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Fc receptors are found on a wide variety of cells including macrophages (1-9), 
polymorphonuclear leukocytes (PMN) ~ (10), B cells (11, 12), some classes of T 
cells (13), mast cells (14), and herpes virus-infected cells (15). The role the 
receptors play in the physiology of these cells has not been defined in all cases; 
however, for the macrophage and PMN these receptors function, at least in part, 
in the recognition and ingestion of immune complexes. 

Fc receptors of macrophages from rabbit (3), guinea pig (1), and man (4) are 
resistant to trypsin treatment.  The mouse macrophage Fc receptor that  binds 
rabbit antibody-antigen complexes is also resistant to trypsinization (5). How- 
ever, other studies (16-18) on the binding to mouse macrophages of "early" 
mouse cytophilic antibody show that these antibodies bind to a trypsin-sensitive 
receptor, whereas "late" or hyperimmune antibody binds to a trypsin-resistant 
site. This suggests that  there are two classes of Fc receptors on mouse macro- 
phages. Askenase and Hayden (18) found, based on inhibition experiments with 
IgG2a-specific antisera, that  the class of mouse IgG which binds to the trypsin- 
sensitive receptor is IgG2a. In previous work (8) we characterized the affinity of 
binding of monomeric mouse myeloma proteins to mouse macrophages and a 
macrophage cell line, P388D1, and demonstrated that  the Fc receptor for mono- 
meric mouse IgG2a was sensitive to trypsinization, and could be regenerated by 
the macrophage in the absence of serum. 

In this paper I show that the mouse macrophage line, P388D~, has two Fc 
receptors, one which binds mouse IgG2a, and another which binds rabbit IgG in 
antigen-antibody complexes. Genetic and biochemical evidence for separate 
receptors is presented: (a) A variant line which is unaltered in its ability to 
bind IgG2a but differs markedly in binding of rabbit antibody-antigen com- 
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p lexes  w a s  i so la t ed  f r o m  a c lone of  t h e  P388D1 l ine.  (b) T h e  r e c e p t o r s  for I g G 2 a  

a n d  a n t i g e n - a n t i b o d y  c o m p l e x e s  d i f fer  in  s e n s i t i v i t y  to t r e a t m e n t  w i t h  t ryps in .  

F u r t h e r m o r e ,  t h e  t r y p s i n - r e s i s t a n t  r e c e p t o r  t h a t  b inds  r a b b i t  a n t i g e n - a n t i b o d y  

c o m p l e x e s  does no t  s e e m  to b ind  u n c o m p l e x e d  r a b b i t  IgG.  

M a t e r i a l s  a n d  M e t h o d s  

Cell Culture. The P388D1 line (6, 19) was grown as described previously ~8). Adherent 
macrophages were transferred using the local anesthetic lidocaine as described by Rabinovitch 
and DeStephano (20). Cells were incubated with 12 mM lidocaine in alpha-modified Eagle's 
minimum essential medium (MEM) with 10% heat-inactivated fetal calf serum (HIFCS) for 10-15 
min, after which they were washed gently offthe dish with a pipette, resuspended in medium, and 
replated. 

The P388D1 line was cloned by seeding cells in 96-well fiat bottom trays at an average density of 
one cell per well. A 1:3 ratio of medium conditioned by P388D~ cells growing in spinner culture to 
fresh medium was used; the cloning efficiency under these conditions was 50%. The trays were 
incubated long enough (2 wk) to allow macroscopic colonies to form, after which they were 
recloned. Clones were then expended and frozen in liquid nitrogen in MEM containing 10% HIFCS 
and 10% (vol/vol) glycerol. Mouse peritoneal macrophages were harvested from C57BL/6 9, 20- 
25 g in weight, 4 days after intraperitoneal injection of 0.75 ml of thioglycollate medium, as 
described previously (21). 

Myeloma Proteins. The following myeloma proteins of different subclasses were used: MOPC- 
21, IgG1; LPC-1 and UPC-10, IgG2a; and MPC-11, IgG2b. All myeloma proteins used have K-light 
chains and react with rabbit anti-K antiserum. The corresponding tumors were obtained from Dr. 
Michael Potter, National Cancer Institute, Bethesda, Md., or from Litton Bionetics, Inc., Silver 
Spring, Md., and were passaged as described previously (8). Myeloma proteins were purified by 
ion exchange chromatography and iodinated using chloramine-T as described previously (8, 22). 

Selection of Variants. Variant clones were selected using a complement (C')-dependent selec- 
tion protocol. Cloned P388D~ cells (5 x 106 cells/100-mm dish) were incubated at room temperature 
for 15 min with a 1:1 mixture of phosphate-buffered saline containing 1 mg/ml of bovine serum 
albumin (PBS-BSA; 0.137 M NaC1, 3mM KC1, 16 mM Na2HPO,, and 2 mM KH=PO4) and L-15 
medium, and a final concentration of 15 gg/ml of LPC-1 mouse myeloma protein. After addition of 
rabbit anti-K (10 p.g]ml) and rabbit C' (20% vol/vol), the dishes were placed at 37°C for 45 min, 
washed once with Hanks' balanced salt solution (HBSS), and refed with medium. The titer of the 
rabbit anti-K IgG, determined by quantitative precipitin curve, was 1 mg/ml. Rabbit C' was 
sterilized by ultrafiltration through a 0.45 ~m Millipore filter; antibody was sterilized by UV 
irradiation. The selection protocol was repeated on successive days, the cells were allowed to grow 
for 1-2 wk, and the selection protocol was repeated as before. Surviving colonies were inspected 
and colonies showing minimal cytotoxicity were isolated using 4-mm stainless steel cloning wells. 
Lines thus isolated were then cloned. 

