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Abstract. We present the first evidence for a fast acti-
vation of the nuclear protein poly(ADP-ribose) poly-
merase (PARP) by signals evoked in the cell mem-
brane, constituting a novel mode of signaling to the cell
nucleus. PARP, an abundant, highly conserved, chroma-
tin-bound protein found only in eukaryotes, exclusively
catalyzes polyADP-ribosylation of DNA-binding pro-
teins, thereby modulating their activity. Activation of
PARP, reportedly induced by formation of DNA
breaks, is involved in DNA transcription, replication,
and repair. Our findings demonstrate an alternative

mechanism: a fast activation of PARP, evoked by inosi-
tol 1,4,5,-trisphosphate-Ca?* mobilization, that does
not involve DNA breaks. These findings identify PARP
as a novel downstream target of phospholipase C, and
unveil a novel fast signal-induced modification of
DNA-binding proteins by polyADP-ribosylation.
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Introduction

Membrane depolarization influences neuronal develop-
ment (Oppenheim, 1991; Spitzer, 1991) and prevents apop-
totic cell death of neurons in cultures deprived of growth
factors (Brenneman et al., 1990; Franklin and Johnson,
1992; D’Mello et al., 1993; Galli et al., 1995) by a poorly
understood mechanism. These phenomena prompted us to
examine the possible effect of membrane depolarization
on the activity of the nuclear protein poly(ADP-ribose)
polymerase (PARP).! PARP is an abundant and highly
conserved chromatin bound protein (113 kD), found only
in eukaryotes, which catalyzes exclusively polyADP-ribo-
sylation of DNA-binding proteins (Udea, 1990; Lautier
et al., 1993; Lindahl et al., 1995; D’Amours et al., 1999).
Reportedly, PARP, activated by binding to free DNA-
endings, acts as an ADP-ribose transferase, adding ADP-
ribose to carboxyls of aspartic and glutamic residues. This
reaction proceeds by a short-lived (t;, = 1 min) polymer-
ization of ADP-riboses, i.e., polyADP-ribosylation (Kup-
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per et al., 1990; Satoh and Lindahl, 1992; Satoh et al., 1994).
Activated PARP is auto-polyADP-ribosylated (Desma-
rais et al., 1991; Satoh et al., 1994; Kim et al., 1997). Poly-
ADP-ribosylation is terminated by the release of exten-
sively polyADP-ribosylated (negatively charged) PARP
molecules from DNA (Satoh et al., 1994). ADP-ribose
polymers are then instantaneously subjected to partial de-
gradation by polyADP-ribose—glycohydrolase, and com-
pletely degraded by a relatively slow process (20-30 min;
Satoh et al., 1994; Lin et al., 1997).

Known substrates of PARP include topoisomerase |
(Ferro and Olivera, 1984; Kasid et al., 1989), RNA-poly-
merase Il (Hanawalt et al., 1994, Li Oei et al., 1998), DNA
polymerases (Simbulan et al., 1993), transcription factors
(Rawling and Alvarez-Gonzalez, 1997; Li Oei et al., 1998),
histones (Boulikas, 1990; D’ Amours et al., 1999), high mo-
bility group proteins (Tsai et al., 1992; D’Amours et al.,
1999), p53 (Li Oei et al., 1998), and DNA-dependent Ki-
nase (Ruscetti et al., 1998). PolyADP-ribosylation mod-
ulates their activity, influencing DNA replication (Cesar-
one et al., 1990), transcription (Meisterernst et al., 1997,
D’Amours et al., 1999), and repair (Satoh and Lindahl,
1992; Lazebnik et al., 1994; Nicholson et al., 1995;
Schreiber et al., 1995; Martinou, 1996; Trucco et al., 1998).
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The findings presented here demonstrate a fast signal-
induced activation of PARP in brain cortical neurons, me-
diated by inositol 1,4,5,-trisphosphate (1P;)-induced Ca?*
mobilization, which does not involve DNA damage. Thus,
PARRP acts as a downstream target of phospholipase C.

Materials and Methods

Primary Culture of Rat Brain Cortical Neurons

Primary culture of rat brain cortical neurons was prepared from 18-19-
d-old embryos of Sprague Dawley rats. Brain cortex was dissociated me-
chanically and plated in MEM (Biological Industries), containing 8%
horse serum, 8% FCS, 0.6% glucose, 2 mM glutamine, and 15 pg/ml gen-
tamicin. Plating density was 10° cells per 35-mm-diameter Nunc plates,
precoated with 50 wg/ml poly-L-lysine. Glial cell proliferation was blocked
by the addition of 20 wg/ml 5-fluoro-2-deoxyuridine and 50 pg/ml uridine
on the third day after plating. Experiments were performed on the fifth
and sixth days. Neurons survived in these cultures for 15-18 d.

Crude Nuclei

Crude nuclei were isolated from lysed brain cortical neurons (Cohen-
Armon et al., 1996). Cultured cortical neurons were homogenized on ice
in isotonic 0.32 M sucrose containing PMSF (0.1 mM), using a glass/glass
homogenizer, and were centrifuged at 900 g for 10 min at 4°C. Cells in the
resulting pellet were lysed in hypotonic solution (50 mM Tris-Cl, pH 7.4)
and centrifuged as described above. This procedure was repeated in 0.32 M
sucrose (900 g for 10 min at 4°C) and in 50 mM Tris-Cl, pH 7.4 (12,000 g
for 10 min, 4°C). The resulting pellet contained isolated crude nuclei (see
electromicrograph in Fig. 8 a).

Recording of Membrane Potential during
Depolarizing Stimulation

Cultured cortical neurons were depolarized by raising the extracellular
[K*] from 4.7 mM to 60 mM (high-[K*]) in the absence of extracellular
Ca?*. The added KCI always replaced NaCl, thus preserving the physio-
logical osmolarity and ionic strength of the original solutions (Cohen-
Armon and Sokolovsky, 1991). Changes in the resting potential of the
cultured neurons were measured by the accumulation of the permeant-
labeled cation, tetraphenyl-phosphonium ([*H]TPP*; Cohen-Armon and
Sokolovsky, 1991). Alternatively, cortical neurons were depolarized by
pulsed electrical stimulation, using a pulse generator (Gruss Medical In-
struments) and Pt electrodes installed in 2 mi/plate of either MEM or bath
solution (defined below). There was no direct contact between neurons
and stimulating electrodes (bath-stimulation). Membrane potential was re-
corded in individual neurons during stimulation by the patch-clamp tech-
nique, using the “whole cell” configuration in the current-clamp mode
(Hamill et al., 1981), with Axopatch amplifier 200A and pCLAMP6.0 soft-
ware (Axon Instruments, Inc.). Signals were filtered at 2 kHz (—3dB point)
and digitized at a rate of 50 kHz. The solution in the patch pipette con-
tained (mM): 146 KCI, 5 NaCl, 10 Hepes, 1 MgATP, 1 CaCl,, 2 BAPTA
(pH 7.2) and 310 mOsm. Bath solution contained (mM): 130 NaCl, 5 KClI,
30 Glucose, 25 Hepes, 1 MgCl,, 2 CaCl, (pH 7.4) and 300 mOsm.

