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Background. Activation of cell surface receptors transduces extracellular signals into cellular responses such as proliferation,
differentiation and survival. However, as important as the activation of these receptors is their appropriate spatial and
temporal down-regulation for normal development and tissue homeostasis. The Cbl family of E3-ubiquitin ligases plays a
major role for the ligand-dependent inactivation of receptor tyrosine kinases (RTKs), most notably the Epidermal Growth
Factor Receptor (EGFR) through ubiquitin-mediated endocytosis and lysosomal degradation. Methodology/Principal

Findings. Here, we report the mutant phenotypes of Drosophila cbl (D-cbl) during eye development. D-cbl mutants display
overgrowth, inhibition of apoptosis, differentiation defects and increased ommatidial spacing. Using genetic interaction and
molecular markers, we show that most of these phenotypes are caused by increased activity of the Drosophila EGFR. Our
genetic data also indicate a critical role of ubiquitination for D-cbl function, consistent with biochemical models.
Conclusions/Significance. These data may provide a mechanistic model for the understanding of the oncogenic activity
of mammalian cbl genes.
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INTRODUCTION
Normal cellular function and tissue homeostasis is dependent on

the precise regulation of several signal transduction pathways that

control cell proliferation, cell differentiation and cell survival. Each

cell integrates an array of extracellular signals into appropriate

cellular responses. Deregulation of these processes causes devel-

opmental abnormalities and human diseases including cancer.

However, we still lack a clear understanding of how these

processes are integrated in the context of a developing organism.

The development of the retina in the Drosophila compound eye

has long been a model system to study how extra-cellular signaling

generates precise cellular differentiation patterns (reviewed by

reference [1]). The compound eye is composed of ,800

ommatidia, repetitive units each containing a precise number of

different cell types. The adult fly eye develops from a monolayer

epithelium—the eye imaginal disc. In early larval stages cells in the

eye imaginal disc proliferate to provide the cellular mass for eye

development. During mid-third instar larval stage, cellular

differentiation starts at the posterior end of the eye imaginal disc,

which coincides with formation of the morphogenetic furrow (MF)

that sweeps across the disc from posterior to anterior [1,2]. As the

MF progresses towards the anterior, cells located behind the MF

start differentiating into distinct cell types in a strict sequence to

form the ommatidium. Each ommatidium has eight photoreceptor

neurons or ‘‘R’’ cells (R1–R8). R8 is the first R cell to be specified,

and serves as the founder cell for recruitment of the other R cells in

the order R2/R5RR3/R4RR1/R6RR7, followed by four non-

neuronal cone cells during late third instar larval stage, and three

classes of pigment cells during early pupal stages [3]. Finally, after

specification of these cell types has been completed, all surplus

undifferentiated cells are removed by apoptosis [3,4]. This occurs

between 26–30 hours after puparium formation [5].

The specification of cell fate in the developing Drosophila retina is

controlled by combinatorial signaling. Two receptor tyrosine

kinases (RTKs), the epidermal growth factor receptor (EGFR) and

Sevenless (Sev), contribute to retinal development [6,7]. Activation

of EGFR by the secreted ligand Spitz (sSpi), a transforming growth

factor (TGF-a) homologue, regulates the specification of all R cells

in the developing eye, except R8 [6,8,9]. Over-expression of sSpi

causes an over-recruitment of all cell types, while expression of

dominant negative EGFR (EGFRDN), or shifting a temperature-

sensitive EGFR allele to the non-permissive temperature leads to

an impairment of differentiation [6,10,11]. Ommatidia mutant for

argos, gap1 and sprouty, three negative regulators of EGFR, contain

extra R and cone cells surrounded by more secondary and tertiary

pigment cells in the lattice [12–18]. In addition, EGFR signaling is

utilized for cell survival during Drosophila eye development, due to

its negative regulation of hid, a cell death-inducing gene [19–21].

In contrast to the EGFR which controls the development of all R

cells in the ommatidium except R8, sev is required only for R7

differentiation [22].

As important as the activation of cell surface receptors is their

inactivation for appropriate control of cell number and differen-

tiation. The proto-oncogene Casitas B-lineage lymphoma (Cbl)

was first identified as a retroviral transforming gene product that

induces pre-B cell lymphomas and myeloid leukemia [23]. Cbl is

involved in many signaling events through its function as a multi-

domain adaptor protein and has been best characterized as a
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negative regulator of RTKs, mostly EGFR (reviewed by [24,25]).

