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ABSTRACT Clathrin triskelia and carbon atoms alike self-assemble into a limited selection of fullerene cages (with n three con-
nected vertices, 3n/2 edges, 12 pentagonal faces, and (n�20)/2 hexagonal faces). We show that a geometric constraint—
exclusion of head-to-tail dihedral angle discrepancies (DADs)—explains this limited selection as well as successful assembly into
such closed cages in the first place. An edge running from a pentagon to a hexagon has a DAD, since the dihedral angles about
the edge broaden from its pentagon (tail) end to its hexagon (head) end. Of the 21 configurations of a central face and surrounding
faces, six have suchDAD vectors arranged head-to-tail. Of the 5770mathematically possible fullerene cages for n# 60, excluding
those with any of the six configurations leaves just 15 cages plus buckminsterfullerene (n ¼ 60), among them the known clathrin
cages.Of the216,739mathematically possible cages for 60,n#84, just the 50 that obey the isolated-pentagon rule, among them
known carbon cages, pass. The absence of likely fullerenes for some n (30,34,46,48,52–58,62–68) explains the abundance of
certain cages, including buckminsterfullerene. These principles also suggest a ‘‘probable roads’’ path to self-assembly in place of
pentagon-road and fullerene-road hypotheses.

INTRODUCTION

Although the term ‘‘fullerene’’ was applied initially by

chemists to closed cages assembled from carbon atoms in

1985 (1), biologists were already familiar with fullerene cages

(2,3) assembled from the protein clathrin (4,5). Such cages

have n three-connected vertices, 3/2n edges, 12 pentagonal

faces, and (n� 20)/2 hexagonal faces. Moreover, both carbon

atoms, each just 12 Daltons, and clathrin trimers (triskelia)

(6–8), each with mass ;50,000 times as much (6–11), self-

assemble into fullerene cages of a variety of sizes and shapes

(2–5,12,13). Carbon does this from the gas phase at temper-

atures around 1200�C (14–16). Clathrin does this inside cells,

where it self-assembles around inwardly budding patches of

membrane (13,17) to encapsulate vesicles of different sizes

(2,3,5,18,19). It does so at two sites: It withdraws such patches

from successive compartments of the trans-Golgi network

and from the plasmamembrane (5,13,20,21). At the latter site,

the area of synaptic vesicle membrane taken up by clathrin-

mediated endocytosis determines the size of neurotransmitter-

filled synaptic vesicles and the amount of neurotransmitter

in each quantum that is subsequently released at the syn-

apse (22).

Fig. 1 A shows stereoviews of four fullerene cages. Fig. 2

A shows the same four cages but in a more convenient form,

a two-dimensional representation called a Schlegel diagram.

Clathrin self-assembles into these (2,3,12,19,23) and larger

cages. Cage 28-2 is the second of two cage isomers with 28

vertices. Cages 36-14 and 36-15 are the 14th and 15th of 15

cage isomers with 36 vertices (24). Cage 60-IPR-1 is the best

known fullerene cage, the soccer ball with 60 vertices, long

known to mathematicians as the truncated icosahedron. The

truncated icosahedron is the smallest fullerene cage that has

no adjacent pentagons, so it is the smallest isolated-pentagon

rule (IPR) cage (25,26). Carbon famously self-assembles into

this C60 cage, which the chemists named ‘‘buckminsterful-

lerene’’ or the ‘‘buckyball’’ (1). Carbon also self-assembles

into many larger cages, including the one IPR isomer of C70

(27), very large, elongated nanotubes (28), and the small 36-

15 cage (29,30). Clathrin also self-assembles into nanotube-

type structures (31).

We refer to the fullerene cages in Figs. 1A and 2A, the ones
that clathrin triskelia and carbon atoms have been shown to

form, as probable. One can draw another isomer with 28

vertices—the 28-1 cage in Figs. 1 B and 2 B—and another 13

isomerswith 36 vertices, three ofwhich (36-1, 36-7, and 36-9)

are also shown in Figs. 1 B and 2 B (24). We refer to these

other cages, ones not observed experimentally, as ‘‘improb-

able’’.

Here we pose and answer two questions. First, why do

certain fullerene isomers self-assemble but others do not?

Second, how is it possible for carbon and clathrin to

successfully assemble into closed fullerene cages in the first

place when so many paths lead to defective structures?

Fowler and Manolopoulos (24) number fullerenes in order

of production by the pentagon spiral algorithm (32) that is

able to produce a complete set of cage isomers for n , 100

(33), ordered so that low numbered isomers (e.g., 36-1 in

Fig. 2 B) have the most bunched pentagons, whereas high
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numbered isomers (e.g., 36-15 in Fig. 2 A) have the most

dispersed pentagons. For cages with 60 vertices, the highest

numbered isomer is 60-1812 (34). It is also the first (and

only) IPR isomer among the 1812 mathematically possible

cages with 60 vertices, so it may be numbered 60-IPR-1 as

well. The next larger IPR cage has 70 vertices, and then IPR

cages are possible for every even n . 70 (Table 1) (24).

Until the 36-15 carbon cage was isolated and identified in

1998 (16), all of the isolated empty carbon cages before (and

since) have been IPR cages (35). Therefore, the best known

rule for predicting which fullerenes can self-assemble and

which cannot is the isolated pentagon rule itself (25,26). The

self-assembly of small fullerenes, clathrin with n ¼ 28 and

36 triskelia and others (18) and more recently carbon with

n ¼ 36 (29) and perhaps 32, 44, and 50 (36,37), shows that

the isolated pentagon rule is not the answer to the first ques-

tion, at least not the whole answer.

However, the isolated pentagon rule is a specific instance

of a more general rule that for each n favors those isomers

with the smallest number Np of pentagon pairs. This number

is also equal to the number of edges between adjacent pen-

tagons (Fowler and Manolopoulos (24)). For example, the

(probable) cages in Figs. 1 A and 2 A have the lowest Np

among all cages with their number n of vertices: Probable

cage 28-2 has 18 pentagon pairs, whereas improbable cage

28-1 has 20. Likewise, probable cages 36-14 and 36-15 have

12 pentagon pairs, whereas improbable cages 36-1, 36-7, and

36-9 have 16, 14, and 13, respectively. (For IPR cages, Np ¼
0.) Not surprisingly, the highest numbered isomers (e.g., 36-

14 and 36-15), the ones with the most dispersed pentagons,

generally—but not always—have the lowest Np. (See Table

4.1 in Fowler and Manolopoulos (24).)

Among carbon cages of any n, it is argued that the isomers

with the fewest pentagon pairs (Table 1) are the most stable

(25,26) on purely steric or geometric grounds (24), so the least-

Np rule could apply to clathrin as well as carbon. However, the

differences, 18 vs. 20 and 12 vs. 13–16 pentagon pairs, are

small.Moreover, the existence of probable small clathrin cages

28-2, 36-14, and 36-15 and the probable small carbon cage

36-15 (Fig. 2 A) demonstrate that pairs of adjacent pentagons

(as found in 36-14 and 36-15) or even triplets of adjacent

pentagons (as found in28-2), configurations that are associated

with high discrete curvature and steric strain (24,25), do not

rule out self-assembly. Nonetheless, the least-Np rule raises the

hope that a single geometric rule could select for both carbon

and clathrin which fullerene isomers can self-assemble.

FIGURE 1 Stereopairs of fullerene cages. The

recipes for these fullerenes are found in Fowler and

Manolopoulos (24). (A) Probable fullerenes 28-2,

36-14, 36-15, and 60-IPR-1. Cage 28-2, the second

of two cage isomers with 28 vertices (19) and 4

hexagons, has tetrahedral (Td) symmetry. Cage 36-

14, the 14th of 15 cage isomers with 36 vertices and

8 hexagons, has D2d symmetry and is the second

(II) with that symmetry of the 15. Cage 36-15, the

15th of the 15 cage isomers with 36 vertices and 8

hexagons, has D6h symmetry. Cage 60-IPR-1 is the

only IPR cage of 1812 isomers with 60 vertices.

The clathrin versions of the first three have been

called the ‘‘mini-coat’’, the ‘‘tennis ball’’, and the

‘‘hexagonal barrel’’ (3,11). The last one has the

shape of a soccer ball. Mathematicians call it the

truncated icosahedron, and it has icosahedral (I)

symmetry (40). (B) Improbable fullerenes 28-

1 (D2), 36-1 [C2(I)], 36-7 [C1(II)], and 36-9 (C2v).
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Here, we propose such an explanation—a geometric con-

straint or rule—for why the cages we describe as improbable

are not observed. The new rule is also based purely on

geometric considerations and appears to apply to both clathrin

and carbon fullerenes. Specifically, we propose that those

configurations of a pentagonal or a hexagonal face and its five

or six surrounding faces that generate head-to-tail dihedral

angle discrepancies (DADs) are unlikely to self-assemble.