Immunoprecipitation

PolyADP-ribosylated proteins were immunoprecipitated from nuclear
protein extracts by monoclonal antibody directed against ADP-ribose
polymers containing >10 ADP-riboses (10H; Lamarre et al., 1988; Shah
et al., 1995) (see Materials). PARP was immunoprecipitated from the nu-
clear protein extracts by an affinity-purified goat polyclonal antibody
raised against amino acids 1-20 at the NH, terminus of human PARP
(N-20; see Materials). For immunoprecipitation, nuclear proteins (~400
g protein/sample) were extracted during incubation of crude nuclei (30
min, 4°C) with 50 .l buffered solution containing 500 mM NacCl, 1.5 mM
MgCl,, 10 mM Tris-Cl (pH 7.4). Samples were then centrifuged (10,000 g,
5 min) and the supernatants were diluted in buffered solution containing
1.5 mM MgCl, and 10 mM Tris-Cl. Nuclear proteins were exposed in this
solution (overnight, 4°C) to the first antibody (dilution 1:20). Proteins
bound to the antibody were precipitated during overnight incubation with
protein G—conjugated agarose beads at 4°C, and then extracted from the
beads after several washes with PBS by boiling for 2 min in sample buffer.
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In Situ Immunofluorescent Labeling of
PolyADP-ribosylated Proteins in Cultured
Cortical Neurons

Tissue cultures were prepared on coverslips. Monoclonal 10H antibody
(dilution 1:10) was introduced into rapidly fixed neurons (fixed for 10 min
in ice-cold methanol/acetone 1:1, vol/vol). After overnight incubation with
the first antibody at 4°C, neurons were washed with PBS containing 0.1%
Tween 20 and exposed to the secondary antibody (dilution 1:500) for 3 h
at room temperature. ADP-ribose polymers bound to the nuclear proteins
were visualized by the FITC-conjugated affinity pure goat anti-mouse
1gG;k secondary antibody, using a fluorescence confocal inverted micro-
scope (ZEISS LSM 410).

[32P]PolyADP-ribosylation of Proteins in Isolated
Crude Nuclei

Unless indicated otherwise, crude nuclei isolated from cortical neurons
were incubated for 1-5 min with [*P]NAD (1,000 Ci/mmol; 1. Ci/sample)
and 2.3 mM MgATP at 37°C in a solution containing (mM): 0.045 EDTA,
60 Tris-Cl, 1 MgCl,, and 0.8 DTT (pH 7.4). Deionized water contained
25-30 nM Ca?* (determined by atomic absorbtion). [*?P]Poly-ADP-ribo-
sylation was terminated by high salt extraction of the nuclear proteins
(500 mM NacCl, 10 mM Tris-Cl [pH 7.4], 4°C, 30 min). [**P]polyADP-ribo-
sylated PARP was immunoprecipitated from the nuclear proteins ex-
tracts, subjected to SDS-PAGE, electroblotted, and autoradiographed.
[3*P]Poly ADP-ribosylation was quantified by densitometry.

Thymidine Incorporation into DNA during Stimulation

Cultured neurons were incubated with [*H]thymidine (1 wCi/ml) for 1 h
before stimulation. 4 h after stimulation, neurons were lysed and har-
vested onto filters (GF/C, Whatman). The tritium 8 emission of incorpo-
rated [*H]thymidine was counted in scintillation mixture (Friedberg et al.,
1995).

Incorporation of modified thymidine, 5-bromodeoxyuridine (BrdUrd)
was measured by immunolabeling with anti-BrdUrd monoclonal antibody
1U-4 (Caltag Laboratories). BrdUrd (50 wM) was added to cultured neu-
rons 1 h before stimulation. 6 h after stimulation, the neurons were fixed
and treated with RNase A. A limited DNA denaturation was performed
to allow access of anti-BrdUrd antibody into the DNA (Selden and Dol-
beare, 1994). Immunolabeled neurons were then incubated with 5 pg/ml
propidium iodide, which intercalates into native DNA (Selden and Dol-
beare, 1994). The amount of incorporated BrdUrd labeled by FITC-con-
jugated secondary antibody (green fluorescence), indicating DNA synthe-
sis, and the amount of intercalated propidium iodide (red fluorescence),
indicating the amount of double stranded DNA, were measured by flow
cytometry (FACSort machine operated by CellQest software; Becton
Dickinson).

Single Strand DNA Breaks Examined by Alkaline
Gel Electrophoresis

This method provides a sensitive and rapid method for direct quantitation
of breaks in DNA single strands (Sutherland et al., 1999). DNA was iso-
lated from the nuclei of cortical neurons using the Hirt procedure (Hirt,
1967). The migration of equivalent amounts of DNA was analyzed by
electrophoresis on 1% alkaline agarose gel (Sutherland et al., 1999). DNA
was stained with ethidium bromide (1 pwg/ml) and photographed under
UV illumination.

Selective Extraction of Fragmented DNA from Nuclei

Fragmented DNA was selectively extracted from prefixed nuclei in high
molarity phosphate—citrate buffer (Darzynkiewicz and Juan, 1999). High
molecular weight DNA and DNA attached to the nuclear matrix resisted
extraction, but fragmented DNA was extracted from the nuclei and iden-
tified on agarose gel by staining with ethidium bromide (1 pg/ml).

Displacement of Bound [*H]IP; by IP;

Samples (20 wl) of crude nuclei (1.5 mg protein/ ml) were incubated (10
min, 4°C) with [*H]IP; (200 pmol/20 wl sample) in the solution used for
[3*P]poly ADP-ribosylation. Crude nuclei were then rapidly washed under
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pressure on Whatman GF/B glass-fiber filters, with ice-cold solution con-
taining 25 mM Tris-Cl, 5mM NaHCO; and 1 mM EDTA, pH 8.0 (Challiss
et al., 1990). The amount of [*H]IP; bound to the crude nuclei was assayed
by counting their 8 emission in scintillation fluid. Nonspecific binding of
[®H]IP;was determined in the presence of 10 uM IP;

Topoisomerase | Activity

Topoisomerase | activity was measured in nuclear protein extracts as de-
scribed previously (Liu and Miller, 1984). Extracted nuclear proteins (0.1
wrg/sample) were added to a reaction mixture containing, at a final volume
of 25 pl (mM): 20 Tris-Cl (pH 8.1), 1 DTT, 20 KCI, 10 MgCl,, 0.5 EDTA,
20 pg/ml BSA, and (as substrate) 250 ng of pUC-19, a supercoiled DNA
plasmid (Promega). After incubation at 37°C for 30 min, the reaction was
terminated by the addition of 5 pl of buffer containing: 50 mM EDTA
(pH 8.0), 1% SDS, 15% glycerol, and 0.05% bromophenol blue. The reac-
tion products were analyzed by electrophoresis on 1% agarose gel. Under
these experimental conditions topoisomerase 11 is not activated (Liu and
Miller, 1984).

Electron Microscopy

Nuclei isolated from cultured brain cortical neurons were fixed with glu-
taraldehyde/paraformaldehyde (3:1%) in Krebs-Henseleit buffer (pH 7.4)
containing 30% BSA. They were then washed at 4°C with 0.1 M PBS (pH
7.4) and postfixed with 1% OsO, and 1.5% potassium ferricyanide in PBS
at 4°C for 2 h. The samples were examined under a Jeol Jem-100CX elec-
tron microscope.