This concept grew out of genetic studies performed in C.elegans in

which Sli-1, the Cbl ortholog, attenuates the activity of Let-23, the

EGFR equivalent, in vulval development. [26]. Mammals contain

three Cbl genes known as c-Cbl, Cbl-b and Cbl-3, which function

as negative regulators of EGFR [25,27,28]. Knock-out mice of c-

cbl, cbl-b and cbl-3 have no obvious developmental phenotypes

except in the immune system suggesting that they are functionally

redundant [29–32]. Drosophila has only one cbl gene, referred to as

D-cbl [33–35], eliminating the problem of redundancy, and the

genetic characterization of D-cbl mutants may reveal more

information about its oncogenic role. For example, an isoform of

D-cbl, which mimicked the oncogenic viral cbl (v-cbl), demonstrated

that v-cbl acts in a dominant negative manner [35]. Furthermore,

consistent with studies in C.elegans and mammalian cell culture, D-

Cbl has been shown to function as a negative regulator of EGFR

during dorsoventral patterning in oogenesis and guided migration

of border cells [36,37]. A loss-of-function analysis of D-cbl for eye

development in Drosophila has not been reported.

Mechanistically, Cbl binds tyrosine-phosphorylated EGFR

through its tyrosine kinase binding (TKB) domain [38] (see also

Fig. 1K). The E3 ligase activity of the RING domain of Cbl

directs the mono-ubiquitination of activated EGFR at multiple

sites, which promotes endocytosis and endosomal sorting for

lysosomal degradation of the receptors [39–43]. D-cbl encodes two

alternatively spliced isoforms, D-cblSHORT (D-cblS) and D-

cblLONG (D-cblL), both of which contain the TBK and the

RING E3 ubiquitin ligase domains, while D-CblL also has proline-

rich (SH3 binding) and UBA domains similar to c-Cbl and Cbl-b

[33–35] (see Fig. 1K).

Here, we present the characterization of the D-cbl mutant

phenotype for eye development. D-cbl mutants display overgrowth

Figure 1. Identification and characterization of D-cbl mutants. (A) Wild-type (WT) fly showing normal eye phenotype. (B) GMR-hid ey-FLP (GheF)
small eye phenotype. (C,D) GheF;D-cblK26 and GheF;D-cbl7 mosaics significantly suppress the GMR-hid small eye phenotype. Genotype: GheF; D-cbl
FRT80/P[w+] FRT80 (E,G) Scanning electron micrograph (SEM) of wild-type adult eye (E) and head (G). (F,H) ey-FLP/Minute-induced mosaics of D-cblK26

display rough eyes (F) and enlarged heads (H). Genotype: ey-FLP; D-cblK26 FRT80/M(3)i55 FRT80. (I,J) Eye-antennal discs of 3rd instar larvae of D-cblK26

mosaics (I) are larger compared to wild-type (J). Scale bar 20um. (K) Domain structure of long (L) and short (S) isoforms of D-cbl. The relative locations
of three non-sense mutations and two missense mutations in D-Cbl are indicated. D-cblL31 and D-cbl7 affect the same residue in the RING domain.
TKB-Tyrosine Kinase binding domain; L–Linker; RF-RING finger; UBA-ubiquitin-associated domain.
doi:10.1371/journal.pone.0001447.g001
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and lack of developmental apoptosis. Mutant ommatidia contain

increased numbers of photoreceptors (mostly R7), cone and

pigment cells. Genetic interaction tests indicate that D-cbl regulates

the EGFR pathway during eye development consistent with its

proposed role as negative regulator of EGFR. Our genetic data

indicate a critical role of ubiquitination for D-cbl function, in

accord with biochemical models. In summary, these data provide

a genetic model for the understanding of the oncogenic activity of

mammalian cbl genes.

RESULTS

Isolation and characterization of D-cbl mutants
In a mutagenesis screen, we isolated five mutant D-cbl alleles as

recessive suppressors of the small eye phenotype caused by

expression of the pro-apoptotic gene hid under control of the eye-

specific GMR enhancer (GMR-hid; Fig. 1A–D). For details about the

GMR-hid suppressor screen see Material and Methods, and

references [44–46]. Because D-Cbl is a known negative regulator

of EGFR, and because increased EGFR activity inhibits the pro-

apoptotic function of Hid [19–21], the isolation of D-cbl mutants as

suppressors of GMR-hid can be explained by its effect on EGFR.

