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Abstract. Wingless is known to be required for induc-
tion of cardiac mesoderm in Drosophila, but the func-
tion of Wnt family proteins, vertebrate homologues of
wingless, in cardiac myocytes remains unknown. When
medium conditioned by HEK?293 cells overexpressing
Whnt-3a or -5a was applied to cultured neonatal cardiac
myocytes, Wnt proteins induced myocyte aggregation
in the presence of fibroblasts, concomitant with in-
creases in B-catenin and N-cadherin in the myocytes
and with E- and M-cadherins in the fibroblasts. The ag-
gregation was inhibited by anti—-N-cadherin antibody
and induced by constitutively active B-catenin, but was
unaffected by dominant negative and dominant posi-
tive T cell factor (TCF) mutants. Thus, increased stabili-
zation of complexed cadherin—3-catenin in both cell
types appears crucial for the morphological effect of

Whnt on cardiac myocytes. Furthermore, myocytes over-
expressing a dominant negative frizzled-2, but not a
dominant negative frizzled-4, failed to aggregate in re-
sponse to Wnt, indicating frizzled-2 to be the predomi-
nant receptor mediating aggregation. By contrast,
analysis of bromodeoxyuridine incorporation and tran-
scription of various cardiogenetic markers showed Wnt
to have little or no impact on cell proliferation or differ-
entiation. These findings suggest that a Wnt—frizzled-2
signaling pathway is centrally involved in the morpho-
logical arrangement of cardiac myocytes in neonatal
heart through stabilization of complexed cadherin—
B-catenin.
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Introduction

Wnt genes encode glycoproteins that, when secreted, act
as autocrine or paracrine factors (Burrus and McMahon,
1995) affecting morphogenic events during embryonic and
postembryonic development (for review see Moon et al.,
1997). In addition, their activation by mouse mammary tu-
mor virus (MMTYV) proviral DNA has implicated Wnt
genes in the ontogenesis of MMTV-induced mammary tu-
mors (for review see Nusse and Varmus, 1992). More
broadly, Wnt genes have been grouped into functional
classes based on assays performed in both Xenopus em-
bryos (Du et al., 1995) and mammalian cell lines (Wong et al.,
1994). For example, ectopic expression of Xenopus Wnt
(Xwnt)-1, -3a, -8, and -8b induces formation of a secondary
axis, whereas ectopic expression of Xwnt-5a, -4, and -11 in-
duces morphological movement during gastrulation with-
out altering cell fate (Moon et al., 1993; Cui et al., 1995;
Du et al., 1995). Mouse Wnt genes are grouped in a similar
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manner: Wnt-1, -3a, -7A, and -8 transform mammary
C57MG cells, whereas Wnt-4 and -5a lack transforming
activity (Wong et al., 1994; Shimizu et al., 1997).

The first insights into the mechanism of Wnt signal
transduction came from the discovery of several fly genes
exhibiting mutant phenotypes consistent with defects in
wingless (Wg) signaling, and from studies of vertebrate
counterparts that shed light on the biochemical relation-
ship between gene products (for review see Cadigan and
Nusse, 1997; Brown and Moon, 1998). For instance, associ-
ation of Wnt-1, the vertebrate homologue of Wg, and
members of the frizzled protein family leads to activation
of Disheveled (Dsh) protein. Activated Dsh inhibits glyco-
gen synthase kinase-3p (GSK-3B),! increasing cytosolic
B-catenin levels as a consequence of decreased GSK-3B—
mediated degradation. B-Catenin can then interact with

1Abbreviations used in this paper: BrdU, bromodeoxyuridine; CRD, cys-
teine-rich domain; ECM, extracellular matrix; EGFP, enhanced GFP;
GFP, green fluorescent protein; GPI, glycophosphatidylinositol; GSK,
glycogen synthase kinase; GST, glutathione-S-transferase; LEF, lymphoid
enhancer factor; MHC, myosin heavy chain «/f; RT, reverse transcriptase;
TCF, T cell factor.
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members of the lymphoid enhancer factor/T-cell factor
(LEF/TCF) family of architectural transcription factors
in the nucleus, inducing transcription of Wnt-responsive
genes (for reviews see Nusse 1997; Miller et al., 1999). This
type of Wnt-1 signal transduction is required for Wnt-
induced cell transformation, although alternative Wnt and
frizzled signaling pathways also have been observed re-
cently (Rocheleau et al., 1997; Slusarski et al., 1997; Strutt
etal., 1997; Sheldahl et al., 1999).

Cardiac development has been studied extensively and
found to be regulated in a highly integrated manner. In
Drosophila hearts, Wg is absolutely necessary for induc-
tion of cardiac but not visceral mesoderm; however, no
vertebrate Wnt genes have been shown to be directly in-
volved in cardiac development to date (Wu et al., 1995; for
review see Bodmer and Venkatesh, 1998). Nonetheless,
despite numerous morphological differences between ver-
tebrate and invertebrate species, many molecular mecha-
nisms orchestrating individual developmental processes
are remarkably conserved. Transcriptional analysis re-
vealed expression of MRNA encoding Wnt-5a in rat neo-
natal cardiac myocytes, and encoding frizzled-2 and friz-
zled-4 in both cardiac myocytes and fibroblasts (this
study), making it likely that Wnt genes are involved in ver-
tebrate cardiac development.

In this report, we describe the use of cultured cells iso-
lated from rat neonatal hearts as a model system to assess
the role of Wnt genes in the growth and behavior of car-
diac myocytes. When Wnt-3a and -5a, which differ in their
capacity to transform cells, were applied, both induced ag-
gregation of cardiac myocytes that was dependent on the
presence of fibroblasts, suggesting two possible effects of
Whnt proteins on fetal hearts: morphological movement
and proliferation of cardiac myocytes. By interfering with
the activity of these genes through the use of specific anti-
bodies and dominant negative constructs, we obtained evi-
dence that in both myocytes and fibroblasts Wnt-5a signal-
ing mediated by frizzled increases levels of intracellular
B-catenin, which in turn stabilizes cadherin at intercellular
junctions necessary for cell-cell adhesion. On the other
hand, proliferation and cardiomyogenesis of so-called pre-
cursor cells in neonatal hearts is unaffected. Thus, the
morphological effects of Wnt on cardiac myocytes are ap-
parently related to the enhanced homophilic adhesion me-
diated by cadherin.

Materials and Methods

Cultured Cells and Cell Lines

Rat neonatal cardiac myocytes were prepared as previously described
(Iwaki et al., 1990). In brief, the hearts were isolated from 1-d-old HLA-
Wistar rats, the ventricles were minced, and the cells were dispersed by di-
gestion with 0.1% collagenase at 37°C. The dispersed cells were resus-
pended in high glucose DME supplemented with 10% FCS and preplated
onto culture dishes for 30 min to remove fibroblasts. Nonadhesive cells
were collected, concentrated in PBS (~2 X 107/ml), and placed on the top
of a discontinuous Percoll gradient (1.060/1.086 g/ml) made up in buffer
containing 116 mM NaCl, 20 mM Hepes, 1 mM NaH,PO,, 5.5 mM glu-
cose, 5.4 mM KCI, and 0.8 mM MgSO,, (pH 7.35). Centrifugation at 400 g
for 30 min yielded myocardial cultures containing >95% myocytes, as as-
sessed by immunofluorescent assay using an anticardiac myosin heavy
chain antibody B. Fibroblasts on culture dishes were passaged, diluting them
fourfold, every four days. After three passages, resultant cultures were
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~100% fibroblasts, as assessed by immunofluorescent assay using an anti-
vimentin antibody. For 24 h before each experiment, isolated cardiac myo-
cytes (~10° cells/ml) were cultured with or without fibroblasts (~10° cells/
ml) on glass coverslips coated with poly-L-lysine, collagen, fibronectin, or
I-laminine (Sigma-Aldrich) in high glucose DME supplemented with 10%
FCS and maintained at 37°C under an atmosphere of 5% CO,/95% air.
The cultures were then washed and incubated in either conditioned me-
dium containing Wnt protein or FCS free medium.

HEK293 and C2C12 cells were grown in high glucose DME supple-
mented with 10% FCS and penicillin at 37°C under an atmosphere con-
taining 5% CO,/95% air.

Construction of cDNAs

Whnt-3a and Wnt-5a cDNAs. Full-length mouse Wnt-3a (amino acids 352;
Roelink and Nusse, 1991) and Wnt-5a cDNAs (amino acids 379; Gavin et al.,
1990) were amplified by reverse transcriptase (RT)-PCR using mRNA
isolated from mouse lungs and hearts respectively. To create c-Myc-
tagged constructs, an antisense PCR primer for the COOH-terminal do-
main was designed that deleted the endogenous stop codon and replaced
it with the c-Myc sequence. The resultant sequence at the COOH termini
of the constructs was GSEQKLISEEDL, an epitope for mouse mono-
clonal anti-c-Myc 1gG antibody (Calbiochem-Novabiochem). To create a
V5-tagged construct, an antisense PCR primer for the COOH-terminal
domain was designed that deleted the endogenous stop codon and re-
placed it with the Xbal restriction site at the 5’ end. When ligated into
pcDNAS3.1/V5-HisA expression vector (Invitrogen), the resultant se-
quence at the COOH terminus of Wnt-5a contained GKPIPNPL-
LGLDST, which was later detected using anti-V5 mouse monoclonal anti-
body (Invitrogen). After verifying the nucleotide sequences, the cDNAs
encoding c-Myc-tagged Wnt-3a and -5a were ligated into the pcDNA3
mammalian expression vector (Invitrogen).