Preparation of Dinitrophenyl (DNP)- and Trinitrophenyl (TNP)-Substituted Proteins. TNP- 
and DNP-substituted proteins were prepared by reacting the protein dissolved in 4% potassium 
carbonate with picryl sulfonic acid or 2-4 dinitrobenzene sulfonic acid, except when a low degree of 
DNP substitution was desired, in which case 0.25% K~CO3 buffer (pH 10.2) was used. The extent of 
substitution was calculated from the molar extinction coefficients of ~-TNP-L-lysine at 348 nm 
(15,400) and ~-DNP-L-lysine at 360 nm (17,530) (23). The concentration of substituted DNP-BSA 
was calculated as follows: BSA(mg/ml) = (A280nm-0.33 A360nm)/(0.7). 

Isolation of Rabbit Anti-DNP Antibody. The method used is a modification of a method 
developed by Eisen et al. (24). A TNP-BSA immunoabserbant was prepared by coupling 5 mg of 
TNP~BSA/g of Sepharose 4-B using CNBr activation as described by Cuatrecasas (25). Hyperim- 
mune serum (20 ml) from a rabbit repeatedly immunized intradermally with DNP-keyhole limpet 
hemocyanin (KLH) in complete Freund's adjuvant was diluted 1:2 with 0.1 M Tris-HC1, pH 7.8, 
and passed over a 10 ml column of TNP16BSA-Sepharose 4-B. The column was washed with 0.1 M 
Tris-HC1, and bound protein was then eluted with 0.1 M dinitrophenol in 0.1 Tris-HC1, pH 7.8. 
Most of the dinitrophenol was removed from pooled fractions by chromatography on Sephadex 
G-25 using 0.15 M NaC1, 0.01 M Tris-HC1, pH 8.1, as eluant. Remaining dinitrophenol (1.3 tool/ 
mol IgG) was removed by passing the protein in the same Tris-saline buffer through a Dowex-1 
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column (Dowex-1 X-8, 100-200 mesh, CI form, 2 ml bed; Dow Chemical Co., Midland, Mich.) at 
56°C. The yield was 66 mg protein and the molar ratio of dinitrophenol:IgG was less than 0.1. The 
antibody was of high affinity; DNP-e-amino caproate, a good ligand, bound so tightly that it 
could not be removed by dialysis, chromatography on Sephadex, or chromatography on Dowex-1 at 
65°C. 

Preparation of F(ab) and F(ab')2 Fragments. The F(ab')2 fragment was prepared from rabbit 
anti-DNP IgG by digestion with pepsin (26). The contamination of the F(ab')2 by native IgG was 
judged to be less than 5% by electrophoresis of ~25I-F(ab')2 in a 10% sodium dodecyl sulfate- 
polyacrylamide gel. Agglutination of TNP-sheep erythrocytes (SRBC) by the F(ab')2 and native 
anti-DNP Ig gave end points of 20 ~g/ml and 30 ~g/ml, respectively. The F(ab) fragment from the 
myeloma protein LPC-1 was prepared by papain digestion as described previously (8). 

Cytotoxicity Assays. Cytotoxicity was determined by the release of ~2sI-iododeoxyuridine 
(~25IUDR) from labeled cells (27, 28). Cells (3 x 105) in 16-mm wells were labeled by exposure to 1-2 
~Ci of ~251UDR in 0.5 ml of RPMI-1640 containing 10% HIFCS for 2 h at 37°C, washed, and 
incubated for 1-2 h in MEM before use in cytotoxicity assays. After the experiment the supernate 
was reserved and the cells were treated for 30 rain at 37°C with 0.25% tissue culture trypsin (0.5 
ml) to lyse damaged cells. The combined first supernate and the trypsin was then assayed for 
radioactivity. Radioactivity remaining in viable cells was assayed by wiping the wells with cotton 
swabs. The cytotoxicity was calculated as follows: cytotoxicity = (% experimental release - % 
spontaneous release)/(100 - % spontaneous release). All experiments were done in duplicate and 
agreed within 10%. Spontaneous release varied from 5 to 20%, but was consistent in any one 
experiment. 

Binding Assays. Assays of the binding of LPC-1 were done as described (8), using a constant 
input of ~25I-LPC-1 and varying the amount of unlabeled LPC-1. Assays for binding of the rabbit 
anti-DNP DNP-BSA complexes differed in that increasing amounts of preformed radioactive 
complexes of constant specific activity were used. Cultures were incubated for I h at 4°C and for 30 
rain at 37°C, the supernate was removed, and the trays were dipped into PBS at 4°C to remove 
unbound complexes. IgG bound to the cells was released by treatment with tissue culture trypsin 
at 37°C for 30 rain. The binding of the complexes to NIH 3T3 cells was used to estimate the 
nonspecific binding. In some experiments cells were trypsinized before binding studies with i rag/ 
ml diphenyl carbamyl chloride-treated trypsin in PBS containing 0.1% glucose for 15 rain at 
37°C. After aspiration of the trypsin, cells were then washed in MEM containing 10% HIFCS 
before the binding assays were performed. All assays were in duplicate and variation from the 
mean usually did not exceed 10%. 