However, what sparked our interest in characterizing D-cbl for eye

development are the mutant phenotypes without GMR-hid expres-

sion. The eyes appear rough and bulgy with larger ommatidia

(Fig. 1E, F), and D-cbl mutant heads are overgrown (Fig. 1G, H).

The overgrowth phenotype is already visible in eye-antennal

imaginal discs of 3rd instar larvae (Fig. 1I, J). Both, the strong

rough eye and the overgrowth phenotype cannot be solely explained

for by inhibition of apoptosis. Thus, we characterized the D-cbl

mutant phenotype during eye development in more detail.

DNA sequencing revealed missense and non-sense mutations

(Fig. 1K). D-cbl7 and D-cblL31 affect the same residue, the highly

conserved Arg406 residue in the RING domain. The remaining

alleles, D-cblK26, D-cbl4 and D-cbl8 introduce premature STOP

codons at positions 60, 116 and 178, respectively (Fig. 1K). D-cbl4

is identical to a previously isolated allele, D-cblF165 [36]. At least D-

cblK26 can be considered a null allele of D-cbl. Interestingly, all

isolated alleles affect both the large and the small isoform of D-cbl.

We did not recover mutant alleles that affect only the large

isoform. All experiments in this study were performed with at least

two alleles, the null allele D-cblK26 and the RING domain mutant

D-cbl7, both of which show identical results.

D-Cbl regulates the EGFR pathway in the Drosophila

eye
D-Cbl has previously been shown to be a negative regulator of

EGFR signaling during dorsoventral patterning in oogenesis and

border cell migration [36,37]. A similar loss-of-function analysis of

D-cbl has not been done for eye development. We have performed

several genetic interaction tests to determine whether D-Cbl controls

EGFR signaling during eye development. First, heterozygosity of D-

cbl considerably rescued the rough eye phenotype caused by over-

expression of dominant negative rasN17 (Fig. 2A, D). Second, D-

cblK26 dominantly suppresses the eye phenotype caused by mis-

expression of the active form of the repressor yan (yanact) (Fig. 2B, E),

a target gene negatively regulated by EGFR signaling [47,48].

Third, to more directly assess a role of D-cbl for the regulation of

EGFR, we analyzed the effect of D-cbl mutants on the small eye

phenotype caused by expression of a dominant negative allele of

EGFR, EGFRDN [6], under control of the eye-specific enhancer GMR

(GMR-EGFRDN) (Fig. 2C). EGFRDN lacks the intracellular tyrosine

kinase domain, but leaves the transmembrane and extracellular

domains intact [6]. EGFRDN is able to dimerize with endogenous

EGFR, but trans-phosphorylation upon ligand binding does not take

place and thus the dimer is unable to signal. However, the inhibition

of endogenous EGFR by EGFRDN is not complete as some R cells

still survive and differentiate [6] (data not shown), which is not

observed in strong EGFR mutant clones [49]. Thus, the small eye

phenotype of GMR-EGFRDN is caused by partial inhibition of

endogenous EGFR. In D-cblK26 mutant clones, the GMR-EGFRDN

Figure 2. Genetic interaction between D-cbl and the EGFR pathway. (A,D) The rough eye caused by over-expression of dominant negative rasN17

under the sevenless promoter (sev-rasN17) (A) is considerably suppressed when heterozygous for D-cblK26 (D). Genotype in (D): sev-rasN17; D-cblK26/+.
(B,E) The small eye phenotype caused by sevenless-induced expression of activated yan (sev-yanact) (B) is dominantly suppressed by heterozygosity
for D-cblK26 (E). Genotype in (E): sev-yanact ; D-cblK26/+. (C,F) Overexpression of EGFRDN under the control of the GMR enhancer (GMR- EGFRDN) causes a
small eye (C). Genotype: GMR-Gal4 UAS-EGFRDN. GMR-EGFRDN is recessively suppressed in D-cblK26 mosaics (F). Genotype: ey-Flp; GMR-Gal4 UAS-
EGFRDN; D-cblK26 FRT80/P[ubi-GFP] FRT80.
doi:10.1371/journal.pone.0001447.g002
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phenotype is moderately strongly suppressed (Fig. 2F) implying that

loss of D-cbl partially restores the activity of endogenous EGFR

inhibited by EGFRDN. Combined, these data suggest that D-cbl

mutants contain increased EGFR activity suggesting that D-cbl

negatively controls EGFR activity.