Frizzled-2 and Frizzled-4 cDNAs and Frizzled-glycophosphatidylinositol
Chimera cDNAs. The frizzled gene family, homologues of Drosophila
gene frizzled, have been identified as the receptors for Wg and Wnt (Bha-
not et al., 1996). Full-length rat frizzled-2 cDNA (amino acids 570; Chan
et al., 1992) and mouse frizzled-4 cDNA (amino acids 537; Wang et al.,
1996) were amplified by RT-PCR using mRNA isolated from mouse
hearts. To create FLAG-tagged constructs, an antisense PCR primer for
the COOH-terminal domain was designed that deleted the endogenous
stop codon and replaced it with a FLAG sequence. The resultant se-
quence at the COOH termini of the constructs was GSDYKDDDDKN,
an epitope for mouse monoclonal anti-FLAG 1gG antibody (Eastman
Kodak Co.).

The frizzled gene sequence predicts a protein with an extracellular
NH,-terminal cysteine-rich domain (CRD) and seven transmembrane
segments. It has been proposed that the CRD constitutes all or part of the
ligand-binding domain (Wang et al., 1996), and cell-surface expression of
isolated CRD was found to confer Wnt protein binding activity (Bhanot et al.,
1996). Using the protocol described by Bhanot et al. (1996), we used PCR
to create frizzled-glycophosphatidylinositol (GPI) chimeras, composed of
the CDR (the first 372 amino acids of frizzled-2 or the first 365 amino ac-
ids of frizzled-4), a c-Myc epitope, the COOH-terminal 40 amino acids of
decay-activating factor, and a GPl-anchored protein (Caras and Weddell,
1989). After verifying the nucleotide sequences, the cDNAs encoding
FLAG-tagged frizzleds and frizzled-GPI chimeras were ligated into
pcDNAS for subsequent transfection.

N-Cadherin and Deleted Cadherin cDNAs. Cadherins are Ca?*-depen-
dent adhesion molecules, which in association with a- and B-catenin con-
stitute the major components of adherent junctions in vertebrates. Full-
length N-cadherin cDNA (amino acids 907; Tamura et al., 1998) was
amplified by RT-PCR using mRNA isolated from mouse hearts. Cadherin
is composed of an extracellular domain that contains the Ca®*-sensitive,
homophilic binding sites, a transmembrane domain, and a cytoplasmic do-
main that interacts with «- and B-catenin (for review see Nagafuchi et al.,
1993). In mammalian cells responding to Wnt-1, the increased steady-state
levels of catenins is primarily due to a selective increase in the amount of
uncomplexed, monomeric B-catenin (Papkoff et al., 1996). To detect un-
complexed B-catenin, we used PCR to create a construct consisting of the
last 158 amino acids of N-cadherin, including the entire cytoplasmic do-
main, fused with GST epitope (GST-ANcad), which could be used to pre-
cipitate the uncomplexed B-catenin. After verifying the nucleotide se-
quences, the PCR fragment was ligated, in-frame, downstream of the GST
coding region in pGEX-3X (Amersham Pharmacia Biotech).

The role of cell-cell adhesion in cardiac development has been in-
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vestigated previously using antibody raised against cadherin (Linask and
Lash, 1988; Soler and Knudsen, 1994; Linask et al., 1997). To test whether
anti-cadherin antibody directly affects cell-cell adhesion by blocking
N-cadherin at the cell surface, we performed antibody-inhibition experi-
ments using GST-fused cadherin. In accordance with information from
the manufacturer (Santa Cruz Biotechnology, Inc.) indicating that anti—
N-cadherin antibody was produced using amino acids 163-181 of the
N-cadherin, we used PCR to create a construct covering amino acids 163—
181 of N-cadherin fused with GST epitope (GST-ANcad), which could
then be used to block formation of the antibody—antigen complex. After
verifying the nucleotide sequences, the PCR fragment was ligated, in-
frame, downstream of the GST coding region in pGEX-3X.

B-Catenin and Deleted B-Catenin cDNAs. 3-Catenin is the most down-
stream component of the Wnt-1 signal transduction pathway (Orsulic and
Peifer, 1996; Miller and Moon, 1997). Full-length mouse B-catenin cDNA
(781 amino acids; Butz et al., 1992) was amplified by RT-PCR using
mRNA isolated from mouse hearts. To construct an EGFP (enhanced
green fluorescent protein)-fused construct, an antisense PCR primer of
the COOH-terminal domain was designed that deleted the endogenous
stop codon and replaced it with an Sacll site at the 5’ end. When ligated
into pPEGFP-N3 expression vector (CLONTECH Laboratories, Inc.), the
resultant sequence at the COOH terminus of B-catenin contained the
EGFP sequence, which was subsequently detected using rabbit antiserum
raised against Aequorea Victoria GFP (Molecular Probes).

The B-catenin NH,-terminal domain contains the GSK-38 phosphory-
lation sites and 13 imperfect repeats for interaction with adenomatous
polyposis coli, LEF/TCF, and cadherin (Orsulic and Peifer, 1996; Miller
and Moon, 1997). Deletion of the first 90 amino acids of B-catenin, lacking
GSK-3B phosphorylation sites, results in its accumulation and in activa-
tion of signal transduction (Yost et al., 1996; Zhu and Watt, 1999). Thus,
to construct a constitutively active B-catenin (AB-catenin), an NH,-termi-
nal domain lacking the first 90 amino acids was created by PCR. After
verifying the nucleotide sequences, the full-length cDNAs encoding
B-catenin or AB-catenin were ligated into the pEGFP-N3 mammalian ex-
pression vector.

TCF and Mutant TCF cDNAs. TCF (LEF) transcription factors medi-
ate signaling from Wingless/Wnt proteins by recruiting B-catenin to serve
as a transcriptional coactivator (for review see Nusse, 1997). After ampli-
fying TCF-4 cDNA (447 amino acids; Lee et al., 1999) using RT-PCR with
mMRNA isolated from mouse hearts, we created a VV5-fused TCF construct
using the same procedure as described above for Wnt-5a.

TCF contains an NH,-terminal 3-catenin binding domain as well as a
centrally located high mobility group domain, which serves as a DNA
binding site (Behrens et al., 1996; Roose et al., 1998). Deletion of the B-cat-
enin binding domain of TCF-1 blocks Wnt-dependent axis formation in
Xenopus embryo (Behrens et al., 1996; Molenaar et al., 1996); therefore,
to construct a dominant negative TCF-4 mutant (AN-TCF), an NH,-termi-
nal domain lacking the first 55 amino acids was created. A dominant posi-
tive TCF-4 mutant (TA-TCF), in which the NH, terminus of TCF-4
(amino acids 1-55) was replaced with the COOH-terminal transactivation
domain of B-catenin (amino acids 694-781), was constructed according to
previous studies (van de Wetering et al., 1997; Roose et al., 1998; Vlem-
inckx et al., 1999). The chimeric protein, composed of truncated LEF-1
and the transactivation domain of B-catenin, induced secondary axis for-
mation in Xenopus embryo in the absence of Wnt (Vleminckx et al.,
1999). After verifying the nucleotide sequences, the full-length cDNAs
encoding V5-fused or mutant TCF were ligated into pcDNA3.1/VV5-HisA
expression vector.

Immunoblot Analysis

Cardiac myocytes and fibroblasts were lysed in lysis buffer containing
50 mM Hepes (pH 7.5), 150 mM NacCl, 1.5 mM MgCl,, 1 mM EGTA, 10%
glycerol, 1% Triton X-100, 100 mM sodium orthovanadate, and Protease
Inhibitor Cocktail (Boehringer). The lysates were then solubilized in SDS
loading buffer, subjected to SDS-PAGE, and transferred to nitrocellulose.
The nitrocellulose blots were incubated with primary antibody against the
corresponding target proteins. Mouse monoclonal anti-c-Myc antibody
was used to detect c-Myc—tagged Wnt proteins; mouse monoclonal anti—
E-cadherin (Progen Biotechnik GMBH), goat polyclonal anti-N-cad-
herin, goat polyclonal anti-M-cadherin, goat polyclonal anti-P-cadherin,
rabbit polyclonal anti-a-catenin, goat polyclonal anti—y-catenin (Santa
Cruz Biotechnology, Inc.), mouse monoclonal anti-B3-catenin antibodies
(Transduction Laboratories), and anti-V5 antibody (Invitrogen) were
used to detect the corresponding proteins. The blots were then washed
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three times with TBS containing 0.1% Tween 20, incubated with peroxi-
dase-labeled, affinity-purified antibody against the primary antibodies
(Kirkegaard & Perry Laboratories Inc.), washed again, and developed us-
ing an enhanced chemiluminescence (ECL) Western blotting system
(Amersham Pharmacia Biotech).