Simultaneous Recording of Rhod-2 Fluorescence

Isolated crude nuclei were loaded with the Ca?* indicator rhod-2/AM
(4.5 pM, 30 min incubation, 25°C, at dark), washed, and attached to poly-
L-lysine—coated coverslips. Ca?"-induced fluorescent signal of rhod-2 (ex-
citation, 540 nm; emission, >570 nm) was collected through appropriate
filters above 520 nm and monitored by confocal inverted microscope
(ZEISS LSM 410), equipped with a 25 mW krypton-argon laser (488- and
568-nm lines) and 10 mW He-Ne laser (633-nm line). A 40X NA/1.2
C-apochromat water-immersion lens (Axiovert 135 M, ZEISS) was used
for imaging.

DNAse | Activity in Nuclei Isolated from
Cultured Neurons

DNAse | activity in nuclei isolated from cultured neurons was assayed ac-
cording to the procedure described by Boulikas (1990). Nuclei were incu-
bated with DNAse | (RNAse-free; D 7291, Sigma-Aldrich) in buffered so-
lution containing 20 mM Mn?*, 10% glycerol, 10 mM Tris-Cl, and 1 mM
DTT (pH 7.4). The reaction was terminated by the addition of 25 mM
EDTA (pH 8.0). Fragmented DNA was examined by gel agarose electro-
phoresis.

Materials

[Adenylate-*?P]nicotinamide-adenindinucleotide, di(tri-ethyl-ammonium)
salt ([**P]NAD) (1,000 Ci/mmol) was purchased from DuPont or from
Amersham Pharmacia Biotech. D-myo-[*H]Inositol 1,4,5,-trisphosphate,
potassium salt ([*H]IP;) (20-60 Ci/mmol) was from Amersham Pharmacia
Biotech. [Methyl-*H]thymidine 5'-triphosphate, tetrasodium salt (70-90
Ci/mmol) and [phenyl-*H]tetraphenyl phosphonium bromide ([FH]TPP*)
(35 Ci/mmol) were from DuPont. IP; (hexapotassium salt) was from B1O-
MOL. Ethylenediamine-tetraacetic acid (EDTA) and ethyleneglycol-
bis(B-amino-ethyl) N,N,N’,N’-tetraacetic acid (EGTA) were from Merck.
D(—)-2-amino-5-phosphovaleric acid (APV) was from Cambridge Re-
search Biochemicals. Ethane-N,N,N’,N’-tetraacetic acid tetrakis (ace-
toxymethyl) ester (BAPTA AM) and rhod-2 AM were from Molecular
Probes. (+)-MK-801 hydrogen maleate was from Biotrend. The poly-
clonal anti-human PARP antibody Vic-5 and monoclonal antibody 10H,
directed against ADP-ribose polymers, were kind gifts from Dr. Sug-
imura, Tokyo Cancer Center, Japan. Anti-human PARP antibody (N-20)
and secondary antibodies were from Santa Cruz Biotechnology. Other
materials were from Sigma-Aldrich.

Results

Membrane Depolarization Induces
PolyADP-ribosylation of Nuclear Proteins in Rat
Cortical Neurons

We examined the effect of membrane depolarization on
PARP activity in rat brain cortical neurons. Enhanced ac-
tivity of PARP in depolarized neurons was indicated by: in
situ immunolabeling of polyADP-ribosylated proteins;
auto-polyADP-ribosylation of PARP; and inhibition of to-
poisomerase | activity (Ferro and Olivera, 1984; Kasid et al.,
1989).

In Situ Immunolabeling of PolyADP-ribosylated Nuclear
Proteins by Antibody Directed against ADP-ribose Poly-
mers. PolyADP-ribosylated proteins were immunolabeled
in situ by monoclonal antibody directed against ADP-
ribose polymers (10H; Shah et al., 1995) in neurons, per-
meabilized by a rapid fixing procedure (see Materials and
Methods). Immunolabeling of ADP-ribose polymers indi-
cated an increased polyADP-ribosylation of proteins in
the nuclei of depolarized neurons, relative to that in nuclei
of unstimulated neurons (Fig. 1 a). Moreover, in situ poly-
ADP-ribosylated PARP was immunoprecipitated by 10H
antibody from nuclear extracts of depolarized or elec-
trically stimulated neurons, indicating its enhanced poly-
ADP-ribosylation during depolarization (Fig. 1 b). A
significantly higher polyADP-ribosylation of PARP was
observed in nuclei of neurons pretreated by H,O,, an
agent producing DNA breaks (Dizdaroglu, 1992; de Mur-
cia et al.,, 1994; Fig. 1 b). PARP in nuclei of unstimulated
neurons was not immunoprecipitated by 10H antibody
(Fig. 1 b).

The Extent of In Situ PolyADP-ribosylation of PARP in
Cortical Neurons, Determined by its Subsequent [*?P]poly-
ADP-ribosylation in Their Isolated Nuclei (“back [*?P]poly-
ADP-ribosylation™). Despite evidence indicating an en-
hanced polyADP-ribosylation of PARP in depolarized
neurons (Fig. 1, a and b), the [*2P]polyADP-ribosylation of
PARRP in their isolated nuclei was significantly lower than
that in nuclei isolated from unstimulated neurons (Fig. 1 c).
This could not be explained by NAD depletion in nuclei
isolated from depolarized neurons; increasing the extra-
nuclear concentration of NAD (which permeates the nu-
clear membrane) did not enhance the [*?P]polyADP-ribo-
sylation of PARP in those nuclei (Fig. 2 a). Furthermore,
the dose-dependent effect of added NAD on [*’P]poly-
ADP-ribosylation of PARP indicated that the ratio be-
tween the concentrations of NAD and [*¥P]NAD in nuclei
of depolarized and unstimulated neurons was similarly al-
tered by adding NAD (Fig. 2 a), indicating a similar con-
centration of endogenous NAD in both preparations (10°-
10* higher than the concentration of [*?P][NAD, 108 M).

The possibility that depolarization renders PARP inac-
tive or refractory to [*?P]polyADP-ribosylation in the iso-
lated nuclei was also excluded, since PARP was similarly
activated by agents inducing formation of DNA breaks
(H,0, and DNAse 1) in unstimulated or depolarized neu-
rons (Fig. 2 b). However, although PARP was extensively
[?P]polyADP-ribosylated in nuclei subjected to a mild
DNA fragmentation by DNAse | (see Fig. 6 d) during
[?P]polyADP-ribosylation (Fig. 2 b, lanes 3 and 6), PARP
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Figure 1. Membrane depolarization induces polyADP-ribosylation of nuclear proteins in brain cortical neurons. (a) PolyADP-ribosy-
lated proteins in the nuclei of prefixed cultured rat cortical neurons were immunolabeled in situ with monoclonal antibody directed
against ADP-ribose polymers (10H; see Materials and Methods). Confocal images of neurons, labeled with fluorescein-conjugated sec-
ondary antibody (top), were also visualized in transmitted light (bottom). The four frames, from left to right, show neurons depolarized
by high-[K*] for 5 min; unstimulated neurons; neurons pretreated with H,O, (1 mM, 10 min); and depolarized neurons labeled only
with the secondary antibody (n = 4). (b) Western blots of polyADP-ribosylated PARP immunoprecipitated by 10H antibody from nu-
clei of unstimulated (lane 1) and depolarized (lanes 2-4) cortical neurons. Neurons were depolarized by high-[K*] (lane 2), or stimu-
lated by a 2-min train of repetitive (100 Hz) 30-volt, 0.1 ms pulses (lane 3), or by a 10-min train of repetitive (10 Hz) 30-volt, 0.1 ms
pulses (lane 4). (Lane 5) Neurons pretreated with H,O,. Immunoprecipitated PARP was immunolabeled by anti-PARP, Vic-5 antibody
(n = 6). (c, left) Autoradiograms presenting [*?P]polyADP-ribosylated PARP (5 min, 37°C) in isolated nuclei of unstimulated neurons
(lane 2) and depolarized neurons (high-[K*]; lane 1, stimulated by a 2-min train of repetitive [100 Hz] 30-volt, 0.1 ms pulses; lane 3).
[*P]polyADP-ribosylated PARP was immunoprecipitated from the nuclear protein extracts by N-20 antibody (see Materials and Meth-
ods), subjected to SDS-PAGE, autoradiographed, electroblotted (Western blot), and immunolabeled (on right) by anti-PARP, Vic-5
antibody (n = 6).