To further confirm this notion we tested three molecular

markers in loss-of-function and gain-of-function analyses of D-cbl.

First, phospho-tyrosine labeling (p-Tyr) as a marker of RTK

activity is increased in D-cbl clones in third instar larval eye discs

(Fig. 3A). This is well visible in D-cbl clones crossing the MF and

posterior to the MF (Fig. 3A). In the reverse experiment,

overexpression of D-cbl, p-Tyr labeling is significantly reduced

(Fig. 3B). Because EGFR is the only known RTK acting posterior

to the MF in eye development (except Sev which we can exclude

as a target of D-cbl, see below), the increased p-Tyr labeling is

mainly caused by increased EGFR activity.

Second, in wild-type third instar larval eye discs, immunolabel-

ing with dpERK, an antibody that recognizes activated MAPK

acting downstream of EGFR, is detectable in one ommatidial

column immediately posterior to the MF [50] (Fig. 3E). Further

posteriorly, dpERK is not detectable suggestive of MAPK

inactivation. In D-cbl mutant clones, dpERK labeling persists

further posteriorly to the MF (Fig. 3C) suggesting lack of MAPK

inactivation. Furthermore, the reverse experiment, overexpression

of D-cbl, results in loss of dpERK labeling (Fig. 3D).

The third molecular marker used is Yan, a transcriptional

repressor in the nucleus. In response to EGFR signaling, yan

transcription is inhibited and Yan protein is proteolytically

degraded [47,48]. In pupal eye discs 35 hours after puparium

formation (APF) Yan protein is strongly reduced in D-cbl clones

(Fig. 3F) suggesting that they contain increased EGFR activity.

Taken together, these data suggest that D-cbl negatively regulates

EGFR signaling during eye development.

D-cbl mutants block apoptosis and cause over-

recruitment of all cell types in the eye
In the Drosophila eye, EGFR signaling is utilized for cell survival

and cell differentiation. Because D-cbl mutants cause increased

EGFR signaling, we tested whether this has consequences for cell

survival and cell differentiation in the fly eye. EGFR function is

anti-apoptotic due to its negative regulation of hid [19–21].

Developmental cell death during eye development is maximal

between 26 and 30 hours after puparium formation (APF) when

surplus, undifferentiated cells are eliminated [5]. This elimination

requires the pro-apoptotic function of hid [20,21,51]. To

determine whether D-cbl mutants affect cell death, we labeled

28 hours APF eye discs with an antibody that recognizes cleaved

and thus activated Caspase-3 (Cas3). In D-cblK26 mutant clones,

developmental cell death is significantly blocked (Fig. 4A, B). This

finding is consistent with the isolation of D-cbl mutants as

suppressors of GMR-hid (Fig. 1C, D).

Next, we tested whether D-cbl mutant clones display differen-

tiation defects. The eye disc is fully differentiated by 42 hrs APF

Figure 3. D-cbl regulates EGFR pathway activity. In panels (A–E), posterior is to the right. The morphogenetic furrow is marked by a white
arrowhead. D-cbl clones in (A,C,F) and D-cbl overexpressing clones in (B,D) are marked by the absence of GFP. Genotype in (A,C,F): ey-Flp; D-cblK26

FRT80/P[ubi-GFP] FRT80; genotype in (B,D): hs-Flp; tub.GFP.Gal4/UAS-D-cblLA18 (. = FRT); genotype in (E): wild-type. (A,A’) p-Tyr labeling is
increased in D-cbl clones. (B,B’) Overexpression of D-cbl suppresses p-Tyr labeling. (C,C’) dp-ERK labeling persists in D-cbl mutant clones beyond the
normal labeling immediately posterior to the MF (see arrows, compare to (E)). (D,D’) Overexpression of D-cbl suppresses dp-ERK labeling in third
instar larval eye discs. (E) dpERK labeling in third instar wild-type eye imaginal discs is restricted to one ommatidial column posterior to the MF. (F,F’)
Yan protein is reduced in D-cbl mutant clones in 35 hours APF eye discs.
doi:10.1371/journal.pone.0001447.g003
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[3]. Labeling of 42 hrs APF eye discs with Elav antibody, a R cell