Immunofluorescent Analysis

Cells grown on glass coverslides were fixed for 10 min in 3% paraformal-
dehyde and then permeabilized for an additional 10 min with 0.1% Triton
X-100. After blocking with 5% bovine serum albumin in PBS for 30 min,
the cells were incubated for 2 h with primary antibody against the respec-
tive target proteins. Mouse monoclonal anti-cardiac myosin heavy chain o/
(MHC) and goat polyclonal anti-human vimentin antibodies (Chemicon
International Inc.) were used to identify cardiac myocytes and fibroblasts,
respectively. Anti-cardiac MHC antibody-antigen complexes were visual-
ized by incubation for 1 h with FITC-conjugated, affinity-purified anti—
mouse 1gG (Zymed Laboratories), while anti-vimentin antibody-antigen
complexes were visualized using rhodamine-conjugated, affinity-purified
anti-goat 1gG (Chemicon International Inc.). Mouse monoclonal anti-
FLAG antibody was used to localize FLAG-tagged frizzleds; mouse mono-
clonal anti-c-Myc antibody was used to localize frizzled-GPI chimeras;
rabbit anti-GFP antiserum was used to localize B-catenins; anti-V5 anti-
body was used to localize TCFs; and mouse monoclonal anti-bromode-
oxyuridine (BrdU) antibody (Boehringer) to assess BrdU (Sigma-Ald-
rich) incorporation into DNA. Each of the primary antibody-antigen
complexes was visualized using an FITC-conjugated secondary antibody
against the corresponding primary antibody. After washing with PBS,
cells on coverslides were mounted in Permafluor aqueous mounting me-
dium (Immunotech) and photographed on a (Olympus) Provis AX80 mi-
croscope equipped with the appropriate filters.

Luciferase Assays

An oligonucleotide containing three copies of the TCF consensus se-
guence (CCTTTGATC) or a mutant thereof (CCTTTGGCC), cloned
into a minimal HSV-tk promoter-luciferase vector yielded modified tk-
TOP and modified tk-FOP according to the previous studies (van de We-
tering et al., 1997; Roose et al., 1998; Vleminckx et al., 1999). For transient
transfection, cardiac myocytes were cotransfected by electroporation with
the various combinations of plasmids: 1.0 wg of TCF4 construct or B-cate-
nin construct in pcDNAS3; 0.3 pg of tk-TOP or tk-FOP; and 0.03 ng of
pRL-TK vector as a renilla luciferase control vector. Luciferase activity
was determined using a dual luciferase reporter assay system (Promega).
Cells were harvested 24 h after the transfection, and lysed in lysis buffer.
The firefly luciferase activities of each of tk-TOP and tk-FOP and the re-
nilla luciferase activities of pRL-CMV were measured in the same sample
by a luminometer. Transfection efficiency of each sample was normalized
by the activity of renilla luciferase activity.

Pulse—Chase Labeling

Preconfluent cells were starved by incubation in labeling medium that
lacked methionine and cysteine for 1 h at 37°C. Cells were then incubated
with fresh labeling medium containing 150 pw.Ci/ml %5S-methionine and
-cysteine (specific activity >1,180 Ci/mmol; ICN Biomedicals) for 30 min
at 37°C. The labeling medium was removed and the cells were washed
three times with ice-cold PBS. For the 0 h time point, cells were lysed im-
mediately. For the chase period, normal grow medium supplemented with
5 mM cysteine and methionine (Sigma-Aldrich) was added to the cells.
Equal amounts of protein lysates were precipitated with anti—3-catenin an-
tibodies, and separated by 10% SDS-PAGE. The gels were then incubated
for 30 min with Amplify (Amersham Pharmacia Biotech), dried, and ex-
posed to Kodak X-OMAT x-ray film (Eastman Kodak Co.) at —80°C.

Generation of Cell Lines Overexpressing Wnt-3a
and Wnt-5a

HEK?293 cells and C2C12 cells were transfected with the pcDNAS3 vector
containing either the Wnt-3a or Wnt-5a cDNA using the calcium phos-
phate precipitation technique; stable cell lines overexpressing either Wnt-
3a or Wnt-5a were established by subsequent selection with 800 mg/ml
G418 (Sigma-Aldrich). The transfectants were grown for selection in
DME containing 400 pwg/ml G418. Each selected clone was analyzed by
Northern blot and immunoblot analyses.
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Generation of Cardiac Myocytes Overexpressing the
Frizzled-GPI Chimera

Cardiac myocytes were cotransfected with vector containing CD4 (Clark
et al., 1987) and a vector containing one of the frizzled, frizzled—GPI chi-
mera, B-catenin mutant, or TCF mutant cDNAs using electroporation
methods with a Gene Pulser Transfection Apparatus (Bio-Rad Laborato-
ries). The molar ratio of CD4 to the cotransfected constructs was opti-
mized to be 1:5. Cells expressing CD4 were isolated by immunomagnetic
separation using mouse CD4 Dynabeads (Dynal), and then detached from
the beads by using mouse CD4 DETACHaBEAD (Dynal). In brief, 12 h
after transfection, transfectants (~107 cells/ml) were suspended in PBS
and incubated for 20 min at 4°C with the Dynabeads at a final concentra-
tion of 4 X 107 beads/ml. Cells bound to the beads were collected by mag-
net and isolated with washing several times with PBS. One unit of DE-
TACHaBEAD, a polyclonal antibody that reacts with the Fab fragments
of monoclonal anti-CD4 antibodies, was then incubated with the beads for
45 min at 20°C, which detached the cells from the beads, yielding a popu-
lation of cells expressing CD4 (~10° cells/ml). When the localization of
the transfected constructs within the isolated cardiac myocytes was as-
sessed by immunofluorescence microscopy, it was found that almost all of
isolated CD4" cardiac myocytes expressed the cotransfected constructs at
a ratio of 1:5. Immediately after immunomagnetic separation, the isolated
cardiac myocytes were cocultured with fibroblasts with or without Wnt
proteins.

Cell Proliferation Assay

Cultured cells were labeled with 20 uM BrdU (Sigma-Aldrich) for 1 or 12 h,
and then fixed in paraformaldehyde. After denaturing the DNA in 2 M
HCI, cells were neutralized with 0.1 M borate buffer (pH 8.5), and BrdU
was detected by using a monoclonal anti-BrdU antibody, followed by an
FITC-conjugated anti-mouse I1gG.

Expression and Purification of GST-fused Proteins

Control GST and GST-cadherin proteins were expressed in bacteria in-
duced with 0.1 mM IPTG at 37°C. The cells were then pelleted, resus-
pended in cold PBS with 1% Triton X-100 and lysed by mild sonication.
The lysates were centrifuged at 10,000 g for 5 min, after which the super-
natants were collected and incubated with glutathione Sepharose 4B
beads (Amersham Pharmacia Biotech). After extensive washing with
PBS, the GST-fused proteins were eluted with 5 mM of glutathione. These
GST-fused proteins were used for the antibody-inhibition experiment us-
ing cultured cells and affinity binding assay.

Affinity Binding Assay

The GST-cadherin proteins that bound to the glutathione Sepharose 4B
beads were extensively washed, first with PBS and then with binding
buffer (10 mM Tris [pH 7.5], 150 mM NacCl, 5% BSA, and protease inhib-
itor cocktail). Approximately 100 pl of GST-cadherin proteins, bound to
glutathione beads, were then incubated in a rotating vessel with 100 g of
total cell lysates from cardiac myocytes or fibroblasts for 2 h at 4°C. The
beads were then extensively washed with binding buffer. Finally, associ-
ated proteins were eluted with SDS sample buffer and subjected to SDS-
PAGE. After transfer to nitrocellulose membranes, immunoblot analysis
was performed using mouse monoclonal anti—-B3-catenin 1gG. Primary anti-
body-antigen complexes were visualized using enhanced chemilumines-
cence assay kit (Amersham Pharmacia Biotech) and peroxidase-conju-
gated secondary antibodies against mouse 1gG antibodies.

Northern Blot Analysis

After total RNA was extracted from cardiac myocytes, the mMRNA was
isolated using an Oligotex-dT30 mRNA purification kit (Takara), electro-
phoretically separated in a 1.2% agarose—formaldehyde gel, and then cap-
illary blotted onto nitrocellulose. The blots were then hybridized with 32P-
labeled probes and examined by autoradiography.