was scarcely [**P]polyADP-ribosylated in nuclei treated
with DNAse | before [*?P]polyADP-ribosylation (Fig. 2 b,
lanes 8 and 10; see Fig. 6 c). As elaborated below, this
effect could be attributed to an endogenous polyADP-
ribosylation of PARP, evoked by DNA-nicks formation
(D’Amours et al., 1999) but prevented in the presence of
H,O, (Fig. 2 b, lanes 2 and 5). PolyADP-ribosylation of
PARP is suppressed in the presence of H,O, (data not
shown), apparently due to the destruction of its zinc-fingers
by this oxidizing agent (Wu et al., 1996; Park et al., 1999).
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The observations described in Fig. 2 b led us to suggest a
sensitive method for determining changes in the activity of
PARP in intact cells by measuring the extent of its
[*?P]polyADP-ribosylation in their isolated nuclei. The
concept underlying this method was first introduced by
Nestler and Greengard (1980) for assaying in situ phos-
phorylation of proteins by measuring their in vitro [*?P]
phosphorylation (back-[*2P]phosphorylation).

PolyADP-ribosylation of PARP in intact cells can be as-
sayed by its [*P]polyADP-ribosylation in their isolated
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Figure 2. [*P]polyADP-ribosylation of PARP in nuclei isolated
from unstimulated and depolarized neurons. (a) [*?P]polyADP-
ribosylation of PARP (2 min, 37°C) in crude nuclei isolated from
unstimulated (top) and depolarized (bottom) neurons, in the
presence of increasing concentrations of added NAD. Nuclear
protein extracts were analyzed by SDS-PAGE and electroblot-
ted. [**P]polyADP-ribosylated PARP in the nuclear protein ex-
tracts of both preparations was autoradiographed and immunola-
beled by N-20 antibody. The curve presents average values = SD

5. 10. 50.100.500.

nuclei (back-[*?P]polyADP-ribosylation), since PARP ac-
tivity is preserved in the isolated nuclei, and only DNA-
bound PARP is polyADP-ribosylated (Satoh et al., 1994).
Extensively polyADP-ribosylated PARP is released from
DNA, and its ADP-ribose polymers are immediately sub-
jected to a partial degradation (Satoh et al., 1994). PARP
carrying partially degraded ADP-ribose polymers is not
rebound to DNA (Udea, 1990; Satoh et al., 1994; Lindahl
et al., 1995). Since a complete degradation of ADP-ribose
polymers, which would enable PARP de novo binding
to DNA, is very slow relative to the time course of its
[?P]polyADP-ribosylation (see Materials and Methods;
Satoh et al., 1994), extensively polyADP-ribosylated PARP
in situ may not undergo further [*?P]polyADP-ribosyla-
tion. Thus, although PARP was extensively [*?P]poly-
ADP-ribosylated during DNA-nicks formation by DNAse
1, it was scarcely [*?P]polyADP-ribosylated in nuclei pre-
treated with DNAse | before [*?P]polyADP-ribosylation
(Fig. 2, compare lanes 3 and 6 with lanes 8 and 10).

Thus, for DNA-bound PARP undergoing [**P]polyADP-
ribosylation in the isolated nuclei, the more extensive the
PARP endogenous polyADP-ribosylation, the lower its
measured [*?P]poly-ADP-ribosylation. This is illustrated
in Fig. 3, based on the schematic presentation of poly-
ADP-ribosylation by Satoh et al. (1994). The low extent of
PARP [*P]polyADP-ribosylation in nuclei isolated from
depolarized neurons (Fig. 1 c) is in accordance with its
high endogenous polyADP-ribosylation (Figs. 1, a and b,
and 3).

Since NAD does not permeate cell membranes, we de-
termined the activity of PARP in intact neurons by mea-
suring the extent of its back-[*?P]polyADP-ribosylation in
their isolated nuclei. Changes in PARP activity during
electrical stimulation were examined by this method.

Cortical neurons in culture were stimulated by pulsed
electrical stimuli (see Materials and Methods). Evoked ac-
tion potentials and postsynaptic potentials were recorded
in individual neurons during stimulation by using the
patch-clamp whole cell configuration (see Materials and
Methods; Hamill et al., 1981) (Fig. 4 a). Immediately after
stimulation, neurons were lysed and their nuclei were iso-
lated (see Materials and Methods). [*’P]poly ADP-ribosy-
lation was conducted in the isolated nuclei (see Materials
and Methods). Generally, a continuous electrical activity
in the cortical neurons resulted in a low back-[*?P]poly-
ADP-ribosylation of PARP in their isolated nuclei (Fig. 4
b). This was consistent with the directly assayed enhanced
polyADP-ribosylation of PARP in depolarized neurons
(Fig. 1, a and b). The effect of depolarization on PARP ac-

of the depletion (%) in PARP [*2P]polyADP-ribosylation in nu-
clei isolated from unstimulated (O) and depolarized (®) neurons
due to increasing extranuclear NAD concentration (n = 6). (b)
[*?P]polyADP-ribosylation of PARP (2 min, 37°C) was con-
ducted in nuclei isolated from unstimulated (lanes 1-3, 7, 8) and
depolarized (lanes 4-6, 9, 10) neurons. (Lanes 2 and 5) Neurons
treated by H,O, (1 mM, 10 min, 25°C). (Lanes 3 and 6) Nuclei
treated with DNAse I (20 wg/ml, 2 min, 37°C) during [**P]poly-
ADP-ribosylation. (Lanes 8 and 10) Nuclei treated with DNase |
(80 wg/ml, 2 min, 37°C) before [*2P]polyADP-ribosylation
(n = 4).
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tivity was reversed by repolarization (Fig. 4 b); the more
effective the stimulation, the longer the repolarization pe-
riod required for reversal (Fig. 4 b). Stimulated neurons
preserved their resting potential (Fig. 4 a), evidence that
they were not damaged by the depolarizing stimulations.
Also, depolarized neurons survived in their cultures for 10 d
after stimulation, similar to the survival period of unstimu-
lated neurons.