marker, revealed that each D-cbl mutant ommatidium contains on

average 11.4561.03 (n = 35) R cells compared to eight in wild-

type ommatidia (Fig. 4C, D). In addition, D-cbl mutant

ommatidia contain up to eight cone cells compared to four in

wild-type ommatidia (Fig. 4E, F) and about three primary

pigment cells instead of two in wild-type (Fig. 4G, H). The total

numbers of secondary and tertiary pigment cells has increased

from nine in wild-type to an average of fourteen per D-cbl

ommatidium (Fig. 4G, H). In summary, these data show that D-

cbl mutants cause increased cellular survival and over-recruitment

of all cell types disrupting the regular array of the ommatidia in the

developing Drosophila eye.

D-cbl specifically affects R7 development
We determined whether the over-recruitment of R cells in D-cbl

clones affects all photoreceptors randomly, or specific types of

photoreceptors. Labeling with antibodies directed against Rough

(R2,5,3,4-specific) and Seven-up (Svp, R3,4,1,6-specific) did not

reveal significant differences between D-cbl and wild-type tissue

(Fig. 5A–D). However, labeling with an antibody against Prospero

(Pros), a R7 marker, reveals 4.560.53 (n = 35) cells per D-cbl

mutant ommatidium whereas in wild-type only one cell is detected

(Fig. 5E, F). To determine whether the additional Pros-positive

cells have photoreceptor character, we performed Pros and Elav

double labelings. In D-cbl mutant clones, all Pros-positive cells are

Elav-positive, suggesting that most, if not all, additional photore-

ceptors in D-cbl ommatidia are R7 cells (Fig. 5G, H). Thus,

among the R cells, D-cbl specifically affects the specification of R7.

A similar and specific increase in the number of R7 cells has been

observed in eye tissue mutant for other negative regulators of

EGFR signaling including argos, gap1, and sprouty [12,16–18].

Thus, the over-recruitment phenotype in D-cbl mutants is typical

for increased EGFR activity.

Loss of D-cbl can compensate for loss of sevenless
In addition to EGFR, Sevenless (Sev), a second RTK, is involved in

eye development. sev is only required for R7 specification and

consequently sev mutants do not contain R7 cells [22]. However,

expression of dominant active sev constructs gives rise to the

recruitment of multiple R7 cells [52], similar to the D-cbl phenotype.

Thus, it is formally possible that D-cbl also regulates Sev.

We tested this possibility. If the additional R7 cells in D-cbl

clones result from hyper-activity of Sev, then these cells should

require sev for their specification. However, genetic removal of sev

using the null allele sevd2 [53] has no effect on R7 specification in

D-cblK26 mosaic background (Fig. 6). The average number of total

R cells in sevd2, D-cblK26 mutant ommatidia is 11.1260.74 (n = 35),

containing more than four R7 cells per ommatidium (Fig. 6). The

GFP-positive area is single mutant for sevd2 and hence does not

form R7 (Fig. 6B, D). Thus, in D-cblK26 mutants, the R7 cells can

complete their differentiation program even in the absence of Sev,

suggesting that the increase of EGFR signaling in D-cblK26 can

compensate for loss of Sev. A similar sev-independent mode of R7

specification has been observed for other negative regulators of the

EGFR pathway such as gap1 and sprouty [16-18].

DISCUSSION
The phenotypic characterization of D-cbl mutants for eye

development in Drosophila allows making four important conclu-

Figure 4. Over-recruitment of all cell types in D-cbl mutant
ommatidia. Genotype in all panels: ey-Flp; D-cblK26 FRT80/P[ubi-GFP]
FRT80. (A,B) Cell death detected by cleaved (activated) caspase-3 (Cas3)
staining is significantly reduced in D-cblK26 mutant clones in 28 hours
APF eye discs. Outlines of some clones are shown in (B). (C–F) Anti-Elav
staining for photoreceptor cells (C,D) and anti-Cut staining for cone
cells (E,F) in 42 hrs APF pupal discs. 11.45 R cells and up to eight cone
cells are visible in D-cblK26 ommatidia. (G–H) Anti-Dlg labeling of 42 hrs
APF pupal discs visualizes the outline of cells and allows determining
the number of pigment cells in D-cblK26 mutant clones of pupal eye
imaginal discs.
doi:10.1371/journal.pone.0001447.g004