This geometric rule is consistent with the least-Np rule but is

more restrictive, allows self-assembly of just 15 (small) non-

IPR cages and all (large) IPR cages, provides a purely geo-

metric explanation for the isolated pentagon rule for large

(n. 60) fullerenes, and accounts for the abundance of the C60

buckyball.

The head-to-tail exclusion rule also answers the second

question: how carbon and clathrin successfully assemble into

closed fullerene cages in the first place. Fig. 3 illustrates the

problem. Fig. 3 A shows a spiral of pentagons and hexagons

added in the order 55656665556555566565 to produce cage

36-15. When we generated random lists of 20 faces and

selected 10 with exactly 12 pentagons, not one produced a

closed fullerene cage. Fig. 3 B shows an example of one of

those failures. The failures are not surprising, since random

addition of 20 faces, each a pentagon or a hexagon, would

generate 220 ¼ 1,048,576 different lists, very few of them

specifying any of the 15 closed fullerene cages with 36 ver-

tices. Constraining the process to random orderings of 12

pentagons and 8 hexagons helps but still generates an over-

whelmingly large number of lists, 20!/(12! 3 8!) ¼ 125,970

(32), nearly all unproductive. The head-to-tail exclusion rule

answers this second question by permitting self-assembly

only along pathways that lead to probable cages, all of which

are closed fullerene cages. We therefore propose a probable

roads hypothesis that provides insight generally into the

nature of successful self-assembly.

METHODS

The pentagon spiral algorithm (32) produces all of the possible fullerene

cages for all n , 100 vertices but misses one with n ¼ 100 vertices (33).

Based on a productive algorithm (38), the Carbon Generator (CaGe) pro-

gram (www.mathematik.uni-bielefeld.de/;CaGe/) can produce all of the ful-

lerenes for any n without exception. We used the CaGe program to generate

postscript versions of Schlegel diagrams and then Adobe Illustrator (Adobe

Systems, Mountain View, CA) to make figures from these postscript files.

We also used the CaGe program to generate Protein Data Bank (pdb) files

that contain three-dimensional coordinates of vertices and their connectivity.

We created carbon fullerene cage frameworks from these pdb files with PC

Spartan Pro (Wavefunction, Irvine, CA).

We computed equilibrium geometry for carbon cages and clathrin-

analogous cages. The vertices in carbon cageswere carbon atoms. In that case,

wemaximized the assignment of double bonds first to edges between adjacent

hexagons (66 edges), then to 56 edges, and lastly to 55 edges, and then we

used Spartan04 to compute the equilibrium geometry of these cages with

semiempirical (PM3) quantummechanical calculations. For clathrin-analogous

cages, we used Molecular Mechanics (MMFF94 (39–43)) to compute equi-

librium geometry, where each vertex was a customizable ‘‘X atom’’ with the

Van der Waals radius and single-bond length (1.5 Å) of carbon and with an

equilibrium bond angle of 116�. With only three bonds, these tetravalent,

carbon-like X atoms were charged, so we also set the coefficients for electro-

static interactions to zero. Spartan04 and Spartan06 also produced three-

dimensional coordinates of vertices, bond lengths, and bond angles of these

cages with equilibrium geometry.

We made these carbon and X cages for a heuristic purpose, to gain insight

into the cage structure that follows from competing constraints: bonding

patterns, location of single and double bonds, ideal bond lengths, ideal bond

angles, and force field constants. As the results show, different atoms and

different energy minimization algorithms make little difference. In the con-

text of constrained bond lengths and bond angles, connectivity of vertices in

fullerene cages—the geometry—dominates the structure. Based on pure ge-

ometry, we computed the three dihedral angles about the three edges emerging

from a vertex from the three bond angles at that vertex.

We used the Fullgen program (http://cs.anv.edu.au/;bdm/plantri/), writ-

ten by Gunnar Brinkmann (Gent University, Belgium) and Brendan McKay

(Australian National University) and a modification written by Gunnar

Brinkmann to produce a list of all the ‘‘Rings’’, one for each face, coded

with numbers like 6555656 as described in the section ‘‘DADs in ful-

lerenes’’ (see below) for each of the 222,509 fullerene cages with 20# n#

84 vertices. We used Microsoft Excel (Microsoft, Redmond, WA) to trans-

late these codes into Ring types with numbers like 643, as described in the

section ‘‘Improbable paths’’.

FIGURE 2 Schlegel diagrams for the probable (A) and improbable (B)
fullerene cages shown in Fig. 1.
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RESULTS

Bond angles are close to 108� and 120�

Faces in fullerene cages are either hexagons or pentagons. The

bond angles in regular hexagons and pentagons are 120� and
108�, respectively. The only fullerenes with regular faces—

equal side lengths and equal bond angles—throughout are the

dodecahedron with 20 vertices, 1 of the 5 Platonic or regular

polyhedra, and the truncated icosahedron or soccer ball with 60

vertices, one of the 13 Archimedean semiregular polyhedra (44).

All other fullerenes have some irregular faces, where the bond

angles might deviate considerably from these ideal values. More

TABLE 1 Characteristics of fullerenes with 20 # n # 84 vertices

IDs of probable cages

n Faces Hexs

Graphically

possible

Cages

IPR

cages

Lowest

Np

for each n

Number of

lowest Np

isomers

IDs of

isomers with

lowest Np

Number

of probable

cages FM Schonflies

20-60 5770 1 35 16

20-70 30,579 2 56 17

60-84 218,551 51 71 52

20-84 222,509 51 105 66

20 12 0 1 0 30 1 1 1 1 Ih
24 14 2 1 0 24 1 1 1 1 D6d

26 15 3 1 0 21 1 1 1 1 D3h

28 16 4 2 0 18 1 2 1 2 Td

30 17 5 3 0 17 1 3 0

32 18 6 6 0 15 1 6 1 6 D3

34 19 7 6 0 14 1 5 0

36 20 8 15 0 12 2 14, 15 2 14, 15 D2d(II), D6h

38 21 9 17 0 11 1 17 1 17 C2(V)

40 22 10 40 0 10 2 38, 39 2 38, 39 D2(III), D5d(II)

42 23 11 45 0 9 1 45 1 45 D3

44 24 12 89 0 8 2 75, 89 2 75, 89 D2(III), D2(VI)

46 25 13 116 0 8 7 99,103,107,108,109,114,116 0

48 26 14 199 0 7 4 171, 196, 197, 199 0

50 27 15 271 0 5 1 271 1 271 D5h(II)

52 28 16 437 0 5 1 422 0

54 29 17 580 0 4 1 540 0

56 30 18 924 0 4 4 843, 864, 913, 916 0

58 31 19 1205 0 3 1 1205 0

60 32 20 1812 1 0 1 1812 (IPR-1) 2 1784, 1812 (IPR-1) D6h(II), Ih
62 33 21 2385 0 3 3 2184, 2377, 2378 0

64 34 22 3465 0 2 3 3451, 3452, 2378 0

66 35 23 4478 0 2 3 4169, 4348, 4466 0

68 36 24 6332 0 2 11 6073,6094,6146,6148,6149,6195,

6198,6269,6270,6290,6328

0

70 37 25 8149 1 0 1 All IPR 1 All IPR

72 38 26 11190 1 0 1 All IPR 1 All IPR

74 39 27 14246 1 0 1 All IPR 1 All IPR

76 40 28 19151 2 0 2 All IPR 2 All IPR

78 41 29 24109 5 0 5 All IPR 5 All IPR

80 42 30 31924 7 0 7 All IPR 7 All IPR

82 43 31 39718 9 0 9 All IPR 9 All IPR

84 44 32 51592 24 0 24 All IPR 24 All IPR

86 45 33 63761 19 0 19 All IPR

88 46 34 81738 35 0 35 All IPR

90 47 35 99918 46 0 46 All IPR

92 48 36 126409 86 0 86 All IPR

94 49 37 153493 134 0 134 All IPR

96 50 38 191839 187 0 187 All IPR

98 51 39 231017 259 0 259 All IPR

100 52 40 285913 450 0 450 All IPR

The number of hexagons (hexs) is (n � 20)/2. With 12 pentagons, the number of faces is 12 more. The number of graphically possible cages and graphically

possible cages that obey the isolated pentagon rule (IPR cages) were counted by use of the Fullgen program or the CaGe program, which use a productive

algorithm (38). For each n, the isomer with the lowest number of pentagon pairs (Np) is listed according to the (FM) isomer numbering in Fowler and

Manolopoulos (24). These lowest Np values are listed in Table 4.1 of Fowler and Manolopoulos. Probable cages have no improbable Rings, and the number

and identify of these are listed for each n. Cages with 84 , n # 100 were not investigated with respect to improbable rings.
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particularly, it might be supposed that the bond angles in im-

probable cages deviate considerablymore from ideal values than

those in probable cages. Using Spartan, we modeled probable

cages 28-2, 36-14, 36-15, and 60-IPR-1 (Figs. 1 A and 2 A) and
improbable cages 28-1, 36-1, 36-7, and 36-9 (Figs. 1 B and

2 B) as carbon cages, with carbon atoms and optimal place-

ment of double bonds, and as clathrin-analogous cages, with

customizable X atoms and exclusively single bonds.