Analysis of RNA by RT-PCR

RNA was extracted from cardiac myocytes and fibroblasts. To control for
DNA contamination, we omitted reverse transcriptase from the synthesis
reaction. Transcripts were detected by semiquantitative RT-PCR. The
PCR protocol consisted of 25 cycles at 96°C for 30 s, 54-62°C for 15 s, de-
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pending on the melting temperature of the primers, and 72°C for 1 min.
The specificity of the amplified product was confirmed by Southern blot
and hybridization to a corresponding cDNA or internal oligonucleotide
probe. Moreover, cDNA used in each PCR reaction was shown to be in
the linear range of the signal by generating a dose-response curve carried
for each set of primers. The following pairs of primers were designed: 5'-
GGC GAT GGC TCC TCT CGG-3' and 5'-CTT AAG CCT CCT TAC
CAG-3' for Wnt-3a (sequence data available from EMBL/GenBank/
DDBJ under accession number X56842); 5'-CTC GCC ATG AAG AAG
CCC-3' and 5'-CAA CCA GTC CCG AGG CAG-3' for Wnt-5a (se-
quence data available from EMBL/GenBank/DDBJ under accession
number M89798); 5'-ATG CAC CTC GAG GCC CGC-3' and 5'-GAG
GAC GCG GGC CTC GAG-3' for frizzled-2 (sequence data available
from EMBL/GenBank/DDBJ under accession number L02530); 5'-GCT
CTG GCC ATG GCC TGG-3' and ATT GCT TCC CAC GGA GTG-3'
for frizzled-4 (sequence data available from EMBL/GenBank/DDBJ un-
der accession number U43317); 5'-TGT ACA AAG AGA CTG TCT-3’
and 5-GTT TCT TGA TGA CTG GTA-3' for TCF-1 (sequence data
available from EMBL/GenBank/DDBJ under accession number X61385);
5-ATG GTG TCC AAG CTC ACG-3' and 5'-CTT TTG TCT GTC
ATG TTT-3' for TCF-2 (sequence data available from EMBL/GenBank/
DDBJ under accession number NM_009330); 5'-CAG CTC GGT GGT
GGC CGC-3'and 5'-GTC AGC GGG TGC ATG TGA-3' for TCF-3 (se-
quence data available from EMBL/GenBank/DDBJ under accession
number AJ223069); 5'-TGA ACG GCG GTG GAG GAG-3' and 5'-
CGG GGT GAA GTG TTC ATT-3' for TCF-4 (sequence data available
from EMBL/GenBank/DDBJ under accession number AJ223070); 5'-
TGT TGG GAA ATA CGG AAC GAA-3' and 5'-GCT TAA GCT
AAT CGC CGA GTG-3' for Nkx2.5 (sequence data available from
EMBL/GenBank/DDBJ under accession number U85046); 5'-GAT GGG
ACG GGA CACTAC CTG-3' and 5'-GCT GAT TAC GCG GTG ATT
ATG-3' for GATA-4 (sequence data available from EMBL/GenBank/
DDBJ under accession number X75415); 5'-CAC GCA TAA TGG ATG
AGA GGA ACC GAC and 5-ACA TCC CAC TTG CAC TGC CGG
TAC TTG for MEF-2a (sequence data available from EMBL/GenBank/
DDBJ under accession number U30823); 5'-ATG TCT GGA CGT GGC
AAG GGT GG-3' and 5'-CGA ATC CGT AGA GAG TGC GGC CC-3'
for Histone-H4 (sequence data available from EMBL/GenBank/DDBJ
under accession number U62672); 5'-TGC AGG AGA TGA TCG ACG
AAG and 5'-TGC AGG AGA TGA TCG ACG AAG for Troponin C
(accession number M29793); 5'-ATC CAG CTC AGC CAT GCC AAC
CGT ATG and 5'-TGG CCT TCT CCT CTG CGT TCC TAC ACT for
B-MHC (sequence data available from EMBL/GenBank/DDBJ under ac-
cession number M74752); and 5'-AGG CGA GAC AAG GGA GAA
CAC GGC ATC and 5'-GCT GTC TCT GGG CCA TTT CCT CCG
ACT for BNP (sequence data available from EMBL/GenBank/DDBJ un-
der accession number D16497).

Estimation of the Morphological Effect of Wnt on
Cardiac Myocytes

We found Wnt on cardiac myocytes and found that cardiac myocytes co-
cultured with fibroblasts aggregate in the presence of Wnt proteins. To
compare this effect among various experiments, we defined criteria with
which to assess aggregation. Cardiac myocytes were considered to be “ag-
gregation-plus” if they formed wide-based, polyp-like structures that were
sharply demarcated from other cell masses. On the other hand, myocytes
were considered to be “aggregation-minus” if they appeared in a flat
monolayer lacking demarcation, even if the cells were sometimes clus-
tered. Whether cells were aggregation-plus or -minus could be assessed
readily under the microscope without immunostaining. To quantify our
findings, we dissected out the demarcated aggregates, dispersed each ag-
gregate in one well of a 96-well plate, and then stained with anti-cardiac
MHC antibody followed by FITC-labeled anti-mouse 1gG. Numbers of
FITC-positive cells in each well were then counted.

Results

Expression of Wnt and Frizzled Gene Families in
Cardiac Myocytes and Fibroblasts

Substantial expression of Wnt-5a and frizzled-2 and -4 is
known to take place in mouse hearts (for review see
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Figure 1. Expression of Whnt,
frizzled, and Tcf genes and se-
cretion of biologically active

Wnt proteins by HEK293
cells. (A) Transcripts for
Whnt-3a and -5a, frizzled-2 and
-4, and Tcf-1, -2, -3, and -4
were analyzed by RT-PCR.
Samples of total RNA (1 ng)
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were extracted from cardiac
myocytes and fibroblasts, and
RT-PCR was performed as
described in Materials and
Methods. The specificity of
the amplified band was con-
firmed by Southern blot hy-
bridization to corresponding
3p-labeled  oligonucleotide
probes. Three independent
batches of RNA from differ-
ent experiments gave the
same results as shown here.
(B) Levels of Wnt-3a and -5a
were determined by immuno-
blotting with anti-c-Myc anti-
body. Conditioned medium
from HEK293 cells trans-
fected with Wnt-3a or -5a
were concentrated at 2-fold
(left) and 20-fold (right) and
were subjected to the SDS-
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Fold induction of p-catenin
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PAGE. (C) Levels of B-catenin were determined with anti—-catenin antibody. HEK?293 cells were incubated with Wnt protein contain-
ing medium for time intervals ranging from 30 to 180 min. Collected cells were lysed and total proteins were subjected to SDS-PAGE
(left). Time course of B-catenin accumulation was quantified by densitometry (left).

Brown and Moon, 1998), whereas XLef-1 and -3 were
identified in Xenopus hearts (Molenaar et al., 1998). To
determine which cell type expresses these genes, transcrip-
tion of the Wnt, frizzled, and TCF genes was analyzed by
RT-PCR using mRNA from neonatal cardiac myocytes
and fibroblasts. Wnt-5a was detected in cardiac myocytes,
but not in fibroblasts, whereas frizzled-2 and -4, and Tcf-3
and -4 were detected in both cell types (Fig. 1 A).

Morphological Effects of Wnt-3a and -5a on
Cardiac Myocytes

To obtain biologically active Wnt proteins, we established
stable cell lines expressing Wnt-3a and -5a in HEK293 and
C2C12 cells. After incubating the cells (~2 X 107 cells/ml)
in the absence of FCS, they were removed by centrif-
ugation at 2,000 g. The conditioned medium was col-
lected, cleared of insoluble material by ultracentrifugation
(100,000 g for 1.5 h), and concentrated 10-fold using a
Centriprep 10 column (Amicon). Although there have
been reports that Wnt proteins secreted from cultured
cells are present in the extracellular matrix (ECM) rather
than in the culture medium (Bradley and Brown, 1990;
Papkoff and Schryver, 1990), our immunoblot analysis
showed c-Myc-tagged Wnt proteins to be in the superna-
tant (Fig. 1 B). To test whether biologically active Wnt
proteins could be detected in the conditioned medium, we
incubated HEF293 cells with either Wnt-3a or -5a contain-
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ing medium (Fig. 1 C). Levels of B-catenin were immedi-
ately increased after 30 min incubation of both media, and
then reached the maximum levels after 180 min, whereas
the presence of anti-c-Myc antibodies in the conditioned
medium blocked the accumulation of B-catenin. There-
fore, we decided to use conditioned medium in this study,
as other investigators have successfully done in the past
(van Leeuwen et al., 1994; Bradley and Brown, 1995).
Conditioned medium containing Wnt-3a or -5a was then
added to cardiac myocytes plated on poly-L-lysine—coated
coverslips in the presence or absence of fibroblasts (Fig.
2). Although application of conditioned medium evoked
no morphological changes in either cardiac myocytes or fi-
broblasts plated alone (data not shown), when myocytes
were cocultured with fibroblasts (~10° cells/ml each), they
began aggregating within 1 d after application, forming el-
lipsoid bodies (up to 2-3 mm) on top of the fibroblast
sheet within 3-4 d. When the effect was quantified by dis-
secting the demarcated aggregates, dispersing them in re-
spective wells of a 96-well plate, and staining with anti-car-
diac MHC antibody followed by FITC-labeled anti-mouse
1gG, 50-70 FITC-labeled cells were found in each aggre-
gate (Fig. 3 B). Addition of anti-c-Myc antibody (200 p.g/ml)
to the conditioned medium blocked the aggregation of
cardiac myocytes, confirming that the observed effects
were mediated by the tagged Wnt proteins secreted into
the conditioned medium. The aggregated myocyte mass
beat synchronously at 60-80/min, in contrast to the asyn-
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chronous beating of control cells, which suggests forma-
tion of gap junctions between aggregated myocytes.

Role of Fibroblasts in the Morphological Changes
Induced by Wnt Proteins in Cardiac Myocytes

Having shown that the presence of fibroblasts promotes
Whnt-induced aggregation of cardiac myocytes, we next as-
sessed which factors might be important for this morpho-
logical effect. We found that aggregation was unaffected
by the material coating the coverslips on which the myo-
cytes were grown. As with poly-L-lysine, cardiac myocytes
plated on collagen, laminin, or fibronectin only aggregated
when cocultured with fibroblasts (data not shown). More-
over, incubating cardiac myocytes in Wnt-containing
medium further conditioned for 12 h by fibroblasts did
not induce formation of aggregated masses (Fig. 3 A).
Therefore, it appears that direct contact with fibroblasts is
key for promoting aggregation of cardiac myocytes under
the influence of Wnt proteins.