Immunofluorescence. Goat anti-mouse IgG and goat anti-rabbit IgG were labeled with fluores- 
cein isothiocyanate (FITC). The goat anti-rabbit IgG was first passed over a small IgG2a- 
Sepharose 4-B column to remove any cross-reacting anti-mouse IgG antibody. The 280 nm/495 nm 
absorption ratio of the  conjugates was 3.0. 

Cells seeded on 12-ram glass cover slips were incubated at  37°C for 45 rain in a 1:1 mixture  of 
PBS-BSA:L-15 containing ei ther  15/~g/ml of LPC-1 or 15 ~g/ml of LPC-1 and 10 ~g/ml of rabbi t  
anti-~. The cover slips were washed in PBS and stained at  4°C for 1 h with 120 /~g/ml of e i ther  
FITC-goat ant i - rabbi t  or FITC-goat anti-mouse IgG in 1:1 PBS-BSA:L-15. The cover slips were 
again washed, fixed at  room tempera ture  for 30 rain in 3.5% formaldehyde in PBS, and mounted in 
PBS containing 30% (vol/vol) glycerol and 15% (wt/vol) Gelvatol 20/30. Specimens were viewed 
using a 63 x oil immersion lens on a Zeiss microscope (PM II; Carl  Zeiss, Inc., New York) equipped 
with epifiuorescence optics. Photographs (30-s exposures) were t aken  on High Speed Ektachrome 
and processed by Kodak (Eastman Kodak Co., Rochester, N. Y.) to raise the  ASA to 400. The slides 
were copied onto Super XX pan 4142 film using a green fil ter to reduce yellow-orange lysosomal 
autofluorescence. 

Preparation of SRBC. Myeloma proteins were coupled to SRBC using glutaraldehyde (29). 
SRBC derivatized with TNP were prepared as described by Rit tenberg and Pra t t  (30). To prepare 
IgG-coated TNP-SRBC, 5 × 108 TNP-SRBC were added to 10 ml of 1:1 mixture of PBS-BSA:L-15 
containing 2.8 ~g rabbi t  ant i -DNP IgG, incubated at  room tempera ture  for 30 min, washed, and 
resuspended in PBS-BSA:L-15. 

Preparation of Protein-Coated Sephadex G-25. Superfine Sephadex G-25 (10-40/~m diameter) 
was activated with CNBr (25), and i g portions (wet weight) of activated Sephadex were added to 
4 ml of PBS containing 1 mg/ml of either LPC-1, rabbit anti-DNP IgG, DNP~o.sBSA, or BSA and 
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the mixture stirred overnight. The BSA- and DNP-BSA-coated beads were incubated at room 
temperature with 1 mg/ml of rabbit anti-DNP IgG, and then washed repeatedly by centrifugation. 
The amount of IgG bound per gram of Sephadex was determined from the specific activity of the 
IgG used in the initial incubations and was as follows: LPC-1 Sephadex, 900 ~g; rabbit anti-DNP- 
Sephadex, 440 /~g: DNPlo.gBSA-Sephadex incubated with anti-DNP IgG, 180 ~g; and BSA- 
Sephadex incubated with anti-DNP IgG, 3/~g. 

Reagents were obtained from the following sources: MEM (K. C. Biological Inc., Lenexa, 
Kans.); penicillin, streptomycin, and L-15 medium (Grand Island Biological Co., Grand Island, N. 
Y.); fetal calf serum (Flow Laboratories, Inc., Rockville, Md.); 1-300 trypsin (ICN Nutritional 
Biochemicals Div., International Chemical & Nuclear Corp., Cleveland, Ohio); 16-mm well tissue 
culture trays and 96-well cloning trays (Linbro Scientific Co., New Haven, Conn.); C57BL/6J mice 
(The Jackson Laboratory, Bar Harbor, Maine); rabbit anti-mouse kappa IgG, goat anti-rabbit IgG, 
and goat anti-mouse IgG (Gateway Immunosera Co., Cahokia, Ill.); Gelvato120/30 (Monsanto Co., 
St. Louis, Mo.); FITC, crystalline DCC-treated trypsin, twice crystallized papain, and twice 
crystallized pepsin (Sigma Chemical Co., St. Louis, Mo.); KLH (Schwarz/Mann Div., Becton, 
Dickinson & Co., Orangeburg, N. Y.), and [12SI]sodium iodide, carrier free, and [5- 
l~sI]iododeoxyuridine, >2,000 Ci/nmol (New England Nuclear, Boston, Mass.). Rabbit C' was from 
freshly prepared rabbit serum and was stored frozen at -70°C. 

R esu l t s  
Selection of Variants. Variants with altered binding properties for IgG were 

selected by treating cells with rabbit C' after incubation with soluble complexes 
of an IgG2a myeloma protein, LPC-1, and rabbit anti-K. IgG2a binds tightly 
with a Km of 7/~g/ml at 37°C to mouse macrophages (8), and the concentration of 
IgG2a used in the selection protocol was 15 ~g/ml. At this concentration of 
IgG2a there was maximum cytotoxicity when 10 /~g/ml of rabbit anti-K was 
added. When 20% rabbit C' was used, 98-99% of the initial cells were killed. The 
specificity of the selection (Table I) shows cytotoxicity obtained with various 
myeloma proteins and rabbit anti-K in the presence of 5% rabbit C'. Only the 
IgG2a myeloma protein LPC-1 and, to a lesser extent, the IgG2b myeloma 
protein MPC-11, which is also cytophilic (7, 9), kill cells in the presence of rabbit 
anti-K and C'. 