Figure 5. D-cbl affects R7 specification. Genotype in all panels: ey-Flp;
D-cblK26 FRT80/P[ubi-GFP] FRT80. (A,B) R3,4 and R1,6 are detected using
anti-Svp antibody (red). (C,D) Expression of Rough (red) in R2,5,3,4 cells
and Elav (blue) in all R cells. In D-cblK26 clones, R1-R6 cells are normal in
number. (E–H) Specific increase of R7 cells as indicated by double
labeling with anti-Prospero (Pros) (red) and anti-Elav (blue) antibodies.
doi:10.1371/journal.pone.0001447.g005
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sions: First, D-cbl plays an important role for the negative

regulation of EGFR activity. Second, loss of D-cbl causes severe

mis-specification and over-recruitment defects. Third, loss of D-cbl

blocks developmental apoptosis. Fourth, loss of D-cbl causes tissue

overgrowth at the organismal level, providing a model to study the

oncogenic activity of mammalian cbl genes.

D-Cbl negatively regulates EGFR
D-cbl mutant ommatidia contain increased numbers of R7, cone

and pigment cells. Similar phenotypes have been observed in

mutants of other negative regulators of the EGFR pathway such as

gap1, argos and sprouty [12,16-18]. We also confirmed a regulatory

role of D-cbl for EGFR activity in genetic interaction studies

(Fig. 2). Furthermore, using the molecular markers p-Tyr,

dpERK and Yan as readouts for EGFR activity we showed that

D-cbl clones contain increased RTK and MAPK activity. Likewise,

overexpression of D-cbl blocks p-Tyr and dpERK labeling. Thus,

the D-cbl mutant phenotypes in the eye are consistent with

increased EGFR activity and suggest that D-Cbl negatively

regulates EGFR, in accord with previous reports [34,36,37].

In contrast to argos, gap1 and sprouty, D-cbl does not appear to

regulate all RTKs. For example, D-cbl does not influence Torso

[36], a RTK involved in specification of the termini in the

Drosophila embryo [54]. Here, we have demonstrated that D-cbl

does not control the Sev RTK. This difference likely reflects the

direct mode of EGFR regulation by D-cbl, while argos, gap1 and

sprouty act downstream in the Ras/MAPK pathway which is

shared by all RTKs. Biochemical data has demonstrated that

mammalian Cbl proteins directly bind to tyrosine-phosphorylated

EGFR and ubiquitylates it for endocytosis and lysosomal

degradation [38–43]. Although we have not verified a similar

biochemical mechanism for the interaction between Drosophila

EGFR and D-Cbl, it is likely that the mechanism is similar. This

notion is supported by the isolation of two D-cbl alleles affecting the

RING domain (Fig. 1K). The RING domain contains an E3

ubiquitin ligase activity which targets the EGFR for ubiquitylation

[39]. The mutant phenotype of D-cbl7 affecting the RING domain

is indistinguishable from the null allele D-cblK26 (data not shown),

further supporting an essential role of ubiquitylation for D-cbl

function.

It is unclear why only the number of R7 cells is affected whereas

the remaining R cells are normal in number although R1–R6 also

require the EGFR for specification. However, it suggests that the

sequence of events during R cell specification is normal in D-cbl

clones. The fact that D-cbl clones contain up to four additional R7

cells is likely due to the fact that R7 and the four cone cells are

developmentally equivalent. These five cells express sev and all

have the capacity to become R7 if Sev or downstream components

are activated [52]. Thus, the additional R7 cells in D-cbl clones

likely represent transformed cone cells.

However, this transformation does not mean that the cone cells

are lost in D-cbl clones. In contrast, we even observe an over-

recruitment of cone cells. Interestingly, the cone cell over-

recruitment in D-cbl mutants does not occur during pupal stages

as suggested for gap1 [16]. It occurs at the correct developmental

time in late third instar eye development (data not shown). Thus,

the over-recruitment of several different cell types in D-cbl clones

follows the same rules of reiterative use of the EGFR as compared

to wild-type.