As shown by the unfilled bars in Fig. 4 A, all of the bond
angles in probable carbon cages 28-2, 36-14, and 36-15 were

close to ideal values. Means were close to 108� and 120�,

and standard deviations were small,;1� in pentagons and up
to 1.7� in hexagons. The greatest deviations from the ideal

108� in pentagons were 3.51�, 1.30�, and 1.67�, respectively.
The greatest deviations from the ideal 120� in hexagons were
1.35�, 2.82�, and 2.56�.
As shown by the unfilled bars in Fig. 4 B, bond angles in

improbable carbon cages 28-1, 36-1, 36-7, and 36-9 were

also close to ideal. Means were close to 108� and 120�, and
standarddeviationswere similarly small,;1� in pentagons and
up to 1.9� in hexagons. The greatest deviations in pentagons

were 2.22�, 2.95�, 3.16�, and 2.36�, respectively. The greatest
deviations in hexagons were 2.09�, 4.31�, 3.36�, and 2.12�.
As shown by the filled bars in Fig. 4, A and B, angles in

clathrin-analogous cages deviated even less from the ideal

108� in pentagons and 120� in hexagons.

Bond angles routinely vary by 12�, the difference between a
bond angle in a pentagon and a bond angle in a hexagon, so

these deviationsmaybe regarded asminor. Thus, a significantly

greater deviation in bond angle does not explain why improb-

able cages do not self-assemble whereas probable cages do.

Dihedral angles at a vertex

That bond angles vary by so little from ideal values suggests

that it would be productive to investigate fullerene cages

with the assumption that bond angles in hexagons and pen-

tagons are the ideal 120� and 108�. Since all of the faces in
fullerene cages are hexagons (6) or pentagons (5), and all of

the vertices are trivalent, fullerenes have just four types of

vertex: 666, 566, 556, and 555 (Fig. 5).

Each triplet of bond angles at a vertex determines the three

dihedral angles at that vertex. For example, the dihedral

angle between the two filled planes associated with one of

the edges emerging from the 666 vertex in the uppermost left

part of Fig. 5 is 180�. Hexagons thus tile a plane. At the other
extreme, the dihedral angles about the edges emerging from

the 555 vertex in the lowermost part of Fig. 5 are 116.6�.
(Compare the stereoversions of these vertices on the right

side of Fig. 5.) All of the vertices in a dodecahedron (n ¼
20), with 12 pentagons and no hexagons, are 555 vertices,

and all of the dihedral angles are 116.6�, so this smallest

fullerene is close to spherical in shape. The dihedral angles

about a 566 vertex are 138.2� about the 66 edge and 142.6�
about the each of the two 56 edges (Fig. 5, second row). All
of the vertices in buckminsterfullerene are of this type,

and all of the dihedral angles are thus close to 140�, so this

fullerene is also close to spherical in shape, a useful property

for a soccer ball. Insofar as the bond angles are ideal, dihedral

angles in fullerenes are fully determined by the types, penta-

gon or hexagon, of the three faces at each vertex.

The two dihedral angles about one edge may
be different

Each edge in a fullerene is related to a quartet of faces. The

central (bold) edge in Fig. 6 A, for example, is coded 66-56,

FIGURE 3 Randomgrowth is unlikely to produce a closed fullerene cage. (A)

The order for spiral addition of faces for cage 36-15 is 55656665556555566565,

where ‘‘5’’ specifies a pentagon and ‘‘6’’ specifies a hexagon. This list, which

comes from a ‘‘recipe’’ for making 36-15 (Fowler and Manolopoulos (24)) that

consists of the positions of the 12 pentagons (1,2,3,4,8,9,10,12,13,14,15,18,20).

Lists for 36-15 could start on any of the 20 faces and go backward as well as

forward, in this case without any replicates, a total of 40 lists. The 36-15 cage

shown by this Schlegel diagram is the same as the one shown by the Schlegel

diagram in Fig. 2 A but centered on a different face. (B) An example of a ran-

dom order for spiral addition of faces with 12 pentagons and 8 hexagons is

66555656566655555556.After addition of the 20th face, the two circled vertices

are not three-connected, and no further addition of faces could produce a closed

fullerene.

962 Schein and Sands-Kidner

Biophysical Journal 94(3) 958–976



the first pair of numbers representing the two end faces (6

and 6), the second pair the two side faces (5 and 6). The

dihedral angle about the central edge at its left end is 142.6�,
marked on the left side of Fig. 6 A. We show the same

(central) edge on the right side of Fig. 6 A, but here we mark

the dihedral angle about its right end, also 142.6�. They are

the same because the two vertices necessarily have the same

side 5 and 6 faces and happen to have the same end faces, a 6

for the left vertex and a 6 for the right. Because the dihedral

angles about the central edge at its left and right vertices are

the same, the upper left, center, and upper right edges may be

coplanar, in which case the lower left, center, and lower right

edges would be coplanar as well.

The central edge illustrated in Fig. 6 B is coded 56-66.

Again, the same (central) edge is represented on the left and

right sides of the figure. The dihedral angle about the central

edge at its left end is 138.2�, whereas the dihedral angle about
the central edge at its right end is 180�. The difference arises
because, even though the left and right vertices necessarily

have the same side (6 and 6) faces, they have different end

faces, 5 on the left and 6 on the right. The dihedral angle about

the central edge thus increases by 41.8� from the left (5-end) to

the right (6-end). This DAD has a direction, so it is drawn as a

vector that points from the 5-end to the 6-end in later figures.

Physically, then, the (dihedral) angle between pairs of planes

about the central edge increases from the 5-end to the 6-end.

FIGURE 4 Bondangles in bothprobable fullerene

cages (A), and improbable fullerene cages (B) were

close to 108�, the bond angle in a regular pentagon,

and 120�, the bond angle in a regular hexagon. The

data represented by unfilled and filled bars were

obtained from cages composed of carbon atoms and

of clathrin-analogous atoms, respectively. To com-

pute equilibrium geometry of carbon cages, we used

semiempirical (PM3) quantum mechanical calcula-

tions after maximizing assignment of double bonds

first to edges between adjacent hexagons (66 edges),

then to 56 edges, and lastly to 55 edges. To compute

equilibrium geometry of clathrin-analogous cages,

we used molecular mechanical (MMFF94) calcula-

tions on cages with exclusively single bonds. Bins in

the histograms are 0.5� wide; for example, the 108�
bin contains angles x such that 107.75� , x #

108.25�. Mean 6 1 SD is shown for each group of

angles centered near 108� in pentagons and near 120�
in hexagons. Values placed lower in each part corre-

spond to the unfilled (carbon) bars, values placed

higher to the filled (clathrin-analogous) bars.
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Just nine different types of edge, that is, just nine differ-

ent types of face quartet, are possible (Fig. 7). Three of them,

56-66, 56-56, and 56-55, the ones in the center column of

Fig. 7, have different end faces and thus a DAD. The other

six have the same end faces, 5 and 5 or 6 and 6, and thus do

not have a DAD.

Fig. 8 A shows the three edges with a DAD again: The

56-66 edge discussed above (Fig. 6 B), with a DAD of 41.8�
(180�–138.2�), is colored green. The 56-56 edge, with a

DAD of 18.4� (142.6�–124.2�), is colored red. The 56-55

edge, with a DAD of 14.6� (131.2�–116.6�), is colored

blue. In Fig. 8 A, these colored edges are drawn as vectors

pointing from the 5-end to the 6-end, from the end with a

smaller (narrower) dihedral angle to the end with a larger

(broader) dihedral angle. The DAD vector thus points in

the direction of the broadening of the dihedral angles about

an edge.