It has been proposed that cell-cell adhesion mediated
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Figure 2. Wnt proteins induced the aggregation
of cardiac myocytes in the presence of fibro-
blasts. Cardiac myocytes and fibroblasts were in-
cubated for 3 d in control medium, conditioned
medium containing Wnt-3a or -5a, or condi-
tioned medium containing Wnt protein and anti—
c-Myc antibody (200 pg/ml). Cardiac myocytes
and fibroblasts were respectively immunostained
with mouse anticardiac myosin heavy chain 1gG
and goat antivimentin 1gG, followed by incuba-
tion with FITC-conjugated anti-mouse 1gG and
rhodamine-conjugated anti-goat 1gG. Note that
myocytes aggregate in the Wnt-3a— and -5a—con-
taining media, although not in the presence of
anti-c-Myc antibodies (200 p.g/ml).

by cadherins as well as cell-ECM interactions mediated by
integrins are important for morphogenesis during devel-
opment (for review see Gumbiner, 1996; Radice et al.,
1997), and indeed anti-cadherin antibody has been used
previously to study cardiac development (Linask and
Lash, 1988; Soler and Knudsen, 1994; Linask et al., 1997).
Similarly, we added antibodies raised against N-, E-,
M-, and P-cadherins and integrin-B to respective samples
of Wnt-containing medium and then applied them to
2-d-old cardiac myocyte/fibroblast cocultures. We found
that only anti-N-cadherin antibody caused aggregated
myocyte masses to revert to clusters of flattened cells; the
others had little or no effect on the myocyte clusters (Fig.
3, A and B). The effect of anti-N-cadherin antibody was
dose-dependently blocked by the GST-fused extracellular
region of N-cadherin (GST-ANcad), which presumably
competed with endogenous N-cadherin for binding anti-
body (Fig. 3 A), indicating that formation of cardiac myo-
cyte aggregates is specifically dependent on N-cadherin-
mediated cell-cell adhesion, and interactions with ECM
were not involved.
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Subsequent immunoblot analysis showed that N-cad-
herin is the predominant cadherin in cardiac myocytes,
while E-cadherin predominates in fibroblasts (Fig. 4). Fur-
thermore, incubation of cardiac myocytes and fibroblasts
in Wnt-containing medium for 2 d induced distinct pat-
terns of cadherin expression in the two cell types: protein
level of N-cadherin was increased in cardiac myocytes,
whereas those of E- and M-cadherin were increased in fi-
broblasts (Fig. 4 A). Densitometric estimation of three in-
dependent experiments indicated a 2.0 = 0.4-fold increase
in N-cadherin levels of cardiac myocytes, and 2.2 = 0.4-
fold and 5.9 + 1.0-fold increase in E- and M-cadherin lev-
els of fibroblasts, respectively. Nevertheless, Northern
blots showed that levels of mMRNA encoding these cad-
herins were not affected by incubation with Wnt (Fig. 4
B), suggesting that Wnt increases the stability of cadherins
in both cell types without inducing gene transcription,
which is consistent with the effect of Wnt-1 on mammalian
cell lines (Hinck et al., 1994). Since cell-cell adhesion is es-
tablished by homophilic binding between cadherins, the
increased levels of distinct sets of cadherin in cardiac myo-

Toyofuku et a. Wht/frizzled-2 Sgnaling on Cardiac Myocytes

GST-ANcad

Figure 3. Anti-N-cadherin
antibodies inhibited the Wnt-
induced aggregation of car-
diac myocytes. (A) Represen-
tative  immunocytochemical
staining of cardiac myocytes
and fibroblasts incubated for
2 d in Wnt-containing me-
dium, followed by addition of
anti-N-cadherin  antibodies
(100 pg/ml) and incubation
for an additional 2 d. Myo-
cytes and fibroblasts were
then respectively immuno-
stained as described in Fig. 2.
The aggregation of cardiac
myocytes was prevented by
anti-N-cadherin  antibodies,
but this effect was blocked by
coincubated GST-ANcad in a
dose-dependent manner. (B)
Histogram summarizing the
data collected by counting
cardiac myocytes in each ag-
gregate. Cardiac myocytes
and fibroblasts were incu-
bated in control (white bar), Wnt-3a—containing (hatched bar),
or Wnt-5a-containing medium (black bar) for 2 d, followed by
addition of the indicated antibodies (100 wg/ml) for 2 d. Judge-
ment of aggregation-plus or -minus in each experiment was per-
formed under microscopy without immunostaining. To count
cells in aggregate, each aggregate of cardiac myocytes was ex-
cised with a fine glass pipette, dispersed in one well of 96-well
plate, and immunostained, and then the FITC-positive cells were
counted. 20 aggregates were quantified in three independent ex-
periments. Note that only anti-N-cadherin antibody had an effect
on aggregated cardiac myocytes.
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cytes and fibroblasts leads to the strengthening of interac-
tion of cardiac myocytes with one another.

Intracellular Signal Transduction of Wnt Proteins in
Cardiac Myocytes

Frizzled-2 and -4 are the predominant frizzled genes ex-
pressed in both cardiac myocytes and fibroblasts. To test
whether a particular frizzled protein functions as an en-
dogenous Wnt-5a receptor, we created dominant-negative
constructs of frizzled-2 and -4. Because we were unable to
generate stable cultures of cardiac myocytes overexpress-
ing a frizzled—-GPI chimera, a transient expression strategy
was used. Cardiac myocytes were cotransfected with vec-
tors containing CD4 or frizzled-GPI chimera at a molar
ratio of 1:5. At this ratio, 20-30% of live cardiac cells ex-
pressed CD4. After immunomagnetic isolation of the
CD4* cells, it was determined that virtually all CD4* cells
also expressed the frizzled or frizzled—-GPI chimera at the
cell surface (Fig. 5 A).

As exogenously introduced frizzleds and frizzled—GPI
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chimeras compete with the extracellular CRD of endoge-
nous frizzleds for the binding of Wnt, increased frizzled
expression might be expected to facilitate association of
Whnt with cell surfaces. Wnt-5a-VV5 cDNA was transiently
transfected into cardiac myocytes overexpressing either
frizzleds or frizzled-GPI chimeras, and the localization of
expressed Wnt proteins then was detected by immuno-
staining. Wnt proteins were detected at the surface and in
the nucleus of cells overexpressing frizzled-2 or frizzled-
2-GPI chimera, whereas Wnt proteins were detected mainly
in the nucleus of cells overexpressing frizzled-4 or frizzled-
4-GPI chimera (Fig. 5 B, top). This result suggested that
the signals at the cell surface of cells expressing frizzled-2
and frizzled-2-GPI chimera represent the specific binding
of Wnt-5a-V5 proteins to the extracellular CRD of friz-
zled-2. To clarify this notion, we used antibody against se-
creted Wnt-5a-V5 to inhibit its binding to the cell surface
receptors. As shown in Fig. 5 B, bottom, incubation of
anti-V5 antibody eliminated Wnt proteins localized at the
surface of cells overexpressing frizzled-2 or frizzled-2-GPI
chimera, although incubation with anti-V5 antibody did
not affect the Wnt proteins in the nucleus in all types of
cells. This result indicated that overexpression of frizzled-2
or frizzled-2-GPI chimera, but not frizzled-4 or frizzled-
4-GPl, stabilized Wnt-5a at, or recruited it to, the cell sur-
face. Since endogenous frizzled-2 should also bind Wnt-5a,
differences in Wnt-5a signaling between cells expressing
frizzled-2-GPI and frizzled-4-GPI should correspond to
the differences in bound Wnt-5a between cells expressing
only endogenous frizzled-2 and those expressing endoge-
nous frizzled-2 plus frizzled-2-GPI. Thus, the frizzled-
2-GPI chimera lacking the cytoplasmic domain, which is
essential for the Wnt signal transduction, may function as
a dominant-negative construct.