Variant lines were isolated from 5 to 10 × 106 initial cells using four cycles of 
selection as described in the Materials and Methods. The frequency of resistant 
clones varied from 10 -4 to 10 -7 for different subclones of P388D1. When retested, 
the isolated clones exhibited varying degrees of resistance to the selection used. 
One clone, 3.42A, which grew particularly well in culture was selected for 
further study. This clone differs from the parent line, 3.4, in that the cells 
contain distinctive large phase-lucent granules in the perinuclear region, and 
the cells do not adhere as tightly to tissue culture dishes. Fig. 1 shows the 
sensitivity of 3.42A and of the parent, 3.4, to preformed LPC-1 rabbit anti-K 
complexes and to a rabbit anti-P388D1 macrophage plasma membrane antise- 
rum. The variant and parent are equally sensitive to anti-P388D1 plasma 
membrane antiserum and C', so the resistance of the variant to rabbit C' and 
IgG2a-rabbit anti-K complexes is not due to resistance to the C'-mediated lysis 
per se. 

Immunofluorescence. C' fixation leading to cell lysis in the selection proce- 
dure is presumably mediated by the rabbit antibody. Because two IgG molecules 
have to be adjacent to fix C' (31), there can be a disproportionate change in 
cytotoxicity with small differences in the amount of rabbit IgG bound (32). The 
immunofluorescence experiment was designed to examine the amount of rabbit 
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TABLE I 
Cytotoxicity to P388D~ Cells of Myeloma Protein Rabbit "Anti-K Complexes 

and Rabbit C' 

Proteins Specific release 

Rabbit C' 
Rabbit anti-K, 10 pg/ml 
LPC-1 (IgG2a), 15/~g/ml 
LPC-1 Fab, 15 ftg/ml, + rabbit anti-K, 10/~g/ml 
LPC-1, 15/~g/ml, + rabbit anti-K, 10/zg/ml 
MPC-11 (IgG2b), 15 pg/rnl, + rabbit anti-K, 10 ~g/ml 
MOPC-21a (IgG1), 15 ~g/rnl, + rabbit anti-K, 10 ~g/ml 

% 

0 
2 

- 2  
0 

76 
34 
3 

P388D~ cells (3 × 105) in 16-ram wells were labeled with ~25IUDR, washed with HBSS, 
and incubated with proteins in 1:1 PBS-BSA:L-15 containing 5% rabbit C' at 37°C for 
45 min. Cytotexicity was calculated as described in the Materials and Methods. 
Spontaneous release was 20%. 

IgG bound to the parent and variant clones under the conditions of the selection 
procedure. Incubated with complexes and stained with FITC-goat anti-rabbit 
IgG, the 3.42A cells showed weak fluorescence compared to the parent line 
(Figs. 2 A and B). When the two lines were stained with FITC-goat anti-mouse 
IgG after incubation with monomeric IgG2a, there were bright fluorescent 
patches on both cells (Figs. 2 C and D). This suggested that the resistance of the 
variant to rabbit anti-K-LPC-1 complexes was due to reduced binding of rabbit 
IgG and not to absence of the receptor for IgG2a. 

Binding of Mouse IgG2a and Rabbit Anti-DNP IgG. The binding of mono- 
meric IgG2a and rabbit IgG to the parent and variant lines was then studied in 
more detail. Monomeric rabbit IgG binds to mouse macrophages very weakly, 
exceeding the background binding to 3T3 cells by two fold at best. In order to do 
experiments on the binding of antigen-antibody complexes, rabbit anti-DNP 
antibody was isolated by affinity chromatography. The binding of labeled anti- 
DNP IgG was studied with varying ratios of DNP-BSA to anti-DNP IgG (Fig. 3). 
The optimum molar ratio of DNP-BSA:IgG for binding was 1.3 for DNP2.4BSA 
and 0.38 for DNPI0.~BSA. There was less binding of the anti-DNP IgG in both 
antibody and antigen excess. The amount of rabbit IgG bound to the 3.42A 
variant was less in all cases than that bound to the parent line 3.4 (Fig. 3). 

Complexes of rabbit anti-DNP with DNP2.4BSA and DNP10.gBSA were soluble 
over a wide range of antigen concentrations, even when IgG was present at a 
concentration of 1 mg/ml. To confirm that the complexes were binding via the Fc 
domain the F(ab')2 fragment of the rabbit anti-DNP IgG was prepared and 
iodinated. The F(ab')~ had the same hemagglutination titer as the native IgG, 
but complexes of DNP~o.gBSA with the F(ab')2 fragment did not bind to either 
cell (Fig. 3 B). 