Improbable paths

We refer to a face plus the faces around it as a Ring. Fig. 8 B
proves by construction that there are eight types of pentagon-

centered Ring (pent-Ring). Fig. 8 C proves by construction

that there are 13 types of hexagon-centered Ring (hex-Ring).

We number the Rings in combinatorial order. For example,

Ring 642 refers to a hexagon (6) with four pentagons around

it arranged in the second of the three different ways, as

shown for Rings 641, 642, and 643 in Fig. 8 C.
A face is fully described by a) the whole set of bond angles

about its five (or six) vertices, and b) the dihedral angles

about its five (or six) edges. Insofar as bond angles are ideal,

108� in pentagons and 120� in hexagons, the dihedral angles
about each of the center face’s edges are completely deter-

mined by the quartet of faces related to that edge, as was

shown in Fig. 7. Therefore, for each of the Rings in Fig. 8, B
and C, all of the bond angles and all of the dihedral angles

associated with a center face are completely determined by

the type (5 or 6) of the center face and the types (5 and 6) and

arrangement of the surrounding faces. This property of Rings

is a great virtue and makes them particularly useful for

geometric investigation.

Below, after some additional explanation focusing on

the edges of each Ring’s center face, we suggest that the two

pent-Rings marked with asterisks in Fig. 8 B and the four hex-

Rings marked with asterisks in Fig. 8 C are unlikely to self-

assemble in the first place, or if they do assemble, are unlikely

FIGURE 5 Four kinds of vertex: 666, 566, 556, and 555. A plane is defined

by three points. Two planes intersect at each of the three edges emerging from

a vertex. The angle that the two planes make with one another is a dihedral

angle. Assuming regular hexagons (bond angles¼ 120�) and pentagons (bond
angles ¼ 108�), the nature of the three faces (5 or 6) about a vertex fully

determines the three dihedral angles noted in the left column about the three

edges emerging from that vertex. These dihedral angles may be appreciated

from the stereofigures to the right.

FIGURE 6 If the faces at the ends of an edge are different, the dihedral

angle about the edge at one end is different from the dihedral angle about

the edge at the other end. (A) If the faces at the ends of the central edge are

the same, 6 and 6 in this case, the dihedral angles about the central edge

are the same at its left and right ends, 142.6� in this case, so there is no

DAD along this edge. This edge is labeled 66-56, the 66 for the two end

faces, the 56 for the two side faces. (B) If the faces at the ends of the

central edge are different, 5 and 6 in this case, the dihedral angles about

the central edge are different at its ends, 138.2� on the left, 180� on the

right. Therefore, the DAD is 41.8�, increasing and therefore broadening

from left to right, from the pentagon-end face to the hexagon-end face.

This edge is labeled 56-66, the 56 for the two end faces, the 66 for the two

side faces.
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to remain. As a result, self-assembly of fullerene cages that

contain any of these six improbable Rings would be improb-

able, and paths of self-assembly that avoid these improbable

Rings would avoid producing failed cages like the one in

Fig. 3 B.

DADs in Rings

The 501 and 551 pent-Rings and the 601, 633, and 661 hex-

Rings have no DADs (Fig. 8, B and C). The only structures

composed entirely of pentagons and hexagons that can be

constructed with these Rings are the dodecahedron (n ¼ 20)

FIGURE 7 The nine kinds of edge include six with the

same types of face (5 and 5 or 6 and 6) at the ends, hence

no DAD, and three with different types of face at the ends,

hence a DAD.

FIGURE 8 Types of Ring. (A) DAD is a vector, pointing from the pentagon end to the hexagon end, in the direction of broadening of the dihedral angle about

that edge. The three types of DAD are colored green, red, and blue. (B) The eight pent-Rings.Thenumerical codesare explained in the text.The twopent-Ringswith

head-to-tail DADs are marked with an asterisk. (C) The 13 hex-Rings. The numerical codes are explained in the text. The four hex-Rings with head-to-tail DADs are

marked with an asterisk.
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with just twelve 551 Rings, the truncated icosahedron (n ¼
60) with twelve 501 Rings and twenty 633 Rings, and a

plane of hexagons with just 601 Rings. Therefore, the only

fullerenes with no DADs are the dodecahedron and the trun-

cated icosahedron.

Most Rings do have DADs. Six of the eight pent-Rings in

Fig. 8 B have DADs, blue (56-55), red (56-56), or both. Ten

of the 13 hex-Rings in Fig. 8 C have DADs as well, red

(56-56), green (56-66), or both. Fig. 8 provides a proof by

construction that both pent-Rings and hex-Rings in fullerene

cages can have zero, two, or four edges with a DAD but not

one, three, five, or six edges with a DAD.

The existence of small fullerenes other than the dodecahe-

dron—like the ones in Figs. 1 A and 2 A that self-assemble from

clathrin and carbon, and all of the IPR fullerenes other than the

truncated icosahedron that self-assemble from clathrin and

carbon, including the famous IPR C70 cage—proves that

Rings with DADs are not forbidden. In some Rings adjacent

DADs point in opposite directions (e.g., the 623 and 642

Rings), so broadenings and narrowings may compensate for

one another.

Compensation is not possible in cases where adjacent

DADs point in the same direction, where a broadening is

followed directly by another broadening. The improbable

Rings that harbor these head-to-tail DADs are the 521 and

531 pent-Rings that are marked with asterisks in Fig. 8 B
and the 621, 631, 632, and 641 hex-Rings that are marked

with asterisks in Fig. 8 C. Both of the starred pent-Rings

and three of the four starred hex-Rings have two sets of

head-to-tail DADs; the 632 hex-Ring has just one set.

The physical justification for calling these Rings improb-

FIGURE 9 Schlegel diagrams for probable fullerenes (A) and improbable

fullerenes (B) with color-coded DADs. Faces with head-to-tail DADs are

marked with an asterisk.

FIGURE 10 Schlegel diagrams with each face labeled according to its

type of Ring for probable fullerenes (A) and improbable fullerenes (B). Faces
with improbable Rings, that is, those that have head-to-tail DADs, are also

marked with an asterisk.
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able, that their assembly would have to complete severely

nonplanar surround faces, is presented in detail in the com-

panion work (45).

DADs in fullerene cages

We apply these concepts to whole fullerene cages in Fig. 9.

As in Fig. 8 A, we code each 56-66, 56-56, and 56-55 edge

with a green, red, or a blue vector, ideally representing 41.8�,
18.4�, or 14.6� of DAD. We also label each face with an

asterisk if it contains head-to-tail DADs among its edges.

The probable fullerene cages in Fig. 9 A (28-2, 36-14, 36-15,

and 60-IPR-1) have no head-to-tail DADs and thus none of

the improbable Rings. By contrast, the improbable fullerene

cages in Fig. 9 B (28-1, 36-1, 36-4, and 36-9) have head-to-

tail DADs and thus improbable Rings.

To search among large numbers of fullerene cages for

those that have improbable Rings and those that have none, it

is convenient to identify all of the faces in a fullerene by their

type of Ring, as we have done in the examples shown in Fig.

10. Table 2 shows the results for the two fullerene cages with

n ¼ 28 and the 15 cages with n ¼ 36 vertices. In this table

only the 28-2, 36-14, and 36-15 cages have no improbable

Rings, exactly the three small cages into which clathrin self-

assembles. Table 2 also shows that among the improbable

fullerene cages with n ¼ 28 and n ¼ 36, the smallest number

of improbable Rings is not one but two, and the smallest

number of head-to-tail DADs is four.

To be able to characterize the organization of DADs in the

222,509 graphically possible fullerene cages for 20# n# 84,

as enumerated in Table 1, we took several steps. First, we

encoded every Ring in Fig. 8 by the type of center face (5 or 6)

and the type of every surrounding face (5 or 6) in order. For

example, hex-Ring 643 in Fig. 8C is a hexagon (6) surrounded

by four pentagons and two hexagons in this order, clockwise

from the pentagon at the top left: 5, 5, 5, 6, 5, and 6. Thus, hex-

Ring 643 could be encoded by the seven-digit number, the

center face type followed by the surrounding face types, hence

6555656. Because the encoding of the surrounding faces could

start on a different face, still in clockwise order, it also could be

encoded by these seven-digit numbers: 6556565, 6565655,

6656555, 6565556, and 6655565. Finally, the order of the sur-

rounding faces could be counterclockwise, producing another

six encodings: 6565655, 6656555, 6565556, 6655565,

6555656, and 6556565.