Inhibition of Topoisomerase | Activity in Depolarized
Neurons Due to polyADP-ribosylation. The activation of
PARP in depolarized neurons was further examined by
measuring the activity of topoisomerase I, a known sub-
strate of PARP (Ferro et al., 1983) inhibited by polyADP-
ribosylation (Ferro and Olivera, 1984; Kasid et al., 1989).
Topoisomerase | catalyzes the relaxation of supercoiled
DNA, initiating DNA transcription and replication in eu-
karyotes (Wang, 1996). We therefore used the relaxation
of a supercoiled DNA-plasmid (related inversely to its
mobility in gel agarose electrophoresis; Liu and Miller,
1984) to assay topoisomerase | activity. A lower mobility
indicated plasmid relaxation and, by inference, the activa-
tion of topoisomerase I.

We examined the effect of membrane depolarization on
both activity and polyADP-ribosylation of topoisomerase
I. Incubation of the supercoiled DNA-plasmid with pro-
teins extracted from nuclei of depolarized neurons re-
sulted in a significantly reduced topoisomerase | activity
(Fig. 5 a, lanes 7-11), as compared with its activity in pro-
tein extracts of unstimulated or repolarized neurons (Fig.
5 a, lanes 3-6 and 12). Moreover, inhibition of topoisom-
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resting potential

R N

Figure 3. A schematic illus-
tration of the concept un-
derlying back polyADP-
ribosylation. The extent of
polyADP-ribosylation of PARP
in intact cells reflected in the
[*?P]polyADP-ribosylation of
PARP in their isolated nuclei.
O, ADP-ribose; @, [*?P]JADP-
ribose.

erase | activity in depolarized neurons was prevented by
suppression of PARP activity with 3-aminobenzamide
(3-AB; Udea, 1990) (Fig. 5 a, lanes 8 and 10). This result
was in line with polyADP-ribosylation of topoisomerase |
in the depolarized neurons (Fig. 5 b), thereby indicating
that topoisomerase | is inhibited in depolarized neurons
by polyADP-ribosylation.

No Evidence of DNA Breaks Formation in
Depolarized Neurons

Since PARP activation is reportedly induced by binding to
free DNA endings in nicked DNA (Menissier-de Murcia
et al., 1989; Kupper et al., 1990; Satoh and Lindahl, 1992),
we examined the possibility that membrane depolarization
induces polyADP-ribosylation of PARP due to the forma-
tion of DNA breaks.

Depolarizing stimulation induced a transient polyADP-
ribosylation of PARP, which disappeared as the resting
potential was restored (Fig. 4 b). Therefore, we used meth-
ods suitable for detecting DNA repair in intact neurons
during this transient effect. Induction of DNA breaks
should be reflected in an increased DNA repair in depo-
larized neurons (Friedberg et al., 1995). We therefore ex-
amined DNA synthesis in the stimulated neurons by mea-
suring the incorporation of thymidine (Friedberg et al.,
1995) or the thymidine analogue BrdUrd (Selden and Dol-
beare, 1994) into DNA (see Materials and Methods).

[®H]Thymidine was incorporated only in nicked DNA of
neurons pretreated with H,O, (Fig. 6 a). There was no sig-
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Figure 4. Electrical activity inducing PARP activation in brain
cortical neurons. (a) Evoked action potentials and synaptic po-
tentials, recorded by the patch-clamp whole cell technique in the
current clamp mode in cultured cortical neurons during electrical
stimulation (n = 4). (Top) stimulation inducing polyADP-ribosy-
lation of nuclear proteins (see b): 2-s repetitive (100 Hz) 30-volt,
0.1 ms pulses. Evoked action potentials, underlined by a bar, are
presented on an expanded time-base to the right. The break in
the trace represents a gap of 12 s. (Bottom) A stimulation which
did not induce polyADP-ribosylation: 2-s repetitive (1 Hz) 30-
volt, 0.1 ms pulses. (b) (Top) Autoradiograms of [*?P]polyADP-
ribosylated PARP in crude nuclei isolated from cortical neurons
pretreated as follows: lane 1, unstimulated neurons; lanes 3, 5, 7,
and 9, neurons repolarized for 20 min after the following depolar-
izations (respectively): high-[K*] for 5 min (lane 2), a 10-min
train of repetitive (10 Hz) 30-volt, 0.1 ms pulses (lane 4), a 2-min
train of repetitive (100 Hz) 30-volt, 0.1 ms pulses (lane 6), and re-
petitive (100 Hz) 30-volt, 0.1 ms pulses, applied for 2 s every
minute for 10 min (lane 8). PARP was immunoprecipitated from
the nuclear protein extracts by N-20 antibody, subjected to SDS-
PAGE, autoradiographed, and electroblotted (Western blot).
(Bottom) Immunolabeling of [*2P]polyADP-ribosylated PARP
by anti-PARP Vic-5 antibody in the immunoprecipitates (n = 8).

nificant incorporation of [*H]thymidine or BrdUrd into
DNA of depolarized or unstimulated neurons (Fig. 6, a
and b, respectively).

Lack of DNA breaks in the depolarized neurons was
further confirmed by two sensitive methods for DNA
breaks detection: (i) alkaline gel electrophoresis of DNA,
for detecting breaks in single stranded DNA (Sutherland
et al., 1999) and (ii) selective extraction of fragmented

1 2 3 4 5§

6 7 8 9101112
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Anti-TopoI  ["P]ADP
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Figure 5. Suppressed activity of topoisomerase | in depolarized
neurons. (a) Mobility in gel agarose of supercoiled plasmid
(pUC-19) before (lanes 1 and 2) and after (lanes 3-12) incubation
with nuclear proteins of unstimulated (lanes 3-6) or depolarized
(lanes 7-11) cortical neurons, neurons treated with the PARP
inhibitor, 3-AB (0.5 and 1.0 mM: lanes 4 and 5, respectively),
neurons depolarized for 5 min by high-[K*] (lanes 7 and 8), neu-
rons depolarized by 2-min train of repetitive (100 Hz) 30-volt, 0.1 ms
pulses (lanes 9 and 10), neurons pretreated with 0.5 mM 3-AB
(lanes 8 and 10), and neurons depolarized by 10-min train of
repetitive (10 Hz) 30-volt 0.1 ms pulses (lanes 11 and 12) and re-
polarized for 20 min (lane 12). Each lane contained 100 ng pro-
tein (n = 5). (b) Topoisomerase | (110 kD) immunolabeled with
anti-human topoisomerase | polyclonal antibody in Western
blots (lanes 1 and 2) of [*P]polyADP-ribosylated nuclear pro-
teins (5 min, 37°C), separated by SDS-PAGE and autoradio-
graphed (lanes 3 and 4). Proteins were extracted from nuclei of
unstimulated (lanes 1 and 3) and high-[K*] depolarized (lanes 2
and 4) cortical neurons. Each lane contained 200 pg protein (n = 3).

DNA from isolated nuclei (Darzynkiewicz and Juan, 1999)
(see Materials and Methods).