The binding of monomeric IgG2a and of complexes of rabbit anti-DNP IgG 
DNP-BSA (formed with DNP2.4BSA or DNPlo.9BSA at the optimum ratio of 
antigen to antibody for binding) was studied with the parent line 3.4 and the 
variant 3.42A. The binding data were corrected for a nonspecific component by 
subtraction of values obtained for NIH-3T3 cells (usually 0.1-0.2% of input 
radioactivity), and the data were plotted according to r/c = K~n - K~r (Scat- 
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FIG. 1, Cytotoxicity of IgG2a rabbit anti-K complexes or rabbit anti-C57BL/6 thioglycol- 
late-induced macrophage plasma membrane antiserum and rabbit C'. 3.4 or 3.42A ceils 
were labeled with I~sIUDR as described in the Materials and Methods. The cells were 
incubated at 37°C for 45 min with rabbit C' as indicated and either LPC-1 rabbit anti-K 
complexes (15 ~g/ml LPC-1, 10 ~g/ml rabbit anti-g) preformed by incubation at 4°C for 20 
rain, or at 1:800 dilution of the rabbit anti-macrophage plasma membrane antiserum in 1:1 
PBS-BSA:L-15. Spontaneous release for both 3.4 and 3.42A was 20%. (O - O), 3.42A, LPC-1 
rabbit anti-K complexes; (©--©), 3.42A, rabbit anti-macrophage plasma membrane; 
(A---A), 3.4, LPC-I rabbit anti-K complexes; and (A---A), 3.4, rabbit anti-macrophage 
plasma membrane. 

chard equation), where Ka is the equilibrium constant (in M-'), r is micrograms 
of IgG bound per well, c is unbound Ig in M, and n is the limiting value for r as c 
becomes very large. Fig. 4 shows the Scatchard plot for the binding of IgG2a to 
the parent and variant lines; the Ka for both was the same (Ka = 1.1 × 108 M -1) 
and the number of binding sites per cell was comparable (Table II). A large num- 
ber of independently derived variant clones of P388D1 were tested for binding of 
IgG2a and all of them bound IgG2a with the same affinity. 

The binding at 4°C and 37°C ofDNP2.4BSA anti-DNP IgG complexes formed at 
a molar ratio of DNP2.4BSA:IgG of 1.3 (Fig. 3 A) is shown in Fig. 5; Ka values 
and numbers of sites per cell are tabulated for DNP2.4BSA and DNPlo.gBSA 
complexes in Table II. Comparison of the Scatchard plots for binding of the 
rabbit antigen-antibody complexes to 3.4 and 3.42A lines showed striking differ- 
ences. The number of high affinity sites in the variant line was 10% that of the 
parent. Not only the number of sites per cell, but  also the affinity of those 
binding sites was altered in the variant. Examination of data from comparable 
experiments shows that the Ka of the rabbit IgG complexes for the variant was 
always threefold higher than the parent. At both 4°C and 37°C there was a 
discontinuity in slope of the data plotted for the 3.42A line (Fig. 5), suggesting 
that there were two binding sites, high and low affinity, which are tabulated as 
Kal and Ka2 in Table II. The binding to the low affinity site might have been 
masked in the data for the parent line, 3.4, because of the large number of high 
affinity binding sites. Though both the number of sites per cell and the Ka of the 
high affinity site for rabbit IgG in antigen-antibody complexes were altered in 
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Fro. 2. Immunofluorescence to demonstrate binding ofrabbit antigen-antibody complexes 
and monomeric mouse IgG2a to 3.4 and 3.42A cells. (A) 3.4 cells and (B) 3.42A cells 
incubated for 45 rain at 37°C with IgG2a rabbit anti-K complexes, stained with FITC-goat 
anti-rabbit IgG: (C) 3.4 cells, and (D) 3.42A cells incubated with LPC-1 stained with FITC- 
goat anti-mouse IgG. 

the var iant ,  the binding of monomeric  IgG2a was unchanged  in both respects 
(Fig. 3 and Table II). 

The size of the complexes formed with DNP10.~BSA and DNP2.4BSA as anti-  
gens was probably different since the op t imum ratios of an t igen  to ant ibody for 
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Fro. 3. Binding to 3.4 and 3.42A cells of rabbbi t  ant i -DNP IgG in relat ion to DNP-BSA. 
Cells (3.5 × 10 s) were plated in 16-mm wells. Complexes were preincubated for 2 h at  4°C 
and contained DNP2.4BSA (A) or DNP~o.~BSA (B) as noted, 10 ~g/ml of rabbi t  ant i -DNP 
IgG, and 125I-rabbit ant i -DNP (40 ng/ml,  5 × l0 s cpm/ng) in 1:1 PBS-BSA:L-15. (© - ©), 3.4 
cells; ( e - e ) ,  3.42A cells; (× - ×), 3.4 cells, rabbi t  ant i -DNP F(ab')2 fragment.  

binding were different, 0.38 and 1.3, respectively (Fig. 3). Reflecting these 
differences, the Ka values of the DNPlo.~BSA complexes were higher than the 
corresponding values of the DNP2.4BSA complexes. However, since the number 
of sites per cell binding the labeled rabbit IgG determined with complexes of 
either size agreed quite well, these values may be valid. The binding of the 
complexes appears to be an exothermic reaction, the Ka values being higher at 
4°C than at 37°C. However, these differences may reflect changes in aggregate 
size with temperature and should be interpreted cautiously. 

Trypsin Sensitivity of Fc Receptors. The receptor for mouse IgG2a was 
previously shown to be sensitive to treatment of the macrophages with trypsin 
(8, 18). The binding of rabbit anti-DNP DNPlo.gBSA complexes to both the 3.4 
line and thioglycollate-stimulated C57BL/6 macrophages was examined with 
respect to its sensitivity to the action of trypsin. The results showed almost total 
inhibition of binding of IgG2a in both cell types (Fig. 6 A) but no inhibition of 
binding of the antigen-antibody complexes to either cell (Fig. 6 B). The thiogly- 
collate-stimulated macrophages have about threefold the number of Fc receptors 
per cell for monomeric IgG2a as the P388D~ line, and an equal number of 
receptors for rabbit IgG in antigen-antibody complexes. 

