT mRNA were as described

previously [46]. b2-M mRNA expression was used as a control for

RNA loading and RT efficiency and was amplified with its specific

primers for 26 cycles. PCR for both hTERT and b2-M mRNA

was optimised to keep amplification in a linear phase, which

allowed a semi-quantitative evaluation for the level of hTERT

transcript as described [46]. The PCR primers for LSD1 mRNA

are 59-GAC TTC TTG GCA GAG TTG TC-39 (forward) and 59-

GTG AAA GAG TTG CAG ATC C-39 (reverse). RT-PCR for

CoREST mRNA was carried out using the following primer pair:

(forward) 59-GGG ATG CTC TTC TGG CAT AA-39 and

(reverse) 59-GGA GGT TTC CTT TTT GCT CTA-39.

Histone and total cellular protein extraction, and

western blot
Preparation of a total histone fraction from nuclei was done by

extraction with a dilute acid as described [33]. Total cellular

proteins were extracted with RAIP lysis buffer. Two mg of histone

proteins or 20 mg of total cellular proteins were resolved by sodium

dodecyl sulate-polyacrylamide gel electrophoresis and transferred

to an intracellulos membrane. The membranes were probed with

the specific antibodies against methylated histone H3-K4(M1, M2

and M3), H3-K9(M1, M2 and M3), acetylated H3 or LSD1

(Upstate, NY, USA) followed by anti-mouse horseradish peroxi-

dase-conjugated IgG and developed with the enhanced chemilu-

minescent method (ECL, Amersham, UK).

Telomerase activity assay
TeloTAGGG Telomerase PCR ELISA (Roche Diagnostics

Scandinavia AB, Stockholm, Sweden) based on Telomeric

Repeats Amplification Protocol was used to determine telomerase

activity in all samples in duplicate according to manufacturer’s

instruction (40). One mg of protein from total cell lysates was added

into the reaction mixture and the generated telomere product was

PCR-amplified using 23 cycles. Four ml of products was used for

ELISA assay and the level of telomerase activity was arbitrarily

expressed as absorbance (OD450–OD690).

Luciferase activity assay
Transfection for luciferase activity assay was performed in 24-well

plates using Lipofectamine2000 (Invitrogen). The hTERT lucif-

Figure 4. The recruitment of LSD1 to the hTERT proximal promoter
concomitant with repression of hTERT transcription in the differen-
tiated HL60 cells. (A) The down-regulation of hTERT mRNA expression
in HL60 cells undergoing terminal differentiation induced by DMSO
treatment. (B) The presence of LSD1 concomitant with a loss of H3-
K4(M2) at the hTERT proximal promoter region in differentiated but not
undifferentiated HL60 cells. Control: Undifferentiated HL60 cells and
DMSO: DMSO-induced differentiated HL60 cells.
doi:10.1371/journal.pone.0001446.g004
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erase reporter (p181), kindly provided by Dr. S Kyo (Kanazawa

University, Japan), harbors the core promoter sequence of the

hTERT 59-flanking region [37]. p181 was co-transfected with a

Renilla reniformis luciferase-containing plasmid, which is under

control of the thymidine kinase (TK) promoter. The transfected

cells were then treated with different concentrations of tranylcy-

promine. Luciferase activity in the cell lysates was determined by

using a dual luciferase reporter assay system (Promega, WI, USA)

48 hrs post-transfection, and the hTERT promoter-driven firefly

luciferase activity was normalized to the TK renilla activity.

ChIP assay
ChIP assay was done as described [33,34]. The HeLa, SiHa and

HL60 cells, under different treatment conditions, were cross-linked

by incubating them in 1% (vol/vol) formaldehyde-containing

medium for 10 mins at 37uC and then sonicated to make soluble

chromatin with DNA fragments between 200 and 1000 bps. The

antibodies against LSD1, H3-K4(M2), H3-K9(M2), and acetylated

histone H3 (Upstate, NY, USA) were used to precipitate DNA

fragments bound by their corresponding elements. The protein-

DNA complex was collected with protein A or G Sepharose beads

(Upstate), eluted, and reverse cross-linked. Following treatment

with Protease K (Sigma), the samples were extracted with phenol-

chloroform and precipitated with ethanol. The recovered DNA

was re-suspended in TE buffer and used for the PCR amplification

as described [33,34]. The PCR primers for the proximal promoter

regions (spanning between –296 and –22 relative to ATG) were 59-

CCA GGC CGG GCT CCC AGT GGA T-39 (forward) and 59-

GGC TTC CCA CGT GCG CAG CAG GA-39 (reverse). The

primers for GAPDH were described elsewhere [33].
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