Likewise, pent-Ring 511 in Fig. 8 B is a pentagon (5)

surrounded by one pentagon and four hexagons and could be

encoded by any of five six-digit numbers. In clockwise order

these are 556666, 565666, 566566, 566656, or 566665; the

counterclockwise order produces the same encodings.

Second, for each fullerene cage, we used the Fullgen pro-

gram and a modification written by Gunnar Brinkmann to

produce a list of all of its Rings encoded as above, each hex-

Ring by a seven-digit number and each pent-Ring by a six-

digit number. Third, we converted the list of Rings (e.g.,

TABLE 2 The content of Ring types for both fullerenes with n ¼ 28 and all 15 fullerenes with n ¼ 36

n 28 28 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36

Isomer ID 1 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

No. of Rings 16 16 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

Improb Rings 4 0 12 16 10 15 12 4 7 7 4 8 2 4 12 0 0

501 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

511 0 0 2 0 1 0 0 4 1 1 0 0 2 0 0 0 0

521* 0 0 2 4 5 5 0 0 2 5 2 2 2 4 6 0 0
522 0 0 0 0 0 0 4 0 4 1 8 6 4 6 0 12 12

531* 4 0 4 4 2 4 4 4 2 2 2 0 0 0 6 0 0
532 4 12 2 0 3 2 4 4 3 3 0 4 4 2 0 0 0

541 4 0 2 4 1 1 0 0 0 0 0 0 0 0 0 0 0

551 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

601 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

611 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

621* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
622 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

623 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

631* 0 0 0 4 0 0 4 0 0 0 0 0 0 0 0 0 0
632* 0 0 4 4 2 4 0 0 1 0 0 2 0 0 0 0 0
633 0 0 0 0 1 0 0 0 0 1 0 0 0 0 2 0 0

641* 0 0 2 0 1 2 4 0 2 0 0 4 0 0 0 0 0
642 0 0 0 0 1 1 0 0 1 2 4 0 0 2 6 4 6

643 0 0 2 0 2 1 0 8 3 4 2 0 6 4 0 0 0

651 4 0 0 0 1 0 0 0 1 1 2 2 2 2 0 4 0

661 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

The FM isomer numbering follows Fowler and Manolopoulos (24). The rows with bold numbers represent the improbable Rings, that is, the ones with head-

to-tail DADs. A fullerene with 28 vertices has 12 pentagons and 4 hexagons, hence 12 pent-Rings and 4 hex-Rings. A fullerene with 36 vertices has 12 pent-

Rings and 8 hex-Rings.

Self-Assembly of Fullerenes 967

Biophysical Journal 94(3) 958–976



6555656 or 556666) so encoded to a list of Rings by type

(e.g., 643 or 511).

Geometrically probable fullerene cages

The smallest fullerene, a dodecahedron with just 12 penta-

gons, has 20 vertices. The largest fullerenes we investigated

have 84 vertices, moderately large cages with 12 penta-

gons and 32 hexagons. We investigated every one of these

222,509 fullerene cages to identify those without any im-

probable Rings. As was true for n ¼ 28 and 36, the smallest

number of improbable Rings in those cages that have any is

not one but two, making these fullerene cages even more

improbable.

FIGURE 11 The 15 small, geometrically probable fullerene cages. (A) These fullerenes have adjacent pentagons but no improbable Rings. (B) Except for 20 (Ih),
all of the small, geometrically probable fullerene cages haveDADs. Someof these cages haveDADs of just one color. Some haveDADs of two colors, but none have

Rings with two colors, which would have meant head-to-tail DADs.
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Among these graphically possible fullerene cages for n
from 20 to 84, only 66 are geometrically probable (Table 1).

Fifteen are small cages (20 # n # 60) with adjacent pen-

tagons, the ones shown in Fig. 11 A, and 51 are large cages

(60# n# 84) that obey the isolated pentagon rule (Table 1).

The largest of the small non-IPR cages, 60-1784, has 60 ver-

tices. The smallest of the IPR cages, the truncated icosahe-

dron (60-IPR-1), also has 60 vertices.

Small, geometrically probable fullerene cages

Excepting the truncated icosahedron, all of the other 5,769

mathematically possible small (n # 60) fullerenes have

adjacent pentagons. We call this set of 15, including the

non-IPR 60-1784, the small, geometrically probable fuller-

ene cages (Fig. 11 A). There are two geometrically probable

cage isomers for each n ¼ 36, 40, and 44. There are no

geometrically probable fullerene cages for n ¼ 30, 34, 46,

48, 52-58, and 62-68; correspondingly, no fullerene cages

with these n have been identified in carbon or clathrin.

There are thus gaps, with no geometrically probable fullerenes

for n immediately below and above n ¼ 32, 50, and 60,

none immediately below n ¼ 36, and none immediately

above n ¼ 44.

Cages 24, 26, and 28-1 have two, three, and four isolated

hexagons, respectively, isolated by virtue of being surrounded

by pentagons. Cage 36-15 also has two isolated hexagons.

Others of the small geometrically probable cages have

strings of 2 hexagons (32-6), 3 hexagons (40-38), 4 hexa-

gons (36-14), 9 hexagons (38-17), and 10 hexagons (40-38).

FIGURE 12 These additional fuller-

ene cages with n # 50 could self-

assemble if hex-Ring 632 were not so

improbable. Asterisks mark faces that

are hex-Ring 632s.
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Still others have loops of five hexagons (40-39) and six

hexagons (36-15).

Cage 50-271 has two isolated pentagons. Other cages have

strings of 2 pentagons (60-1784, 50-271, and 44-75), 3 pen-

tagons (44-89), 4 pentagons (44-75 and 42-45), 6 pentagons

(40-38), and 12 pentagons (38-17). Still others have loops of

6 pentagons (36-15), 10 pentagons (40-39), and 12 penta-

gons (36-14).

As noted above, the one cage with n ¼ 20 has no DADs.

The next three larger cages, 24, 26, and 28-1, have only blue

DADs (Fig. 11 B). The nine cages 36-14 to 50-271 have only
red DADs Two of the cages have DADs of two types: 32-6

has blue and red, and 60-1784 has red and green; of course,

the two types of DADs in these probable cages are not ar-

ranged head-to-tail.

Large geometrically probable fullerene cages

By definition, IPR cages have no adjacent pentagons. Among

pent-Rings, the only one without adjacent pentagons is the

501 pent-Ring (Fig. 8 B). Among hex-Rings, the only ones

without adjacent pentagons are the 601, 611, 622, 623, and

633 hex-Rings (Fig. 8 C). Therefore, IPR cages can contain

only these Rings.

Pent-Ring 501 has no DADs. Hex-Rings 601 and 633

have no DADs; the other three hex-Rings—611, 622, and

623—have edges with a DAD, but none has a head-to-tail

DAD. Therefore, none of these five IPR hex-Rings is im-

probable. Since none of the pent-Rings and hex-Rings from

which IPR fullerene cages are constructed is improbable, all

IPR cages are geometrically probable. Specifically, 51 of the

fullerenes cages for 60# n# 84 are IPR, and all of these are

necessarily geometrically probable.

Besides IPR cages, there are no other geometrically prob-

able fullerenes for 60, n# 84. Conversely, at least for 60,
n # 84, the only geometrically probable fullerene cages are

the IPR ones. This finding was a great surprise. We address

the question of whether geometrically probable non-IPR

cages might exist for n . 84 in another work (S. Schein and

T. Friedrich, unpublished).

The pent-Rings in IPR cages are all 501, which has no

DADs. The fullerene with n ¼ 20 is the dodecahedron. It

contains only 12 faces, and all of them are 501 pent-Rings.

Therefore, the dodecahedron has no DADs. The only hex-

Rings in IPR cages with no DADs are 601 and 633. The hex-

Rings in the IPR truncated icosahedron are all 633 (Fig. 10

A); therefore, this IPR cage has no DADs (Fig. 9 A). All other
IPR cages—indeed, all other fullerene cages—have DADs;

for example, the IPR cage with n ¼ 70 has 20 green DADs,

as shown in Fig. 1 of the companion work (45).

Vertices in probable cages

All of the 20 vertices in the dodecahedron are 555. All of the

60 vertices in the truncated iscosahedron are 566. Since a

DAD requires two types of vertex—from 555 to 556 to make

a blue DAD, from 556 to 566 to make a red DAD, and from

566 to 666 to make a green DAD (Fig. 8 A)—the dodeca-

hedron and the truncated icosahedron have no DADs.