EGFR-independent phenotypes of D-cbl
Despite the fact that the D-cbl mutant phenotypes are similar to the

ones described for argos, gap1 and sprouty, we noticed at least two

phenotypes which appear to be specific for D-cbl. First, D-cbl

mutant heads and imaginal discs are overgrown (Fig. 1). Second,

the spacing between the ommatidial clusters is increased (see

examples in Fig. 4D, 4F, and 6D). Similar phenotypes have not

been observed for gap1, argos and sprouty [12–18] (data not shown).

It is unclear how these phenotypes are caused, but they may be

independent of EGFR. Further studies are needed to clarify these

observations.

Implications for mammalian Cbl and oncogenesis
This work may also have some important implications for our

understanding of the oncogenic nature of mammalian cbl [55].

Increased proliferation and reduced apoptosis are hallmarks of

cancer [56]. v-cbl is a retroviral transforming oncogene causing

pre-B lymphoma and myeloid leukemia [23]. v-cbl contains only

the TKB domain [24] and behaves genetically as a dominant

negative mutant [35]. Furthermore, inappropriate activation of

mammalian EGFR can lead to various forms of human cancers

[57–60]. Thus, genetic studies in model organisms may contribute

to our understanding of oncogenic processes in mammals.

MATERIALS AND METHODS

Identification of D-cbl mutant alleles
Eye-specific expression of hid under GMR enhancer control (GMR-

hid) results in an eye ablation phenotype (Fig. 1B). Using the

GMR-hid ey-FLP (GheF) method [44], we conducted an EMS-

mutagenesis screen for chromosome arm 3L to identify recessive

suppressors of the GMR-hid eye ablation phenotype. This method

induces homozygous mutant clones in the eye by ey-FLP/FRT-

mediated mitotic recombination in otherwise heterozygous

background [61]. For GheF screening, ey-FLP; FRT80 males were

incubated with 25 mM EMS in 5% sucrose solution for 24 hours.

After recovery for 3 hours, they were mated to GheF; FRT80 P[w+]

females and incubated at 25uC. 45,000 F1 progeny were

screened for suppression of the GMR-hid small eye phenotype. In

the screen for 3L, 4 dronc [44] and 5 D-cbl alleles (this study) were

recovered.

Figure 6. Loss of D-cbl compensates for loss of sevenless. The entire
disc is mutant for sevd2. Homozygous D-cbl clones are marked by the
absence of GFP. Anti-Pros (red) labels R7 cells, and anti-Elav (blue) labels
all R cells. The R7 cells are absent in sevd2 ommatidia, while 4.1260.74
(n = 35) R7 cells are present in sevd2;D-cblK26 double mutant ommatidia.
Genotype: sevd2/Y; ey-FLP/+ ; FRT80 D-cblK26/FRT80 P[ubi-GFP].
doi:10.1371/journal.pone.0001447.g006
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Drosophila genetics
Fly crosses were conducted using standard procedures at 25uC. Pupal

developmental ages are expressed as hours after puparium formation

(APF) with white pre-pupae defined as 0 hour APF. The following

stocks were used: D-cblK26 and D-cbl7 (this study), GMR-hid10 [62], ey-

Flp; P[ubi-GFP] FRT80B (provided by Georg Halder), UASp-P35 [63],

UAS-EGFRDN [6], sev-rasN17 [64], sev-yanact [47], sevd2 [53]. To

generate D-cbl mutant clones, D-cblK26 FRT80B and D-cbl7 FRT80B

flies were crossed to ey-FLP; P[ubi-GFP] FRT80B. Clones are marked

by loss of GFP. GMR-EGFRDN is GMR-Gal4 UAS-EGFRDN.

Immunohistochemistry
Eye imaginal discs from the indicated larval or pupal stages were

dissected and immunohistochemical labeling was performed as

described [65]. The following antibodies were used: rat anti-Elav

(1:60) and rabbit anti-phosphotyrosine antibody (1:500, both

provided by G. Halder); anti-Svp (1:100, provided by R. Schulz);

anti-Rough (1:50, provided by K. Choi); Rabbit anti-cleaved

Caspase-3 (1:200; Cell Signaling Technology); dp-ERK (1:2,000;

Sigma); anti-Pros (1:50), mouse anti-Dlg (1:50) anti-Yan (1:40),

anti-Cut (1:100) (all DSHB). Fluorescently-conjugated secondary

antibodies are from Jackson ImmunoResearch and were used at

dilutions of 1:400. Images were captured using a Olympus Optical

FV500 confocal microscope.
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