When the isolated transfectants were cocultured with fi-
broblasts in Wnt-5a—containing medium, cardiac myocytes
expressing the frizzled-2-GPI chimera failed to aggregate,
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Figure 4. Wnt proteins in-
creased protein levels of cad-
herins without changes in
MRNA levels. Total cell
protein and mRNA were
extracted from cardiac myo-
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in contrast to myocytes expressing the frizzled-4-GPI chi-
mera (Fig. 5 C). The cell counts were 20-30 per aggregate
among cultures of transfectants subjected to immunomag-
netic isolation in the Wnt-containing medium (Fig. 6),
which was only about half of that among cultures of trans-
fectants not subjected to immunomagnetic isolation (Fig. 3
B). Although the reason for this difference is unclear, we
speculate that immunomagnetic isolation may disturb the
mobility of the transfected cells. Therefore, we compared
cell counts per aggregate among groups subjected to the
same experimental protocol and found that in Wnt-5a— or
Wht-3a—containing medium, overexpression of frizzled-2-GPI
inhibited aggregation, as compared to cultures only ex-
pressing endogenous frizzleds (Fig. 6). Thus, interaction
between Wnt-5a/Wnt-3a and frizzled-2 appears crucial for
the morphological effect of Wnt-5a on cardiac myocytes.
Given that cell-cell adhesion mediated by N-cadherin
plays a key role in the morphological effect of Wnt, inter-
action of cadherin and B-catenin or plakoglobin (y-cate-
nin) should be a component of this effect. Immunoblot
analysis showed that B-catenin is the predominant catenin
in cardiac myocytes and fibroblasts. Furthermore, incubat-
ing cardiac myocytes and fibroblasts in Wnt-containing
medium for 2 d increased protein levels of B-catenin in
both cell types, and levels of y-catenin were slightly in-
creased (Fig. 7 A). Since B-catenin and y-catenin mMRNA
levels were unaffected by Wnt proteins (Fig. 7 B), the ob-
served increases in B- and y-catenin should have been the
product of increased protein stability, rather than in-
creased protein synthesis. Incubation of cardiac myocytes
with Wnt proteins increased levels of B-catenin complexed
with cadherin, which was detected by immunoprecipita-
tion using anti-N-cadherin antibody, and increased levels
of free B-catenin, which was detected by affinity binding
assay using the cytoplasmic B-catenin binding region of
N-cadherin fused to GST (Fig. 7 C). Incubating fibroblasts
with Wnt proteins yielded similar results (Fig. 7, A, B, and
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Figure 5. Frizzled-2 func-
tioned as a Wnt receptor in
the process of cardiac myo-
cytes aggregation. Cardiac
myocytes were cotransfected
with vector containing CD4
and vector containing friz-
zled-2 or -4, or frizzled-2- or
-4-GPl chimeras as de-
scribed in  Materials and
Methods. (A) Cells express-
ing CD4 were isolated, after
which the transfectants were
subjected to immunostain-
ing. Frizzled-2 and -4 and
frizzled-2- and -4-GPI chi-
meras were detected with
anti-FLAG and anti-c-Myc
antibodies, respectively, fol-
lowed by labeling with FITC-
conjugated anti-mouse 1gG.
Frizzled-2 and -4 and friz-
zled-2- and -4-GPI chimera
proteins were localized at the
cell membranes of trans-
fected cells. (B) Cells ex-
pressing frizzled-2 and -4 or
frizzled-2- and -4-GPI chi-
mera were transiently trans-
fected with Wnt-5a-V5 con-
struct. Wnt-5a was then
detected using an anti-V5 an-
tibody, followed by labeling
with FITC-conjugated anti—
mouse 1gG. (Top) Wnt-5a
was detected at the cell sur-
faces and the nuclei of
cells expressing frizzled-2
and frizzled-2-GPI chimera,
whereas Wnt-5a was only de-
tected in the nuclei of cells
expressing frizzled-4 and friz-
zled-4-GPIl chimera. (Bot-
tom) Incubation of anti-V5
antibody eliminated the sig-
nals at the cell surfaces of
cells expressing frizzled-2
and frizzled-2-GPlI, but did
not affect the signals in the
nucleus of all types of cells.
©) Immunocytochemical
staining of cardiac myocytes
cultured in Wnt-5a-contain-
ing medium for 3 d in the
presence of fibroblasts. In
contrast to other cell types,
cells expressing frizzled-
2—-GPI chimera failed to ag-
gregate.

C). The finding that levels of both free N-cadherin and We also examined the effect of introducing a constitu-
N-cadherin-complexed B-catenin were increased by Wnt tively active form of B-catenin (AB-catenin) into cardiac
proteins confirmed the idea that Wnt proteins strengthen myocytes. The NH, terminus of B-catenin contains several

cell-cell adhesion by increasing formation of cadherin- GSK-3B phosphorylation sites, which facilitate the rapid
catenin complexes at those sites (Bradley et al., 1993; degradation of B-catenin (Rubinfeld et al., 1996; Yost et al.,
Hinck et al., 1994). 1996). Wild-type B-catenin has a very short half-life and
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Figure 6. Histogram summarizing the data collected by counting
cardiac myocytes in each aggregate. Isolated cardiac myocytes
and fibroblasts were incubated in control medium (white bar),
Whnt-3a—containing medium (hatched bar), or Wnt-5a-containing
medium (black bar) for 3 d. Judgement of aggregation-plus or
-minus in each experiment was performed under microscopy
without immunostaining. To count cells in aggregate, each aggre-
gate of cardiac myocytes was excised with a fine glass pipette,
dispersed in one well of a 96-well plate, and immunostained.
Numbers of FITC-positive cells were counted in each well. 20
aggregates were quantified in three independent experiments.

A

deletion or mutations of the GSK-33 phosphorylation
sites at the NH, terminus results in accumulation of stable
B-catenin in the cytoplasm (Gat et al., 1998; Zhu and Watt,
1999). To determine the half-life of -catenin and Ap-cate-
nin in the transfected cells, transfected cells were starved
for 1 h, pulse-labeled with [®*S]cysteine and [*®*S]methio-
nine for 30 min, and chased in radioactive-free medium for
up to 4 h (Fig. 8 C). As predicted, endogenous and trans-
fected B-catenin had a half-life of less than 1 h, whereas
AB-catenin was stable throughout the time period exam-
ined. Cardiac myocytes were cotransfected with CD4 and
B-catenin constructs and then immunomagnetically iso-
lated. B-Catenin and AB-catenin were mainly localized at
cell—cell interfaces and in a few nuclei (Fig. 8 A), indicat-
ing that both proteins are involved in the formation of cad-
herin—catenin complexes. Overexpression of AB-catenin in
cardiac myocytes induced their aggregation, even in the
absence of Wnt proteins (Fig. 8 B); the cell counts were 15 +
3 per aggregate, which is significantly higher than in the
absence of Wnt (Fig. 6).

AB-Catenin lacks the first 90 amino acids but should
nonetheless bind to both N-cadherin and a-catenin (Orsu-
lic and Peifer, 1996). To confirm that Ap-catenin partici-
pates in the formation of cadherin—catenin complexes,
lysates of cardiac myocytes expressing p-catenin or Ap-
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e g - - FATA
E—— ——
- 69
Total Total Total Total
g-catenin ycatenin g-catenin y-catenin
B Cardiac Myocytes Fibroblasts ) o )
wnt —_ A — + — = — + Figure 7. Wnt proteins increased B-catenin levels
in cardiac myocytes and fibroblasts. (A) Total cell
protein was extracted from cardiac myocytes and
— — -— ane fibroblasts incubated in control or Wnt-contain-
s e e ing medium. Levels of B- and y-catenin were de-
termined by immunoblotting equivalent amounts
of total cell protein with anti—B-catenin and
- - - ; —vy-catenin antibodies, respectively. (B) Levels of
g-catenin ~y-catenin g-catenin y-catenin B- and +y-catenin MRNA were determined by
Northern blot using equivalent amounts of
mRNA with corresponding %P-labeled oligonu-
. . cleotide probes. (C) For determination of B3-cate-
Cardiac Myocytes Fibroblasts nin-cadherin complex, equivalent amounts of to-
Anti-Ncad GST-Ncad Anti-Ecad Anti-Mcad GST-Ncad tal cell protein were immunoprecipitated with
antibody against N- or E-cadherin; the precipitate
= = = = + = ) h
Yimt h = 2 2 kD was subjected to SDS-PAGE, followed by immu-
noblotting with anti—B-catenin antibody. For de-
-’ oy termination of free B-catenin, equivalent amounts
e . e - — - 87.4  of total cell protein were affinity precipitated us-
ing a GST-fusion protein containing the cytoplas-
- 89 mic domain of N-cadherin; the precipitate was
subjected to SDS-PAGE, followed by immuno-
Complexed Free Complexed Complexed Free blotting with anti--catenin antibody. Molecular
p-catenin  g-catenin g-catenin  g-catenin  g-catenin mass standards are shown on the right.
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Figure 8. Ap-Catenin-induced cardiac myocyte aggregation is independent of Wnt signaling. Cardiac myocytes were cotransfected with
vector containing CD4 and vector containing either the B-catenin or AB-catenin as described in Materials and Methods. (A) Cells ex-
pressing CD4 were isolated, after which the transfectants were subjected to immunostaining. The B-catenin and AB-catenin were de-
tected with anti-GFP antibody, followed by labeling with FITC-conjugated anti-mouse 1gG. B-Catenin and AB-catenin were localized
mainly to the cell membrane, although a few were seen in the nucleus. (B) Immunocytochemical staining of cardiac myocytes cultured
in Wnt-5a—containing medium for 3 d in the presence of fibroblasts. Cells expressing AB-catenin aggregated even in the absence of Wnt
proteins. (C) Transfected cells were starved, pulse-labeled with [**S]cysteine and [*®*S]methionine for 30 min, chased in nonradioactive
medium for the number of hours shown, and immunoprecipitated with anti—B-catenin antibodies. (D) Lysates of cells expressing B-cate-
nin or AB-catenin were immunoprecipitated with anti-GFP antibody, and the associated proteins were subjected to immunoblot using

antibodies against B-catenin, a-catenin, or N-cadherin.

catenin were immunoprecipitated with anti-GFP antibod-
ies, and the associated proteins were immunoblotted with
antibodies against B-catenin, N-cadherin, or a-catenin. We
found that in cells expressing AB-catenin, association of
N-cadherin and a-catenin was greater than in cells express-
ing B-catenin (Fig. 8 D). Densitometric estimation of three
independent experiments indicated a 2.2 = 0.3-fold in-
crease in N-cadherin and 1.8 = 0.4-fold increase in a-cate-
nin. These results suggested that stabilization of B-catenin
promotes myocyte aggregation by increasing formation of
N-cadherin—catenin complexes.