Indeed, they are the only fullerene cages with no DADs.

Only one other structure of pentagonal and hexagonal faces,

a plane of hexagonal faces, has only one type of vertex (666)

and thus no DADs, but that structure is not a cage.

All other cages have two, three, or four types of vertex. In

order of the four vertex types 555, 556, 566, and 666, the

sequence of numbers of each type in a cage with 36 vertices

could be two in a row (e.g., the 24 and 12 in this sequence: 0

of the 555, 24 of the 556, 12 of the 566, and 0 of the 666),

three in a row (e.g., 4, 16, 16, 0), or four in a row (e.g., 8, 12,

12, 4). Because neighboring vertices share two faces, no cage

can have a sequence with a gap (e.g., 4, 20, 0, 12).

A head-to-tail arrangement of DADs has two types of

DAD, blue and red, which require three types of vertex (555,

556, and 566 (Fig. 8 B)) or red and green, which requires

three types of vertex (556, 566, and 666 (Fig. 8 C)). Except
for cages 32-6 and 60-1784, with three types of vertex and

two types of DAD, all of the other 13 small, probable, non-

IPR cages in Fig. 11 B have just one or two types of vertex,

not enough to have any head-to-tail DADs. Likewise, large

(n . 60) IPR cages have no adjacent pentagons, ruling out

555 and 556 vertices, leaving them with exactly two types of

vertex, 566 and 666, also not enough to have any head-to-tail

TABLE 3 Additional fullerene cages with n # 50 could self-

assemble if hex-Ring 632 were not so improbable

n
Number of

cages IDs of cages

42 1 41

44 2 80, 87

46 2 99, 116

48 6 169, 171, 196-199

50 10 226, 242, 260-266, 270

52 8 333, 335, 417, 419, 420-422, 437

54 11 535, 537-540, 560-563, 579-580

56 20 641, 822, 824, 854-855, 862, 864-865, 913-924

58 13 1058-1059, 1190, 1193, 1195-1199, 1201, 1203-1205

60 26 1123, 1220, 1496, 15801581, 172, 1776-1779, 1783,

1787-1790, 1794, 1796-1797, 1799, 1803-1806,

1808-1810

62 23

64 28

66 24

68 48

70 29

72 48

74 60

76 69

78 57

80 139

82 92

84 146

These fullerene cages have none of the five Rings with two pairs of head-to-

tail DADs (pent-Rings 521 and 531 and hex-Rings 621, 631, and 641) but

do have hex-Ring 632s with just one pair of head-to-tail DADs.
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DADs. Outside of the 13 small, probable, non-IPR cages and

all IPR cages, are there any other cages with just two types

of vertex? The answer must be no, or they would have been

identified by our exhaustive search among 222,509 cages for

20 # n # 84 as a probable cage.

The exceptional cages 32-6 and 60-1784 prove that it is

possible for a cage to have three types of vertex and two

types of DAD but still no head-to-tail DADs. Are there any

other such cages? Again, the answer must be no, or it too

would have been identified in our exhaustive search of

probable cages. Remarkably, apart from the two exceptional

cages 32-6 and 60-1784 among the infinite universe of

fullerene cages, the group of cages with just one or two types

of vertex is identical to the group of cages that have no head-

to-tail DADs, the probable cages.

The weak version of the head-to-tail exclusion rule

Five of the improbable Rings (521, 531, 621, 631, and 641)

have two sets of head-to-tail DADs. Hex-Ring 632 has only

one. For that reason hex-Ring 632 may be less improbable

than the other five Rings. Table 3 lists cages that have none

of the five highly improbable Rings but do have hex-Ring

632s. For n# 60, there are 99 such cages. Fig. 12 shows the

1 such cage for n¼ 42, the 2 for n¼ 44 and n¼ 46, the 6 for

n ¼ 48, and the 10 for n ¼ 50.

The strong version of the head-to-tail exclusion rule

excludes all six of the Rings with head-to-tail DADs,

permitting just the 15 small (n# 60) non-IPR fullerene cages

in Fig. 11, buckminsterfullerene (n ¼ 60), and IPR cages

(n. 60). The weak version of the rule excludes all five or the

Rings with two sets of head-to-tail DADs but permits hex-

Ring 632 with one set; therefore, it additionally permits the

fullerene cages for n# 84 listed in Table 3, with the ones for

n # 50 shown in Fig. 12.

DISCUSSION

The protein clathrin provides the three connected vertices and

edges from which fullerene cages of different sizes self-

assemble, from the one with 28 vertices to the truncated

icosahedron with 60 (Figs. 1 A and 2 A) to still larger ones

(3,12,19). Another protein, COPII, provides the edges and

four connected vertices from which cages of different sizes

(47) self-assemble, including the cuboctahedron (48). By

contrast, viral capsid proteins provide surface tiles—not

vertices—from which spherical virus shells self-assemble,

typically geodesic sphereswith icosahedral symmetry (49–51).

Nonetheless, depending on the amount of nucleic acid or other

‘‘cargo’’ to be encapsulated, the same capsid proteins can also

assemble virus shells of different sizes (52–54). All of these

biological examples reveal a flexibility in accommodating

loads of different sizes, afforded by the simple rules (e.g., ful-

lerenes have three connected vertices and pentagonal and

hexagonal faces) under which self-assembly operates.

However, although these simple rules admit an infinite

number of graphically possible structures, rather few have

been observed. Even more problematic, these simple rules by

themselves are far more likely to produce defective structures

(e.g., fullerene cages that cannot close, like the one in Fig. 3

B). Here we uncover a geometric constraint that greatly limits

the range of fullerene structures to a small group of probable

cages that includes the ones that have been observed.

We began by showing that the dihedral angles about the

two ends of an edgemay be different, rising from the pentagon

(tail) end of the edge to the head hexagon end of the same

edge. This rise, aDAD, is thus a vector characterizing an edge.

We investigated Rings—a center face and its surrounding

faces—because in that structure all of the dihedral angles and

thus all of the DADs about the edges of the center face have

been determined by the nature—hexagon or pentagon—of the

faces. We found that the different Rings have different ar-

rangements of DADs. In the companion work (45) we show

that the surrounding faces ofRingswithDADs arranged head-

to-tail would be severely nonplanar, making self-assembly or

maintenance of those Rings highly unlikely. Since suchRings

with DADs arranged head-to-tail would be unlikely to self-

assemble or last, self-assembly of cages that harbor such

Rings is improbable. After exclusion of graphically possible

cages with Rings that contain head-to-tail DADs in the range

of 20 # n # 84, only a few cages remain as probable,

specifically the 15 small, non-IPR ones (20# n# 60) in Fig.

11, the truncated icosahedron (n ¼ 60), and all of the 50 IPR

ones (60 , n # 84).

The head-to-tail exclusion rule admits both more
and fewer fullerenes than standard rules

Like the IPR and the least-Np rule, the head-to-tail exclusion

rule is based purely on geometry and relies on the relationship

between a face and its adjacent faces. It is therefore not

surprising that the group of geometrically probable fullerenes

is partly consistent with these previously proposed rules.

Indeed, we show here that the isolated pentagon rule (25,26),

the least-Np rule (24), the typically high degree of symmetry

among the cages that self-assemble (25,26,55), and the

abundance of certain isomers, all follow from—and thus are

explained by—the head-to-tail exclusion rule.

For example, all of the large fullerenes in our sample (60

, n # 84) that are geometrically probable follow the IPR.

Moreover, among the 15 small, non-IPR fullerenes with n#
60, all but 60-1784 of the geometrically probable isomers are

among those with least-Np for their n (Table 1).

There are, however, important exceptions to those empir-

ical rules. For example, the isolated pentagon rule permits

only buckminsterfullerene with n¼ 60 and the small number

of IPR isomers with n$ 70. The existence of small probable

fullerene cages 28-1, 36-14, and 36-15 in clathrin, 36-15 in car-

bon (29), and perhaps 32-6, 44-75, 44-89, and 50-271 in carbon
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(36,37), all necessarily non-IPR, shows that the isolated pentagon

rule is not inviolate. In addition, a recent report (18) provides un-

specified fullerene cages from clathrin with n ¼ 36, 38, 40, 44,

and 50, numbers of vertices that are represented in Fig. 11, con-

sistent with the predictions of the head-to-tail exclusion rule.