Rosette Formation with SRBC. The difference in trypsin sensitivity of the Fc 
receptors for IgG2a and rabbit antigen-antibody complexes were further investi- 
gated by studying rosette formation with either SRBC to which IgG was fixed by 
glutaraldehyde, or SRBC which were derivatized lightly with TNP and then 
incubated with a nonhemagglutinating concentration of rabbit anti-DNP IgG. 
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FIG. 4. The binding of LPC-1 to 3.4 and 3.42A cells. 3.4 cells (3.5 x l0 s) or 3.42A cells (3.1 
× 105) in 16-ram wells were incubated at 4°C for 60 min with a constant amount of ~25I-LPC-1 
(40 ng/ml, 5 × 103 cpm/ng) and varying amounts of unlabeled LPC-1. r, micrograms of LPC- 
1 bound per well; c, unbound concentration of LPC-1 in moles per liter. (©-©), 3.4 cells; 
and ( a - e ) ,  3.42A cells. 

T r e a t m e n t  of the 3.4 line with t rypsin  (Fig. 7 B) abolished roset te  format ion with 
IgG2a-coated SRBC as seen in Fig. 7 A. The va r ian t  line, 3.42A (Fig. 7 C) formed 
roset tes  with IgG2a-coated SRBC as well as the  paren t  line. Binding was specific 
since SRBC coated with a noncytophil ic IgG1 myeloma protein,  MOPC-21a (Fig. 
7 D), or the F(ab) f r agment  of LPC-1, an IgG2a myeloma prote in  (not shown), 
did not  form rosettes.  

TNP-coated SRBC incubated with rabbi t  an t i -DNP IgG and then  washed 
formed dense roset tes  with the  3.4 line (Fig. 7 E), and, unl ike  the observat ion 
with IgG2a-coated SRBC, roset te  format ion was unaffected by t rypsinizat ion 
(Fig. 7 F). Al though there  were some roset tes on the va r ian t  l ine 3.42A (Fig. 
7 G), the number  of SRBC per cell was much  less t han  the n u m b er  on the  paren t  
line 3 . 4 -  the outl ines of the cell bodies and pseudopodia were a lways visible and 
m a n y  cells did not form roset tes  a t  all. Trypsinizat ion did not affect format ion of 
roset tes  with IgG-coated TNP-SRBC on the  3.42A line (not shown). Controls of 
TNP-SRBC and TNP-SRBC coated with the  F(ab')2 f r agment  of the rabbi t  anti-  
DNP IgG did not form rosettes.  
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TABLE II  

Association Constants and Number of Sites Per Cell for Binding of LPC-I and Rabbit 
Anti-DNP DNP-BSA Complexes to 3.4 and 3.42A Cells 

Cell type  

Protein Tempera- 3.4 3.42A 
ture (°C) 

Ka Sites per cell Ka Sites per cell 
(M-' x 10 -7) (× I0 -5) (M-' x 10 -7) (x i0 -5) 

LPC-1 4 11 -+ 1.0 2.1 ± 0.4 11 ± 1 1.7 ± 0.4 
Rabb i t  a n t i - D N P  4 1.7 ± 0.2 8.7 ± 2 Ka ,  = 6.0 ± 0.8 1.1 ± 0.2 

DNP2.4 BSA Ka2 = 0.14 +- 0.02 7.6 ± 1 
Rabb i t  a n t i - D N P  4 3,3 ± 0.2 8.6 ± 2 9.5 ± 0.9 1.0 ± 0.2 

DNP~o,9 BSA 

Rabbit anti-DNP 37 0.72 _+ 0.06 4.6 ± 1 Ka, = 2.1 ± 0.8 0.38 ± 0.07 

DNP2.4 BSA Ka~ = 0.12 -+ 0.04 2.8 ± 0.6 

Rabbit anti-DNP 37 2.5 ± 0,2 4.9 ± I 6.0 +- 1 0.68 ± 0.2 

DNP,o.9 BSA 

A s s a y s  were  pe r fo rmed  as  de ta i l ed  in Figs.  4 a n d  5. DNPto.9 BSA rabb i t  a n t i - D N P  complexes  were 
formed a t  an  a n t i g e n  to an t ibody  ra t io  of 0.38. 
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Fro. 5. T he  b i n d i n g  of DNP2.4BSA rabb i t  a n t i - D N P  complexes  to 3.4 and  3.42A cells. 3.4 
and  3.42A cells (4 × 105) and  NIH-3T3 cells (4 × 104) in 16-mm wel ls  were i ncuba t ed  a t  4°C 
(A) or 37°C (B) w i t h  i n c r e a s i n g  a m o u n t s  of  DNP2.4BSA rabb i t  a n t i - D N P  complexes  formed 
a t  an  a n t i g e n - a n t i b o d y  ra t io  of  1.3. The  specific ac t iv i ty  of  t he  125I-rabbit a n t i - D N P  IgG was  
4 x 105 cpm//~g. Da t a  were  corrected for b a c k g r o u n d  b i n d i n g  to NIH-3T3 cells. For  r a n d  c 
see Fig. 4. ( © - © ) ,  3.4 cells; a n d  ( Q - O ) ,  3.42A cells. 

The TNP-SRBC complexed with rabbit anti-DNP IgG bound to a trypsin- 
resistant Fc receptor, which I assumed would also be the case for rabbit IgG in 
the absence of antigen. However, SRBC coupled with rabbit IgG using glutaral- 
dehyde did not form rosettes with trypsinized 3.4 cells. 