Although increased free B-catenin can contribute to in-
creased stability of the cadherin/catenin complex (Hinck
et al., 1994), when associated with TCF free B-catenin can
also serve a signal transduction function in response to
wnt (for review see Nusse, 1997). To test the possibility
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that the morphological effects of Wnt require TCF target
gene expression, dominant negative and dominant posi-
tive TCF mutants were constructed. The transactivation
activity of TCF constructs were analyzed by measuring lu-
ciferase activity of the tk-TOP or tk-FOP reporter plas-
mids cotransfected into cardiac myocytes (Fig. 9). Lu-
ciferase expression of tk-TOP is driven by three copies of
a consensus TCF motif and a minimal HSV-tk promoter,
while tk-FOP contains mutated, non-functional TCF mo-
tif. Upon overexpression of TCF-4, tk-TOP activity in-
creased by ~2.8-fold, probably because TCF-4 could re-
cruit endogenous B-catenin. In contrast, no stimulation
was seen in AN-TCF, confirming the previous result that
the NH,-terminal domain is essential for the transactiva-
tion of TCF (Behrens et al., 1996; Roose et al., 1998).
Overexpression of TA-TCF resulted in a 17.5-fold stim-
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ulation of luciferase activity, indicating TA-TCF as a
dominant positive construct. None of the various TCF
constructs activated the tk-FOP activity. In comparison,
overexpression of B-catenin increased tk-TOP activity by
2.3-fold, whereas overexpression of AB-catenin increased
by 7-fold, indicating that overexpressed B-catenin and AB-
catenin recruit endogenous TCF to activate the tk-TOP
activity; the differences of activation levels may corre-
spond to the differences of stability between 3-catenin and
AB-catenin as shown in Fig. 8 B. When the cardiac myo-
cytes were co-transfected with AN-TCF and AB-catenin at
the molar ratio of 5:1, AN-TCF suppressed the AB-cate-
nin-induced activation of the tk-TOP activity from 7-fold
to 2.5-fold. Since AN-TCF retains the DNA-binding high
mobility group domain, this result indicated that AN-TCF
functions as a dominant negative construct to compete
with endogenous TCF for the TCF-binding motif of tk-
TOP gene.

The transfected TCF proteins in the cardiac myocytes
were detected in the nuclei of the transfectants (Fig. 10 A).
Introduction of AN-TCF did not inhibit aggregation of
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cardiac myocytes in Wnt-containing medium, and expres-
sion of TA-TCF did not induce their aggregation in the ab-
sence of Wnt (Fig. 10 B). Although it is not clear whether
TA-TCF functions as the dominant-positive construct on
all target genes in cardiac myocytes, when considered to-
gether with the findings that incubation with Wnt had no
effect on transcription of cadherin or B-catenin mRNA in
cardiac myocytes or fibroblasts, it is plausible that TCF
target gene expression may be not involved in the mor-
phological effect of Wnt on cardiac myocytes.

Effects of Wnt Proteins on the Proliferation and
Differentiation of Cardiac Myocytes

By analyzing BrdU incorporation, we also examined
whether Wnt affects the proliferation or differentiation of
cardiac myocytes or fibroblasts by regulating gene expres-
sion. Whether cardiac myocytes were incubated with
BrdU for 1 or 12 h, no nuclear staining was observed, with
or without Wnt proteins (Fig. 11 A). In contrast, numbers
of BrdU-labeled nuclei increased time-dependently in fi-
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broblasts, although Wnt had no effect on the number of
BrdU-labeled nuclei (Fig. 11 B), indicating that Wnt did
not induce cell proliferation.

To test whether Wnt induces differentiation of so-called
precardiac cells in the neonatal heart, semiquantitative
RT-PCR of selected cardio-specific genes was performed.
In contrast to other experiments in which a discontinuous
Percoll gradient was used to purify cardiac myocytes from
other cells types, we separated cells according to their abil-
ity to adhere to culture plates, hoping to retain precardiac
cells, if any were present, in one or the other cell pool.
Eventually, the nonadherent pool contained mainly car-
diac myocytes, and the adherent pool contained mainly fi-
broblasts. Semiquantitative RT-PCR of the gene tran-
scripts expressed early in cardiogenesis, including mRNASs
encoding GATA-4 (Heikinheimo et al., 1994), Nkx2.5
(Lints et al., 1993) and MEF-2C (Lints et al., 1993; Ed-
mondson et al., 1994) showed that, although all three
markers were constitutively expressed in the cardiac myo-
cyte-rich pool, none were affected by Wnt proteins (Fig.
12). A trace amount of GATA-4 mRNA was detected
in the fibroblast-rich pool, but it, too, was unaffected by
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Figure 10. TCF is not in-
volved in cardiac myocyte ag-
gregation. Cardiac myocytes
were cotransfected with vec-
tor containing CD4 and vec-
tor containing either AN-
TCF or TA-TCEF as described
in Materials and Methods.
(A) Cells expressing CD4
were isolated, after which the
transfectants were subjected
to immunostaining. AN-TCF
and TA-TCF were detected
using anti-V5 antibody, fol-
lowed by labeling with FITC-
conjugated anti-mouse 1gG,
and were localized primarily
in the nuclei. (B) Immunocy-
tochemical staining of cardiac
myocytes cultured in Wnt-
5a—containing medium for
3 d in the presence of fibro-
blasts. Cells expressing domi-
nant-negative AN-TCF ag-
gregated in Whnt-containing
medium, whereas cells ex-
pressing dominant-positive
TA-TCF failed to aggregate
in the absence of Wnt pro-
teins.

Wnt proteins. Similarly, terminal differentiation markers,
including transcripts for contractile proteins cTpC and
B-MHC and for the peptide hormone, BNP, were exclusively
expressed in the cardiac myocytes-rich pool and were un-
affected by Wnt proteins (Fig 12). Although we cannot
rule out the possibility that small differences between gene
transcripts could be masked by RT-PCR, Wnts probably
have little if any effect on the transcriptional regulation of
cardio-specific genes in cells derived from fetal hearts.

Discussion

Heart development in vertebrates and Drosophila is initi-
ated by bilaterally symmetrical primordia that may be of
equivalent embryological origin: the anterior lateral plate
mesoderm in vertebrates and the dorsal mesoderm in ar-
thropods. These mesodermal progenitors then merge,
forming a heart tube at the ventral midline in the case of
the former or in the dorsal midline in the case of the latter.
In Drosophila, Wg is known primarily for its ectoderm
patterning function (for review see Nusse and Varmus,
1992; Perrimon, 1994) and for specifying neuroblast iden-

237



Cardiac myocytes

12h

Cardiac myocytes

IS: anti-BrdU

Fibroblasts

Fibroblasts

Wnt-3a
HEE Wnt-5a
100 3 Control

80

60

40

20

BrdU-positive nuclei/ total nuclei (%)

Fibroblasts

Figure 11. BrdU incorporation into cardiac myocytes and fibroblasts was unaffected by Wnt proteins. (A) Representative immunocy-
tochemical staining of cardiac myocytes and fibroblasts incubated in Wnt-5a—-containing medium for 3 d and then with 20 uM BrdU in
the same medium for either 1 or 12 h. BrdU-labeled cells were immunostained with anti-BrdU IgG, followed by FITC-conjugated anti—
mouse 1gG. (B) Histogram showing the frequency of BrdU-labeled nuclei in fibroblasts incubated in control (white bar), Wnt-3a-con-
taining (hatched bar), or Wnt-5a—containing (black bar) medium for either 1 or 12 h.

tity (Chu-LaGraff and Doe, 1993). In addition, at the stage
that dorsal mesoderm is subdivided into somatic, visceral,
and cardiac mesoderm, Wgq is required for induction of
cardiac, but not visceral, mesoderm (Wu et al., 1995; Park
et al., 1996, 1998). The product of decapentaplegic (dpp),
a member of the TGF-B superfamily secreted from ecto-
derm, was also found to induce visceral and cardiac meso-
derm (Staehling-Hampton et al., 1994; Frasch, 1995). The
concerted actions of Wg and dpp thus appear to be re-
quired for determination of cardiac cell fate in Dro-
sophila. On the other hand, no vertebrate Wnt genes in-
volved in cardiogenesis have yet been found, even though
some have been detected in the developing mammalian
heart (Monkley et al., 1996). Therefore, we hypothesize
that in mammalian hearts the central role of Wnt may be
to exert a morphological rather than a cardiogenetic ef-
fect.