The related rule, selecting cages for any n with the lowest

number Np of edges between pentagons, has an inherent

flaw: It requires selection of at least one isomer for any n
(Table 1). The head-to-tail exclusion rule that we propose is

both more discriminating and less. It is more discriminat-

ing in that all but one isomer, 60-1784, of the 15 non-IPR

isomers that it selects are on the list of those with least-Np,

but it excludes many on that list. For example, it excludes all

fullerene cages with n ¼ 30, 34, 46, 48, 52-58, and 62-68.

The rule is less discriminating in that it does include the

60-1784 cage with Np ¼ 6 pentagon pairs, a number only

bettered because of the presence of the IPR buckminsterful-

lerene with 60 vertices and Np ¼ 0.

Symmetry is a consequence of the exclusion rule

Symmetry itself has been supposed to be a selection rule (55).

However, the 15 small geometrically probable cages (Fig. 11)

span a wide range of symmetry order. The symmetry order of

point group Ih (cage 20) is 120 (Table 5.1 of Fowler and

Manolopoulos (24)). That of point group Td (cage 28-2), D6d

(cage 24), and D6h (cages 36-15 and 60-1784) is 24. That of

D5h (cage 50-271) andD5d (40-39) is 20. That ofD3h (cage 26)

is 12. That of D2d (cage 36-14) is 8. That of D3 (cages 32-6

and 42-45) is 6. That of D2 (cages 40-38, 44-75, and 44-89)

is 4. That of C2 (38-17) is 2.Moreover, although some of these

cages possess a high symmetryorder, so doothergeometrically

improbable cages with the same n. Thus, probable cage 50-
271 is a member of the D5h point group, but so is improbable

cage 50-1 (Fowler and Manolopoulos (24)). Probable fuller-

ene 40-39 is a member of the D5d point group, but so is

improbable cage 40-1 (Fowler and Manolopoulos (24)).

Probable cage 44-89 is D2, but so are five other improbable

cage isomers with 44 vertices (Fowler and Manolopoulos

(24)). Probable cage 60-1784 is the second of two cages with

60 vertices in the D6h point group. Therefore, our results

suggest that symmetry among the small, non-IPR, geomet-

rically probable fullerenes is a consequence of the head-to-tail

exclusion rule rather than a selection rule in its own right.

The strong and weak versions of the head-to-tail
exclusion rule

Although we have not distinguished carbon and clathrin with

respect to self-assembly of fullerene cages, there are differ-

ences. Carbon self-assembles almost exclusively into IPR

cages, whereas small clathrin cages with adjacent pentagons

are common. Carbon forms fullerene cages with hexagons

and 12 pentagons, whereas clathrin can also form non-

fullerene cageswith heptagons (18,56). It is therefore possible

that self-assembly by clathrin triskelia follows less strict rules

than carbon.

For example, we have supposed that self-assembly by

carbon excludes all of the six Rings with head-to-tail DADs,

thus explaining assembly of IPR cages and C36-15 from

carbon. We call this rule the strong version of the head-to-tail

exclusion rule. However, if clathrin were less strict, it might

permit the hex-Ring 632 that has just one set of head-to-tail

DADs. This weak version of the head-to-tail exclusion rule

would permit self-assembly of not only the 15 non-IPR cages

in Fig. 11 and all IPR cages but also the cages in Fig. 12 for

n # 50 and the larger ones listed in Table 3. The smallest of

these weak version cages has 42 vertices, so the only

remaining unrepresented n for clathrin would be 30 and 34.

However, even if hex-Ring 632 were somewhat improbable

rather than very improbable, we would expect to find rela-

tively few of the weak version cages.

Probable vertices and cages of different sizes

If 555, 566, or 666 vertices were favored, then the dodeca-

hedron, the truncated icosahedron, or the plane of hexagons,

respectively, would be the lowest energy structures. How-

ever, no fullerene cage can be constructed from only 556

vertices (57), so if that vertex were favored, an argument has

been made that the lowest-energy combinations of vertices

TABLE 4 Different least-energy angle deficits (D) at a vertex favor different types of vertex and different cages, all of them

probable cages

Favored vertices

Least-energy angle deficit (D) at a vertex 555 556 566 666 Favored cages

D $ 36� x 20

36� . D . 24� x x 24, 26, 28-2

D ¼ 24� x x x 32-6

24� . D . 12� x x 36-14, 36-15, 38-17, 40-38, 40-39,

42-45, 44-75, 44-89, 50-271

D ¼ 12� x x x 60-1784

x 60-IPR-1

12� . D . 0� x x large (n . 60) IPR cages

D ¼ 0� x planes of hexagonal faces
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555, 556, and 566 would be found in the 28-2, 36-14, and

36-15 cages (57). Clearly, this argument does not apply

to carbon cages, and since clathrin has been shown to self-

assemble into non-IPR cages with more than 36 vertices (18),

the truncated icosahedron (2,58), still larger cages (19), and

planes of hexagons (56,59), this argument cannot be correct.

However, a simplification of the argument in Katsura (57),

focusing on the curvature at a vertex, is instructive. For a

discrete surface, curvature is equal to the angle deficit (D) at a
vertex, 360� minus the sum of the three bond angles. For

example, an ideal 556 vertex would have an angle deficit

of 360� � 108� � 108� � 120� ¼ 24�. A least-energy angle

deficit at a vertex in the range from 36� to 24�would favor 555
and 556 vertices—just two types of vertex—and thus the

small probable cages 24, 26, and 28-2. A least-energy angle

deficit in the range from 24� to 12� would favor 556 and 566
vertices—just two types—and thus the small probable cages

in Fig. 11 A with 36 # n # 50. And, a least-energy angle

deficit in the range from 12� to 0� would favor 566 and 666

vertices—just two types—and thus the IPR fullerene cages

with n . 60. These results and others are listed in Table 4.

This table also shows how the least-energy angle deficit

could favor the two exceptional cages, 32-6 and 60-1784, the

only ones with three kinds of vertex: If the least-energy angle

deficit were equal to 24�, then 556 vertices would be most

favored, but since no cage has only 556 vertices, 555 and 566

vertices would also appear, leading to the exceptional 32-6

cage. Likewise, if the least-energy angle deficit were equal to

12�, then 566 vertices would be most favored, and including

556 and 666 vertices would produce the exceptional cage 60-

1784. However, in the latter case, there is a cage with 566

vertices exclusively, the truncated icosahedron, so that cage

would also be favored.

Cargo of different sizes, like the transferrin molecule

(small), the low density lipoprotein molecule (intermediate),

and the reovirus particle (large), elicit endocytosis employ-

ing clathrin cages over a wide range of size in one and the

same cell (19). No single least-energy angle deficit would be

suitable. However, if the preferred least-angle deficit at a

vertex were determined by the curvature of the cargo, cage

size could be instructively determined (19). However as

shown in Table 4, the cages would still be limited to the

probable ones described here.

A model for self-assembly: the probable
roads hypothesis

According to the pentagon-road hypothesis, carbon fuller-

enes grow by addition of carbon to dangling bonds at the

growing rim of unstable, IPR fragments of cages (cups),

ultimately producing complete IPR cages like C60 and C70

(60,61). Because the fragments obey the IPR, identification

of complete, small cages—necessarily non-IPR cages—like

C36-15 (16) would be inconsistent with this hypothesis (62).

Of course, many clathrin cages are small and necessarily

non-IPR, so the pentagon-road hypothesis is not particularly

useful for clathrin fullerene cages.

According to the fullerene-road hypothesis, IPR carbon

fullerenes result from addition (and deletion) of carbon to

complete, small (and thus non-IPR) fullerene cages at interior

sites in a manner that eliminates pentagon adjacencies (62),

followed by further Ring rearrangement (63) to eliminate

remaining pentagon adjacencies (24,64). The paucity or pos-

sible absence of evidence for complete small (n, 60) carbon

fullerenes (on the way to assembling the carbon buckmin-

sterfullerene) and the absence of evidence for complete

carbon fullerenes for 60, n, 70 (on the way to assembling

the abundant IPR C70 cage) create difficulties (65) for this

hypothesis but not insurmountable ones (64).

The fullerene-road hypothesis permits backward as well as

forward growth, along with internal reorganization. This

hypothesis thus assumes thermodynamic equilibrium. The

‘‘pentagon road’’ does not permit internal reorganization and

thus appears more closely allied with a kinetic description;

however, at growing points along the rim, deletion as well as

addition may be possible, suggesting reversibility and thus

FIGURE 13 Part of a probable roads roadmap for fullerene structures,

starting from some of the hex-Rings and leading to some of the fullerene

cages permitted by the head-to-tail exclusion rule. Non-IPR hex-Rings and

cages are above the dashed line; IPR hex-Rings and IPR cages are below it.