The results depicted in Fig. 6 ¢ show no evidence of
breaks in single DNA strands of depolarized or unstimu-
lated neurons. Moreover, there was no evidence of DNA
fragmentation in either unstimulated or depolarized neu-
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Figure 6. DNA repair examined in depolarized and unstimulated
cortical neurons. (a) [*H]Thymidine incorporation in the DNA of
cortical neurons pretreated with H,O,, unstimulated neurons
(rest), high-[K*]-depolarized neurons (5 min), and electrically
stimulated neurons (2-min train of repetitive [100 Hz] 30-volt,
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rons (Fig. 6 d). Nicked DNA single strands or fragmented
DNA were extracted only from neurons pretreated by
H,O, or from nuclei pretreated with DNAse | (Fig. 6, ¢
and d). These results strongly suggest that the enhanced
polyADP-ribosylation of PARP in depolarized neurons is
not derived from the formation of DNA breaks.

Lack of breaks in the DNA of depolarized neurons (Fig.
6) is consistent with the lack of NAD consumption in the
depolarized neurons (Fig. 2 a) (Satoh and Lindahl, 1992).

Evidence Associating Activation of PARP with
IP5-mobilized Ca?*

Extranuclear Ca?* Promotes Activation of PARP. An in-
creased intracellular Ca?™ concentration ([Ca?™]) is mea-
sured in neurons during membrane depolarization
(Al-Mohanna et al., 1994). We therefore examined the
possibility that Ca?* is a mediator of depolarization-
induced PARP activation. The effect of extranuclear
[Ca?*] on [*?P]polyADP-ribosylation of nuclear proteins
was examined in isolated nuclei of cortical neurons in the
presence of ATP (Methods). Nuclei were exposed to in-
creasing [Ca®"], added before or after the addition of [*2P]
NAD, which initiates [*2P]polyADP-ribosylation.
Increasing the extranuclear [Ca?'] during [*?P]poly-
ADP-ribosylation enhanced, by a dose-dependent man-
ner, the [*?P]polyADP-ribosylation of PARP (Fig. 7, a and
b). The effect of Ca>" on polyADP-ribosylation was very
fast. It was therefore identified better at 25°C (rather than
at 37°C; Fig. 7 a, lanes 1-6). Accordingly, when Ca?* was
added to the nuclei before [*?P]polyADP-ribosylation, the
[*?P]polyADP-ribosylation of PARP decreased in a dose-
dependent manner by increasing extranuclear [Ca?"] (Fig.

0.1 ms pulses). Numbers above columns indicate the average val-
ues (SD < 10%) of tritium B emission (cpm) from [*H]thymidine
incorporated into DNA (black) and from nonspecifically bound
[*H]thymidine to neuronal cells membranes (gray) (n = 5). (b)
Incorporation of BrdUrd into the DNA of cortical neurons, de-
tected by flow cytometry (see Materials and Methods). Neurons
were either unstimulated or depolarized by high-[K*], or by a 10-
min train of repetitive (10 Hz) 30-volt, 0.1 ms pulses. Incorpo-
rated BrdUrd was detected by immunolabeling with anti-BrdUrd
monoclonal antibody (1U-4) (Methods) and visualized by FITC-
conjugated secondary antibody. The content of double stranded
DNA in the preparations was indicated by propidium iodide (PI)
intercalation (n = 3). (c) Alkaline gel electrophoresis of DNA
extracted from nuclei of neurons pretreated with H,O, (1 mM, 10
min; lane 1) or from unstimulated neurons (lane 2), neurons de-
polarized for 5 min by high-[K*] (lane 3) or stimulated by a 10-
min train of repetitive (10 Hz) 30-volt, 0.1 ms pulses (lane 4), and
from nuclei treated for 2 min at 37°C with 80 wg/ml DNAse |
(lane 5). DNA was stained with ethidium bromide (1 wg/ml) in
alkaline gel agarose (1%) and photographed under UV illumina-
tion (n = 3). (d) A selective extraction of fragmented DNA from
nuclei of neurons pretreated with H,0, (1 mM, 10 min; lane 1) or
DNAse | (20 pg/ml, 2 min, 37°C; lane 5). DNA fragments were
not extracted from unstimulated neurons (lane 2) or from neu-
rons depolarized by high-[K*] (lane 3) or by electrical stimula-
tion (10-min train of repetitive [10 Hz] 30-volt, 0.1 ms pulses; lane
4). DNA fragments were stained with ethidium bromide (1 wg/ml)
in 1% gel agarose and photographed under UV illumination.
Markers on left: 1-kb DNA ladder (0.5-10 kb) (n = 3).
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Figure 7. Extra-nuclear Ca?" promotes polyADP-ribosylation of
PARP. (a) PolyADP-ribosylation of PARP in crude nuclei iso-
lated from unstimulated neurons, exposed to increasing [Ca?'], 1
min before (preincubation) or during [*2P]poly ADP-ribosylation
(2 min, 25°C). [**P]polyADP-ribosylated PARP was immunopre-
cipitated, electroblotted (Western blot), autoradiographed, and
immunolabeled by Vic-5 antibody. (b) The curve shows the aver-
age increase (+SD) in [*?P]polyADP-ribosylation of PARP
(measured by densitometry) versus the increase in extranuclear
[Ca?™], relative to PARP [*2P]polyADP-ribosylation in extranu-
clear [Ca?'] = 25 nM (see Materials and Methods) (n = 9). (c)
Back-[*?P]polyADP-ribosylation of PARP, in nuclei of depolar-
ized or unstimulated neurons treated with Ca?* influx blockers
and the permeant chelator BAPTA AM. (Top) Autoradiograms
of [*2P]polyADP-ribosylated PARP in crude nuclei of unstimu-
lated neurons (lanes 1, 3, 5, 7, and 9), and neurons depolarized
by a 10-min train of repetitive (10 Hz) 30-volt, 0.1 ms pulses
(lanes 2, 4, 6, 8, and 10). Cultured neurons were preincubated for

7 a, lanes 7-12), indicating a decreased back-[*?P]poly-
ADP-ribosylation of the activated PARP (see Figs. 1 and 3).

The stimulatory effect of extra-nuclear [Ca?*] on PARP
activity was further examined in depolarized neurons,
loaded with the permeant Ca?'-chelator, BAPTA AM
(Hardingham et al., 1997; Al-Mohanna et al., 1994). Cap-
ture of intracellular Ca?>* by BAPTA AM completely
abolished the increase in polyADP-ribosylation of PARP
in depolarized neurons (Fig. 7 ¢). However, neither deple-
tion of extracellular Ca?" during high-[K*]-induced depo-
larization (see Materials and Methods; Figs. 1, 4 b, and 5)
nor blocking Ca?* influx prevented the poly ADP-ribosyla-
tion of PARP in depolarized neurons. Its polyADP-ribo-
sylation was neither suppressed by blocking of voltage-
dependent Ca?" channels (Olivera et al., 1994) nor by
blocking of Ca?* influx, evoked by stimulation of NMDA-
glutamate receptors (Sharkey et al., 1996) (Fig. 7 ¢). These
findings strongly suggest that PARP activation in depolar-
ized neurons is mediated by Ca?* release from intracellu-
lar stores (Zacchetti et al., 1991; Ehrlich et al., 1994; Ehr-
lich, 1995). It should be noted that in vitro conducted
polyADP-ribosylation of PARP is similarly enhanced by
Mg?* (10 mM; Ferro and Olivera, 1982).