We observed that rat cardiac myocytes secrete Wnt-5a,
which promotes their aggregation in the presence of fibro-
blasts. Using dominant negative constructs of frizzled-2
and -4, we further showed that the receptor mediating the
morphological effects of Wnt-3a and -5a was frizzled-2.
There is ample evidence that the biological effects of Wnt
can be mediated by coexpressed frizzled functioning as
the Wnt receptor. For instance, in Xenopus before mid-
blastula transition, overexpression of Wnt-1, -3a, -8, and
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-8b induces axis duplication by stabilizing B-catenin (Moon
etal., 1993; Cui et al., 1995; Du et al., 1995), whereas over-
expression of Wnt-5a does not, and may even antagonize
induction of axis duplication by Wnt-1 (Torres et al., 1996).
But when human frizzled-5 is coexpressed, it serves as a
receptor for Xwnt-5, mediating axis duplication (He et al.,
1997). After midblastula transition, the same overexpres-
sion of Wnt-5a stabilizes B-catenin (Larabell et al., 1997),
which might be explained by the presence of newly synthe-
sized Wnt receptors allowing Wnt-5a to activate an intra-
cellular pathway that stabilizes B-catenin. Moreover, in
zebrafish embryos, frizzled-2 causes an increase in the
release of intracellular Ca?* which is enhanced by Xwnt-
5a (Slusarski et al., 1997). Thus, Wnt-5a and other Wnts
may couple to multiple frizzleds that may in turn signal
along multiple pathways (for review see Miller et al.,
1999).

The biological effects of Wg are also regionally regu-
lated by the distribution and level of frizzled expression in
Drosophila (Cadigan et al., 1998), which limits the effec-
tive range of diffusion of secreted Wg proteins to, at most,
20 cell diameters from their secretion site (Zecca et al.,
1996). Regarding the functional role of the Wnt/frizzled
signaling pathway in mammalian heart, it is noteworthy
that frizzled-2 is induced in infarcted and hypertrophied
hearts in rodents (Blankesteijn et al., 1996, 1997). In that
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Figure 12. Wnt proteins did not change transcripts for markers of
early cardiogenesis and terminal differentiation by using semi-
guantitative RT-PCR. Samples of total RNA (1 ng) were ex-
tracted from cardiac myocytes incubated with control or Wb5a-
containing medium, and RT-PCR was performed as described in
Materials and Methods. In all cases, the specificity of the ampli-
fied band was confirmed by Southern blot hybridization to corre-
sponding *2P-labeled oligonucleotide probes. Three independent
batches of RNA from different experiments gave the same re-
sults as shown here.

context, our findings suggest that Wnt-5a may play a role
in remodeling injured hearts through binding to increased
frizzled-2.

The interaction between catenins and cadherin is known
to be crucial for the formation and strength of Ca?*-depen-
dent, cell-cell adhesions (for review see Kemler, 1992;
Nagafuchi et al., 1993). B-Catenin is a component of adhe-
sion junctions and has been shown to physically associate
with the cadherin cytoplasmic domain. We observed that
modulation of B-catenin by Wnt-3a and -5a was in concert
with similar changes in the abundance of cadherin in both
cardiac myocytes and fibroblasts. Increases in complexed
B-catenin, immunoprecipitated from these cells using anti-
bodies against N- and E-cadherin, confirmed that B-cate-
nin and cadherin colocalize at cell-cell interfaces; that
is, the adhesion between cells was cadherin-based. Consis-
tent with that conclusion, anti-N-cadherin antibodies pre-
vented the morphological effects of Wnt proteins. In ear-
lier studies using suspensions of PC-12, C57MG, and
AtT20 mammalian cell lines, overexpression of Wnt-1 in-
duced Ca®"-dependent reaggregation in parallel with in-
creased expression of cadherins and B-catenin (Bradley
et al.,, 1993; Hinck et al., 1994). Neither study, nor ours,
showed an increase in mMRNA of cadherin nor B-catenin,
indicating the posttranscriptional stability of two proteins
by Wnts. Thus, cell-cell adhesion between cardiac myo-
cytes is apparently strengthened by Wnt-evoked stabiliza-
tion of cadherin—B-catenin complexes, thereby inducing
aggregation of cardiac myocytes. This notion is supported

Toyofuku et al. Wnt/frizzed-2 Sgnaling on Cardiac Myocytes

by the finding that overexpression of constitutively active
B-catenin promoted aggregation of cardiac myocytes, even
without Wnt.

Catenins also function in cadherin-independent signal-
ing pathways that regulate differentiation and cell prolif-
eration (for review see Cadigan and Nusse, 1997). Free
B-catenin is known to interact with TCF-1/LEF1 transcrip-
tion factors and to activate target genes (Behrens et al.,
1996; Molenaar et al., 1996; van de Wetering et al., 1997).
For example, Wnt-1 increases levels of homeobox genes
such as mouse engrailed-1, which is important for ver-
tebrate neural development (Danielian and McMahon,
1996). Furthermore, injection of TCF mutants into Xeno-
pus embryo blocks both endogenous axis formation and
the ability of ectopic B-catenin to induce a secondary axis
formation (Molenaar et al., 1996). By contrast, in this
study, overexpression of neither a dominant-negative nor
a dominant-positive TCF mutant affected aggregation, in-
dicating that the p-catenin/TCF gene activation pathway
has little or no impact on Wnt-induced stabilization of the
cadherin—B-catenin complex.

We also examined whether Wnt proteins might induce
proliferation and/or differentiation via a -catenin/TCF gene
activation pathway in neonatal heart cells. However,
BrdU-labeling and semiquantitative RT-PCR analysis of
markers of early cardiogenesis (GATA-4, Nkx2.5, and
MEF-2C) and terminal differentiation (Troponin-C, 3-MHC,
and BNP) both indicated that Whnt has little if any effect
on the transcriptional regulation of cardio-specific genes
in cells derived from fetal hearts and suggested that there
are few if any precardiac cells capable of differentiating in
response to Wnt.

The morphological changes evoked by Wnt in cardiac
myocytes required the presence of fibroblasts. Plating car-
diac myocytes on various matrices, including I-laminine,
fibronectin, and collagen, or culturing the cells in fibro-
blast-conditioned, Wnt-containing medium had no effect
on aggregation, suggesting that direct contact between
myocytes and fibroblasts is necessary for the induction of
aggregation. Although the molecular mechanism remains
unknown, one possible explanation may be derived from
the finding that different cadherin isoforms are induced in
cardiac myocytes and fibroblasts. Since Wnt proteins in-
duced N-cadherin in cardiac myocytes, and E- and M-cad-
herin in fibroblasts, homotypic cell-cell adhesion between
myocytes and fibroblasts should be strengthened by in-
creasing homophilic binding of N- and E-cadherin, respec-
tively. It may be that strengthening homotypic cell-cell ad-
hesion distinguishes cardiac myocytes from fibroblasts,
enabling their subsequent aggregation on the surface of fi-
broblasts.

Although the specific role of Wnt-mediated cell adhe-
sion in the formation of various organ compartments is not
known, an effect of Wnt on the regulation of intercellular
gap junctions has been demonstrated in Xenopus embryos,
in vivo (Olson et al., 1991). Cadherin-mediated cell adhe-
sion appears to be a prerequisite for gap junction forma-
tion in several cell types (Jongen et al., 1991; Gumbiner
et al., 1988), and the abundance of gap junctions can be
regulated by both cadherin (Mege et al., 1988) and Wnt
(Meyer et al., 1997; van der Heyden et al., 1998). In our
study, electrophysiological experiments carried out in our
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laboratory have thus far shown gap junctional conduc-
tance to be unaffected by the morphological changes in-
duced in cardiac myocytes by Wnt (data not shown).

Tissue formation requires coordinated cell proliferation
and morphogenetic movement of groups of cells (for re-
view see Gerhart and Keller, 1986). During these events,
the integrity of cell groups is maintained by cell-cell adhe-
sion, but at the same time, the cells must proliferate and
must slide past or dissociate from other groups of cells (for
review see Gumbiner, 1996). The induction of differentia-
tion during the formation of skeletal muscle is necessarily
preceded by aggregation of precursor cells (Edwards et al.,
1983; Skerjanc et al., 1994). This requirement for close
contact between similar cells during skeletal muscle myo-
genesis is known as the community effect, which is impor-
tant for differentiation of somites, cell lines, and embry-
onic stem cells into skeletal muscle (for review see Gurdon
et al., 1993; Kato and Gurdon, 1994; Skerjanc et al., 1994;
Cossu et al., 1995). Cadherin-mediated adhesion has been
implicated in the community effect, as well as in skeletal
muscle differentiation (for review see Gurdon et al., 1993;
George-Weinstein et al., 1997). Similarly, at an early stage
of vertebrate heart development, the N-cadherin/B-cate-
nin complex is involved in demarcating the boundary sep-
arating ventral and dorsal mesoderm, and it is within the
resultant clusters of N-cadherin—containing dorsal meso-
derm that the commitment and phenotypic differentiation
of cardiac myocytes proceeds (Linask, 1992; Linask et al.,
1997). The developmental stage of these events is analo-
gous to the stage at which Wg induces cardiac mesoderm
in Drosophila (Wu et al., 1995; Park et al., 1996). There-
fore, we hypothesize that by modulating the interaction of
cadherin and catenin, Wnt proteins play a central role in
the morphogenetic translocation of cardiac precursor cells
during development of the heart-forming region.
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