IPR cages with N# 84 are numbered among IPR cages according to Fowler

and Manolopoulos (24); larger cages are numbered according to the order in

which they are produced by CaGe. Bound carbon atoms or clathrin triskelia

are lower in energy than free monomers, so the potential energy E of the

system is lower for larger fullerene fragments or cages.
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thermodynamic equilibrium. Thus, more fundamental than

kinetics versus equilibrium is the issue of internal reorganiza-

tion or not, with support for both positions for carbon cages.

The same issue confronts understanding of the growth of

clathrin cages. Clathrin cages may grow monotonically (19),

consistent with steady addition that could be confined to the

rim (66). However, in clathrin-coated pits blocked from

fission in permeabilized cells, all of the clathrin triskelia are

capable of exchanging, requiring uncoating as well as growth

mechanisms (67–69). Indeed, the nature of the physical inter-

action between a triskelion and its neighbors suggests that

deletion and insertion of a triskelion are less awkward than

might have been supposed (11,58,70). However, exchange

due to deletion and insertion, if it were just one vertex out and

one vertex back into the same spot, does not constitute internal

reorganization, which requires insertion or deletion of pairs

of vertices (71). The advantage of internal reorganization

(13,58,71–73) in addition to exchange at the growing rim

would be that curvature-generating pentagonal faces could be

placed as needed (instructed) to fit the cage around cargo of

different sizes (19,74).

The head-to-tail DAD exclusion rule suggests an alternate

description of growth of both carbon and clathrin cages, the

geometrically ‘‘probable roads’’ hypothesis: After the bind-

ing of single-carbon atoms or clathrin triskelia at the growing

rim or pairs of carbon atoms (16,62,64) or clathrin triskelia

ions (71) internally, nascent faces on a path to producing any

of the Rings with head-to-tail DADs would be highly non-

planar (45), fail to complete, and then disassemble. Growth

therefore leaves exclusively probable Rings in place and

thus generates only probable cages, the small (n # 60) non-

IPR cages in Fig. 11 from smaller non-IPR fragments as well

as buckminsterfullerene (n ¼ 60) and large (n . 60) IPR

cages from smaller IPR fragments.

The starting point for self-assembly is obviously a single

carbon atom or clathrin triskelion. Nonetheless, a road map

might be drawn starting with a hexagon or pentagon. How-

ever, to keep it even less cluttered, the roadmap in Fig. 13

shows only probable roads that begin with the included hex-

Rings that aremarked in the cages in Fig. 11A, hex-Rings that
already have 19–24 vertices. Also, Fig. 13 shows only a tiny

sample of the probable roads that originate from those hex-

Rings. The roads in the top half of the figure begin with non-

IPR hex-Rings and lead (downward) to non-IPR cages. The

roads in the bottom half begin with IPR hex-Rings and lead

(downward) to IPR cages as well as switching into the top half

to lead to non-IPR cages.

Roads may converge. For example, hex-Ring 633 with 24

vertices may grow into buckminsterfullerene via a hexagon-

centered half-buckyball with 30 vertices or via a pentagon-

centered half-buckyball with 30 vertices. Roads may diverge.

For example, the pentagon-centered half of a buckyball may

grow into 50-271, the buckyball itself, or nanotubes with a

pentagon-centered half-buckyball as a cap. And, although

we have emphasized the limited number of probable cages

among the many mathematically possible fullerene cages, the

vast majority of random additions of vertices would be unable

to grow into any mathematically possible cage (e.g., Fig. 3 B)
and end up having to reverse course and disassemble (19).

The probable roads hypothesis thus may rely on both

kinetic and equilibrium-thermodynamic mechanisms. For

example, only probable Rings might be completed because of

kinetic limitations due to geometry, with the roads bounded

by high (activation energy) walls. Alternatively, only prob-

able Rings might last, reflecting a deep local energy trough

that favors probable Rings over improbable Rings in an equilib-

rium situation.Within each road—boundedbywalls (kinetics),

or within each trough bounded by walls (equilibrium)—

addition (growth) and deletion may occur, reflecting an

equilibrium-thermodynamic process.

Indeed, as growth occurs along a probable road, the potential

energy of the system falls as eachmonomer is withdrawn from

a high-energy reservoir of unboundmonomers and recruited to

a lower-energy bound state as part of a growing cage, as

indicated by the arrows in Fig. 13. In short, the more vertices,

the larger the cage, the lower the potential energy of the system

(75). The largest cage is thus a plane of hexagonal faces.

Clathrin can form such a plane (2,56,59), and carbon

commonly comes in the form of graphite. However, for

clathrin cages, the pucker of the triskelions, an intrinsic angle

deficit, promotes formation of curvature-inducing pentagonal

faces (58,73,76,77). Insofar as pentagonal faces form with

some probability anyway, the cage curves inward, ultimately

closing with 12 of them, thus limiting cage size of both clathrin

and carbon (16).Moreover, the binding of adaptor proteins into

growing clathrin cages promotes assembly of cages with

smaller radius and fewer vertices (13,22).

The absence of any probable path that would produce cages

with vertex numbers both above and below n¼ 32, 50, and 60

and on one side of n ¼ 36, 44, and 70 reduces the variety of

fruitful roads and funnels self-assembly to the geometrically

probable cage isomers at these n. Indeed, the presence of large
gaps on both sides of n¼ 60, with no probable cages for 52#
n # 58 and 62 # n # 68 can explain the particularly great

abundance of the C60 buckminsterfullerene.

Self-assembly is the very basis for life. Small multisubunit

proteins, the shell of a virus particle, the complex molecular

factory that is the ribosome, and even large structures like

organelles can be regarded as products of self-assembly; so,

for that matter, can the folding of an individual protein mol-

ecule. The usual outcome in these examples is a single

structure. By contrast, both carbon atoms and clathrin triskelia

self-assemble into a variety of sizes and shapes of (fullerene)

structures, so the many completed, probable cages at the ends

of probable roads must occupy local energy minima rather

than a global energy minimum. Thus, probable roadmaps—

actually potential energy landscapes (78) that combine kinetics

and equilibrium thermodynamics to guide self-assembly and

equilibrium thermodynamics to drive it—may be able to

describe a broad range of self-assembly processes.

974 Schein and Sands-Kidner

Biophysical Journal 94(3) 958–976



We thank Cathy Collins for her participation in the early phase of this

research. We are grateful to Kendall Houk for his sustained, generous

encouragement.We are also grateful to Gunnar Brinkmann (Gent University,

Belgium), who kindly provided a program that made it possible for us to

automate the tally of the Ring composition of fullerenes produced by the

Fullgen program that he cowrote. We thank Philip Klunzinger (Wave-

function) for providing a customizable atom for molecular mechanics

calculations with Spartan06.

REFERENCES

1. Kroto, H. W., J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley.
1985. C60: buckminsterfullerene. Nature. 318:162–163.

2. Kanaeseki, T., and K. Kadota. 1969. The ‘‘vesicle in a basket.’’ A
morphological study of the coated vesicle isolated from the nerve
endings of the guinea pig brain, with special reference to the
mechanism of membrane movements. J. Cell Biol. 42:202–220.

3. Crowther, R. A., J. T. Finch, and B. M. F. Pearse. 1976. On the struc-
ture of coated vesicles. J. Mol. Biol. 103:785–798.

4. Pearse, B. M. F. 1975. Coated vesicles from pig brain: purification and
biochemical characterisation. J. Mol. Biol. 97:93–98.

5. Pearse, B. M. F. 1976. Clathrin: a unique protein associated with
intracellular transfer of membrane by coated vesicles. Proc. Natl. Acad.
Sci. USA. 73:1255–1259.

6. Crowther, R. A., and B. M. F. Pearse. 1981. Assembly and packing of
clathrin into coats. J. Cell Biol. 91:790–797.

7. Ungewickell, E., and D. Branton. 1981. Assembly units of clathrin
coats. Nature. 289:420–422.

8. Kirchhausen, T., and S. C. Harrison. 1981. Protein organization in
clathrin trimers. Cell. 23:755–761.

9. Kirchhausen, T., S. C. Harrison, E. P. Chow, R. J. Mattaliano, K. L.
Ramachandran, J. Smart, and J. Brosius. 1987. Clathrin heavy chain:
molecular cloning and complete primary structure. Proc. Natl. Acad.
Sci. USA. 84:8805–8809.

10. Smith, C. J., N. Grigorieff, and B. M. F. Pearse. 1998. Clathrin coats at
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