Ca?* Release into the Nucleoplasm in Isolated Nuclei of
Cortical Neurons. We next examined the possibility that
Ca?*, mobilized from intracellular stores, is released into
the nucleoplasm. Crude nuclei (Fig. 8 a; see Materials and
Methods) were isolated from brain cortical neurons and
loaded with the permeant fluorescent Ca?" indicator
rhod-2 AM (Minta et al., 1989) in the absence of extranu-
clear Ca?* (see Materials and Methods). Capture of Ca?*
by rhod-2 was visualized by confocal microscopy (see Ma-
terials and Methods; Fig. 8, b—d). [Ca?*] was markedly in-
creased in the nucleoplasm of nuclei isolated from de-
polarized neurons (Fig. 8 b), in line with the transient
increase in nuclear [Ca?"] in depolarized neurons (Al-
Mohanna et al., 1994; Hardingham et al., 1997).

An increase of extranuclear [Ca?*] did not induce Ca?*
release into the nucleoplasm unless ATP (2.5 mM) was
added (Fig. 8 d); extranuclear Ca®", in its physiological
concentration range, was instantaneously accumulated in
perinuclear compartments by adding ATP (Fig. 8, c and d).
Under these experimental conditions, Ca?* was instanta-
neously released into the nucleoplasm by the addition of
IP; (1-2 wM; Fig. 8 ). In the presence of ATP, Ca?" was
also moderately released into the nucleoplasm when ex-
tranuclear [Ca?*] was elevated (Fig. 8 d). cADP-ribose (5-
20 wM), reportedly inducing Ca?*-dependent Ca®" release
from perinuclear stores (Gerasimenko et al., 1995), had a
very small effect on Ca?* release into the nucleoplasm un-
der these experimental conditions (data not shown). These

10 min at 25°C with 1 mM CdCl, (lanes 3 and 4) or with antago-
nists of NMDA-glutamate receptors, MK-80I (20 wM; lanes 5 and
6) and APV (500 wM; lanes 7 and 8), or preincubated (30 min,
25°C) with the permeant Ca?* chelator, BAPTA AM (50 wM;
lanes 9 and 10). PARP was immunoprecipitated from the nuclear
protein extracts of these neurons by N-20 antibody, subjected
to SDS-PAGE, electroblotted (Western blot), and autoradio-
graphed. (Bottom) Immunolabeling of [*?P]-polyADP-ribosy-
lated PARP by Vic-5 antibody in the immunoprecipitates (n = 6).
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Figure 8. Ca?" mobilization in crude nuclei
isolated from brain cortical neurons. (a)
Electromicrograph of a crude nucleus iso-
lated from lysed brain cortical neuron (Ma-
terials and Methods). (b—d) Confocal mi-
croscopy showing Ca?" redistribution in
crude nuclei of cortical neurons as indicated
by changes in the fluorescence of rhod-2
AM (Materials and Methods). (b) Ca?* de-
tected in the nucleoplasm of depolarized
(high-[K*] depolarization, 5 min) and un-
stimulated neurons. (¢) Ca?" redistribution,
visualized instantaneously during applica-
tion of ATP (2.5 mM) and IP; (1 uM) to
crude nuclei of unstimulated neurons in the
presence or absence of 5 mM caffeine, or to
nuclei of neurons pretreated by 3 pM
thapsigargin (10 min, 37°C). (d) Ca?* redis-
tribution in crude nuclei, evoked by in-
creased extranuclear [Ca?*] in the presence
or absence of ATP (2.5 mM).



findings are consistent with a growing body of evidence in-
dicating that extranuclear Ca?" permeates the nuclear
membrane mainly via Ca-ATPase-induced Ca?* accumu-
lation in IP;-gated perinuclear stores (Gerasimenko et al.,
1995; Hennager et al., 1995; Malviya and Rogue, 1998) and
with evidence indicating phosphatidylinositol signaling in
the nucleus (Boronenkov et al., 1998).

The release of Ca?" into the nucleoplasm was prevented
by caffeine, added to the crude nuclei at concentrations
suppressing I1P;-induced Ca?* mobilization (Ehrlich et al.,
1994) (Fig. 8 c). Release of Ca?" into the nucleoplasm
was also prevented in nuclei isolated from neurons pre-
treated by thapsigargin that inhibits Ca-ATPase activity
(Takemura et al., 1989), thereby preventing Ca*" accumu-
lation in the perinuclear stores (Malviya and Rogue, 1998)
(Fig. 8¢).

A Fast Activation of PARP by IP;in Isolated Nuclei of
Cortical Neurons. We next examined the possibility that
PARP is polyADP-ribosylated by IPs-induced Ca?* mo-
bilization. [*?P]polyADP-ribosylation of PARP was ex-
amined in the presence of IP; added to nuclei isolated
from unstimulated neurons. EDTA was omitted from the
incubation solution (see Materials and Methods), to
avoid chelation of free Ca?*. In addition, [*?P]polyADP-
ribosylation was carried out at 25°C to enable detection
of fast changes in the activity of PARP. For the same rea-
son, IP; was added after the addition of [P]NAD.
[**P]polyADP-ribosylated proteins were extracted 1 min
after the addition of IP;. IP5 (at concentrations of 50 nM
to 5 wM) enhanced the [*2P]polyADP-ribosylation of
PARRP in a dose-dependent manner. Maximal 10-fold en-
hancement was measured with a half maximal effect in-
duced by 100 * 30 nM IP; (Fig. 9 a). At the same concen-
tration range, IP; displaced specifically bound [*H]IP,
from its receptors in the crude nuclei (ICsq = 30 = 5 nM;
Fig. 9 b).

Agents suppressing 1Pg-induced Ca?*-mobilization also
suppressed IPs-induced PARP activation; addition of the
Ca%*-chelator, BAPTA AM, to the isolated nuclei com-
pletely suppressed the IP;-induced [*2P]polyADP-ribosy-
lation of PARP (Fig. 9 c, lanes 6-8). Addition of caffeine
(3-5 mM; Ehrlich et al., 1994; Ehrlich, 1995) had a similar
effect (Fig. 9 c, lanes 12-14). Heparin (100 mg/ml, Grade
1-A,; Sigma-Aldrich) (Ehrlich et al., 1994) acted similarly
to caffeine (data not shown). Neither BAPTA nor caffeine
prevented the basal [**P]polyADP-ribosylation of PARP
in the absence of IP; (Fig. 9 c, lanes 6 and 9-11, respec-
tively). IPs-induced [**P]poly-ADP-ribosylation of PARP
was also suppressed in nuclei isolated from neurons pre-
treated by thapsigargin (Fig. 9 c, lanes 15 and 16). IP;-
gated Ca?" stores turn “leaky” by interaction with FK-
506 (Cameron et al., 1995; Mikoshiba, 1997; Mackrill,
1999). We therefore examined the effect of FK-506 on [*°P]
polyADP-ribosylation of PARP.

Addition of FK-506 (1 wM) altered the dose-dependent
effect of IP; on [*2P]polyADP-ribosylation of PARP;
the concentration of IP; required for enhancement of
[*P]polyADP-ribosylation in the presence of FK-506 was
10 times lower than that required in untreated nuclei (Fig.
9 d). Hence, the fast polyADP-ribosylation of PARP by
IP; (Fig. 9, a and b), and its modulation by agents affecting
IP;-gated Ca?" release (Figs. 8 ¢ and 9, ¢ and d), strongly

suggest that PARP in the isolated nuclei was activated via
IP;-induced Ca?* mobilization.