Rosette Formation with Sephadex G-25 Beads. To test further the hypothe- 
sis that formation of immune complexes by rabbit IgG determines the receptor 
to which that IgG can bind, another method of coupling IgG to particles besides 
glutaraldehyde fixation was sought. Superfine Sephadex G-25 beads (10-40/~m) 
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FIG. 6. Sensitivity to trypsinization of binding of IgG2a and rabbit antigen-antibody 
complexes to P388D~ cells and thioglycollate-induced macrophages. 3.4 cells (5 × 105), 
thioglycollate-induced C57BL/6 macrophages (2.1 x 105) and NIH-3T3 cells (3 × 104) in 16- 
ram wells were incubated either before or after trypsin treatment with 125I-LPC-1 (A) as 
described in Fig. 4, or with DNP~o.gBSA lz~I-rabbit anti-DNP complexes (B) formed at an 
antigen to antibody ratio of 0.38, as described in Fig. 5. ( O -  O), 3.4 cells; ( t -  O), trypsin- 
treated 3.4 cells; (A---A), thioglycollate-induced macrophages; and (A---&), trypsin-treated 
thiglycollate-induced macrophages. 

were not bound rapidly by macrophages in serum-free medium, and could be 
readily activated using cyanogen bromide. The coupling was performed in PBS 
at pH 7.4 which does not diminish the antigen-binding capacity of the bound IgG 
(25). 

Rosettes formed with Sephadex G-25 beads are shown in Fig. 8. The 
DNP10.9BSA-Sephadex to which rabbit anti-DNP IgG was bound formed rosettes 
with both normal 3.4 (Fig. 8 A), and trypsinized cells (Fig. 8 B). Sephadex beads 
to which the same anti-DNP IgG was coupled with cyanogen bromide (no 
antigen present) bound only to normal 3.4 cells (Fig. 8D) and not at all to 
trypsinized cells (Fig. 8 E). The same binding pattern was seen using Sephadex 
to which IgG2a was coupled with cyanogen bromide (Figs. 8 G and H). Mono- 
meric rabbit IgG bound weakly to mouse macrophages but when presented in 
multimeric form the IgG coupled to the Sephadex beads promoted avid binding. 
It is thus particularly striking that such Sephadex beads failed to bind to 
trypsinized P388D~ cells. 

Discussion 
The presence of Fc receptors on macrophages, and the role of the Fc receptor in 

the recognition and ingestion of antibody-coated particles (33-35) have been well 
established. The results described in this paper demonstrate that the P388D1 
macrophage cell line and normal mouse peritoneal macrophages have two Fc 
receptors which differ in the Ig's they bind and in their sensitivity to trypsiniza- 
tion. 

Genetic evidence for two Fc receptors comes from the isolation of a stable 
variant of a clone of the P388D1 line. The binding of monomeric IgG2a and rabbit 
IgG in antigen-antibody complexes was examined by immunofluorescent tech- 
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FIG. 7. SRBC rosettes on 3.4, trypsin-treated 3.4, and 3.42A cells. Cells (2 × 105) plated on 
60-mm dishes were trypsinized, SRBC suspended in 1:1 PBS-BSA:L-15 (2 ml, 5 x 107 SRBC/ 
ml) were added, and the dishes were incubated at 37°C for 15 rain with intermittent rocking. 
The nonadherent SRBC were removed by repeated dipping of the dishes in PBS and the cells 
were fixed with 1% glutaraldehyde in PBS. (A) 3.4 cells, UPC-10-coated SRBC; (B) trypsin- 
treated 3.4 cells, UPC-10-coated SRBC; (C) 3.42A cells, UPC-10-coated SRBC; (D) 3.4 cells, 
MOPC-21a-coated SRBC; (E) 3.4 cells, anti-DNP IgG°coated TNP-SRBC; (F) trypsin-treated 
3.4 cells, anti-DNP IgG-coated TNP°SRBC: (G) 3.42A cells, anti-DNP-coated TNP-SRBC; 
and (H) 3.4 cells, TNP-SRBC. 
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FIG. 8. Binding of protein-coated Sephadex G-25 beads to 3.4 and trypsinized 3.4 cells. 
Sephadex G-25 beads coated with proteins were resuspended at a concentration of 0.03 g wet 
weight of Sephadex/ml in 1:1 PBS-BSA:L-15 and 2 ml added to cells (5 x 105) in 60-ram 
dishes. After incubation at 37°C for 15 rain with intermittent rocking the nonadherent beads 
were washed in PBS, and the cells were fixed as before. (A) 3.4 cells, DNPlo.gBSA-Sephadex 
incubated with rabbit anti-DNP IgG; (B) trypsin-treated 3.4 cells, DNP1o.gBSA Sephadex 
incubated with rabbit anti-DNP IgG; (C) 3.4 cells, DNP~o.~BSA Sephadex; (D) 3.4 cells, 
rabbit anti-DNP IgG Sephadex; (E) trypsin-treated 3.4 cells, rabbit anti-DNP IgG Sepha- 
dex: (F) 3.4 cells, BSA Sephadex incubated with rabbit anti-DNP IgG; (G) 3.4 cells, LPC-1 
Sephadex; (H) trypsin-treated 3.4 cells, LPC-1 Sephadex; and (I) 3.4 cells, BSA Sephadex. 
The bar is 200 ~m. 

niques and by direct binding studies with iodinated IgG, and in both cases there 
were striking differences between the parent and variant clones. However, the 
binding of IgG2a to the two cell lines was comparable. In these experiments only 
surface IgG released by treatment with trypsin was measured. There may have 
been some phagocytosis of antigen-antibody complexes at 37°C, since the num- 
ber of sites at saturation was somewhat less than the value determined at 4°C, 
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but the number of sites determined using complexes formed with DNP2.4BSA 
and DNPlo.gBSA agree. 

Receptors binding IgG2a and rabbit IgG in complexes could also be differen- 
tiated on the basis of trypsin sensitivity. The receptor that bound mouse IgG2a, 
whether studied with monomeric IgG2a, SRBC coupled with IgG2a using glu- 
taraldehyde, or Sephadex G25 beads coupled with IgG2a via cyanogen bromide 
activation, was sensitive to trypsinization. In agreement with other studies (5, 
36), the receptor that bound rabbit antibody-antigen complexes was trypsin 
resistant. Walker (9) reported that binding of both IgG2a and IgG2b was 
trypsin-resistant in the SV-40-derived macrophage line IC-21. Since similar 
results, with respect to trypsin sensitivity of the IgG2a Fc receptor were 
obtained with P388D1 and thioglycollate-stimulated macrophages, the IC-21 line 
may be less "normal" in this respect. 

The presence of multiple Fc receptors on mouse macrophages has been re- 
ported previously (16-18). Cytophilic antibody in "early" mouse antisera binds to 
a trypsin-sensitive Fc receptor, whereas hyperimmune antibody binds to a 
trypsin-resistant receptor. Walker (9) suggested there were separate receptors 
for mouse IgG2a and IgG2b because aggregated IgG2b binding could not be 
inhibited by monomeric IgG2a and vice versa, and IgG2b could not be shown to 
bind as a monomer. We found that at least one IgG2b myeloma protein did bind 
as a monomer, albeit with a Ka at 4°C of 7 x 10 s M -1, 1/20 the Ka of IgG2a at 4°C 
(8). 

Of particular interest is the observation that, unlike rabbit IgG in antigen- 
antibody complexes, uncomplexed rabbit IgG binds to a trypsin-sensitive Fc 
receptor. Sephadex beads coated with rabbit anti-DNP IgG using cyanogen 
bromide activation did not bind to trypsinized cells but DNP-BSA Sephadex 
beads to which the same anti-DNP IgG was bound formed rosettes regardless of 
trypsin treatment (Fig. 8). Similar results were found with SRBC coated with 
rabbit IgG using glutaraldehyde and TNP-SRBC coated with anti-DNP IgG 
(Fig. 7). These results could be due to alteration in conformation of the Fc 
domain upon binding of antigen (37, 38), or to fundamental differences in the 
"multimeric" presentation of the Fc domains in antigen-antibody complexes 
compared to Sephadex beads with antibody coupled to them using cyanogen 
bromide. 

The demonstration of two classes of receptors on mouse cells raises the issue of 
whether there might also be multiple receptors on macrophages of other species, 
which have been overlooked because of lack of differential sensitivity to trypsin. 
If different classes of macrophages expressed different densities of one or an- 
other Fc receptor on their surfaces, this might lead to differences in function. 
Indeed, there have been reports of heterogeneity in rosette formation by guinea 
pig (39) and rabbit macrophages (40). The physiological function of the multiple 
subclasses of mouse IgG is obscure. Mouse IgG1 antibodies suppress an immune 
response to SRBC, while IgG2 has the opposite feedback effect (41), but the locus 
of action of these different antibodies is unknown. The subclass of mouse IgG 
which is specific for each receptor and the effect of formation of antigen-antibody 
complexes in each case remain to be investigated. The selection of suitable 
variant macrophage lines should prove useful in this respect, and might also 
help in studies of macrophage function. 
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S u m m a r y  

A stable variant  of a clone of the P388D1 macrophage line was isolated using 
four cycles of t rea tment  with mouse IgG2a-rabbit anti-K complexes and rabbit 
complement. The var iant  had the same Ka and about the same number of sites 
per cell for IgG2a as the parent  line. However, the variant  had 10% as many 
binding sites for rabbit IgG in soluble antigen-antibody complexes, and the 
affinity of binding was threefold higher. This change in binding of complexes to 
cells of a cloned line without alteration of IgG2a binding provides evidence for 
the presence of two distinct Fc receptors. 

The two receptors could also be distinguished on the P388D1 line and on 
thioglycollate-induced mouse peritoneal macrophages by differential sensitivity 
to trypsinization. The receptor that  binds monomeric IgG2a, sheep erythrocytes 
(SRBC) covalently bound with IgG2a or rabbit IgG using glutaraldehyde, and 
Sephadex beads coupled with IgG2a or rabbit IgG using cyanogen bromide 
activation, is sensitive to trypsinization. The receptor that  binds soluble rabbit 
antibody-antigen complexes, trinitrophenyl-SRBC and dinitrophenyl(DNP)-bo- 
vine serum albumin Sephadex beads coated with rabbit anti-DNP IgG is tryp- 
sin resistant. The observation that  uncomplexed rabbit IgG does not bind to the 
trypsin-resistant receptor, whereas the same IgG bound to its antigen does, 
suggests that  conformational changes induced by the binding ofligand may be of 
consequence in macrophage function. 
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