IP;-induced [*?P]polyADP-ribosylation of PARP in iso-
lated nuclei was neither affected by the addition of cal-
modulin (10-20 wM; Mackrill, 1999; data not shown), nor
by preventing Ca-calmodulin binding to CAM-kinase Il in
the presence of saturating amounts (1.5 wM) of the Ca-
calmodulin binding peptide on CAM-kinase Il (Payne et al.,
1988; data not shown). cADP-ribose (5-20 wM) did not al-
ter the basal [**P]poly-ADP-ribosylation of PARP in the
crude nuclei (data not shown).

Discussion

The results of this study indicate a fast activation of PARP
by electrical activity in brain cortical neurons. This is di-
rectly demonstrated by in situ immunolabeling of poly-
ADP-ribosylated proteins in depolarized neurons (Fig. 1,
a and b) and, indirectly, by inhibition of topoisomerase |
activity due to polyADP-ribosylation in depolarized neu-
rons (Fig. 5). PARP activation was quantified by the ex-
tent of its back-[*P]poly ADP-ribosylation in isolated nu-
clei of depolarized neurons (Figs. 1 ¢ and 4 b). These
findings constitute the first evidence for a fast activation of
PARP by physiological signals in the cell membrane.

High-[K*]-induced membrane depolarization promoted
polyADP-ribosylation of nuclear proteins in the absence
of extracellular Ca?* (Figs. 1, 4 b, and 5). Findings indicat-
ing that PARP is activated by intracellular Ca?* mobiliza-
tion in the depolarized neurons include: a fast dose-depen-
dent activation of PARP by extranuclear [Ca?*] (Fig. 7, a
and b), independent of extracellular Ca?* influx (Fig. 7 c);
and a fast dose-dependent PARP activation by physiologi-
cal concentrations of IP; (Fig. 9, a and b), modulated by
agents affecting 1Ps-induced Ca?* mobilization (Fig. 9, ¢
and d).

IP;-induced Ca?* release into the nucleoplasm (Fig. 8 c)
may underlie the depolarization-induced activation of
PARP (Figs. 1 and 4 b). This is supported by data indicat-
ing Ca?* release into the nucleoplasm of depolarized corti-
cal neurons (Fig. 8 b; Al-Mohanna et al., 1994; Harding-
ham et al., 1997) and IPs-induced Ca?" release into the
nucleoplasm of cortical neurons (Fig. 8 ¢), also reported in
other cell types (Malviya and Rogue, 1998).

An enhanced IP; production has been measured in
depolarized neurons (Gusovsky et al., 1986). It may be
attributed to an accelerated phosphoinositide turnover
(Gusovsky et al., 1986; Gurwitz and Sokolovsky, 1987), as
well as to the stimulation of receptor tyrosine kinases
(Castren et al., 1992; Huang et al., 1999), or activation of
trimeric G-proteins (Banno et al., 1987; Berridge and Ir-
vine, 1989; Exton, 1990; Sierro et al., 1992; Anis et al.,
1999).

The fast polyADP-ribosylation of PARP by IP; in the
isolated nuclei (Fig. 9) is compatible with the time course
of Ca?" release from IP5-gated stores (Ferris and Snyder,
1992). Moreover, IP; stimulated polyADP-ribosylation in
the isolated nuclei of cortical neurons (Fig. 9 b) at concen-
trations compatible with the affinity of IPs-receptors IP;-
R1 and IP;-R2 (Mignery et al., 1992; Miyakawa et al.,
1999), identified in the brain (Mignery et al., 1992; Ross et
al., 1992). IP;-gated Ca?* stores have been identified in the
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Figure 9. IP; induces a fast [*?P]polyADP-ribosylation of PARP in crude nuclei of brain cortical neurons. (a) Autoradiograms of
[*?P]polyADP-ribosylated PARP in crude nuclei of unstimulated brain cortical neurons in the absence (lane 1) or presence of IP, at the
indicated concentrations (lanes 2-10). [*?P]polyADP-ribosylation (2 min, 25°C) was terminated 1 min after the addition of IP5. Nuclear
proteins were extracted, separated by SDS-PAGE, and electroblotted (Western blot). PARP was immunolabeled by N-20 antibody
(n = 7). (b) Left ordinate shows displacement of bound [®H]IP; by IP;in crude nuclei of cortical neurons (O). Maximal specific binding
of [*H]IP, (10.5 nM) was 18,500-20,500 cpm/mg protein. Nonspecific binding of [°H]IP; (~60,000 cpom/mg protein) was determined in the
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inner nuclear membrane (Nicotera et al., 1990; Gerasi-
menko et al., 1995; Malviya and Rogue, 1998). Phosphati-
dylinositol signaling pathways have been identified in the
nuclei of several cell types (Boronenkov et al., 1998).

The enhanced activity of PARP in depolarized neurons
was independent of extracellular [Ca?*] (see Materials and
Methods; Figs. 1, 4 b, and 5) and resisted Ca?* influx
blockers, including agents suppressing NMDA-induced
Ca?" influx (Fig. 7 c). We therefore consider it unlikely
that PARP is activated in depolarized neurons by DNA
damage, caused by nitric oxide formation (Zhang et
al., 1994; Shah et al., 1996). It is also unlikely that the
fast signal-induced activation of PARP was mediated
by Ca?*-induced activation of endonucleases, producing
DNA breaks (Arends et al., 1990). The activation of
Ca,Mg-endonuclease would require extranuclear Ca?"
concentrations 100-1,000-fold higher (Peitsch et al., 1993;
Peitsch et al., 1994) than those inducing PARP activation
(Fig. 7, a and b). Endonuclease activity at [Ca?*] <1 uM
has a much slower time course (>30 min; Jones et al.,
1989). Accordingly, DNA breaks or NAD depletion (Sa-
toh and Lindahl, 1992) were not detected in the depolar-
ized cortical neurons (Figs. 6 and 2 a, respectively).

A fast signal-induced PARP activation via IP;-induced
Ca?* mobilization constitutes a novel mode of signaling to
the cell nucleus: PARP, being a downstream target of
phospholipase C, modulates by polyADP-ribosylation the
activity of nuclear proteins in response to signals promot-
ing phosphoinositides turnover and phosphatidyl-inositol
4,5-bisphosphate (PIP,) hydrolysis (Berridge and Irvine,
1989; Fruman et al., 1998; Toker, 1998). A fast modifica-
tion of transcription factors by polyADP-ribosylation (Li
Oei et al., 1998) during electrical activity in brain cortical
neurons may associate depolarization-induced polyADP-
ribosylation with “memory storage” (Kandel, 1997).

The role of PARP in DNA repair and transcription (Sa-
toh and Lindahl, 1992; Oliver et al., 1998; Trucco et al.,
1998) may underlie the effect of depolarization in protect-
ing growth factor-deprived neurons from apoptotic cell
death (D’Mello et al., 1993; Galli et al., 1995). This mecha-
nism suggests a crucial influence of neuronal activity in
preserving the viability of brain cortical neurons, thereby
implementing the rule of “use it or lose it.”
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