Table 1.
IDs of probable cages |
||||||||||
---|---|---|---|---|---|---|---|---|---|---|
n | Faces | Hexs | Graphically possible Cages | IPR cages | Lowest Np for each n | Number of lowest Np isomers | IDs of isomers with lowest Np | Number of probable cages | FM | Schonflies |
20-60 | 5770 | 1 | 35 | 16 | ||||||
20-70 | 30,579 | 2 | 56 | 17 | ||||||
60-84 | 218,551 | 51 | 71 | 52 | ||||||
20-84 | 222,509 | 51 | 105 | 66 | ||||||
20 | 12 | 0 | 1 | 0 | 30 | 1 | 1 | 1 | 1 | Ih |
24 | 14 | 2 | 1 | 0 | 24 | 1 | 1 | 1 | 1 | D6d |
26 | 15 | 3 | 1 | 0 | 21 | 1 | 1 | 1 | 1 | D3h |
28 | 16 | 4 | 2 | 0 | 18 | 1 | 2 | 1 | 2 | Td |
30 | 17 | 5 | 3 | 0 | 17 | 1 | 3 | 0 | ||
32 | 18 | 6 | 6 | 0 | 15 | 1 | 6 | 1 | 6 | D3 |
34 | 19 | 7 | 6 | 0 | 14 | 1 | 5 | 0 | ||
36 | 20 | 8 | 15 | 0 | 12 | 2 | 14, 15 | 2 | 14, 15 | D2d(II), D6h |
38 | 21 | 9 | 17 | 0 | 11 | 1 | 17 | 1 | 17 | C2(V) |
40 | 22 | 10 | 40 | 0 | 10 | 2 | 38, 39 | 2 | 38, 39 | D2(III), D5d(II) |
42 | 23 | 11 | 45 | 0 | 9 | 1 | 45 | 1 | 45 | D3 |
44 | 24 | 12 | 89 | 0 | 8 | 2 | 75, 89 | 2 | 75, 89 | D2(III), D2(VI) |
46 | 25 | 13 | 116 | 0 | 8 | 7 | 99,103,107,108,109,114,116 | 0 | ||
48 | 26 | 14 | 199 | 0 | 7 | 4 | 171, 196, 197, 199 | 0 | ||
50 | 27 | 15 | 271 | 0 | 5 | 1 | 271 | 1 | 271 | D5h(II) |
52 | 28 | 16 | 437 | 0 | 5 | 1 | 422 | 0 | ||
54 | 29 | 17 | 580 | 0 | 4 | 1 | 540 | 0 | ||
56 | 30 | 18 | 924 | 0 | 4 | 4 | 843, 864, 913, 916 | 0 | ||
58 | 31 | 19 | 1205 | 0 | 3 | 1 | 1205 | 0 | ||
60 | 32 | 20 | 1812 | 1 | 0 | 1 | 1812 (IPR-1) | 2 | 1784, 1812 (IPR-1) | D6h(II), Ih |
62 | 33 | 21 | 2385 | 0 | 3 | 3 | 2184, 2377, 2378 | 0 | ||
64 | 34 | 22 | 3465 | 0 | 2 | 3 | 3451, 3452, 2378 | 0 | ||
66 | 35 | 23 | 4478 | 0 | 2 | 3 | 4169, 4348, 4466 | 0 | ||
68 | 36 | 24 | 6332 | 0 | 2 | 11 | 6073,6094,6146,6148,6149,6195, 6198,6269,6270,6290,6328 | 0 | ||
70 | 37 | 25 | 8149 | 1 | 0 | 1 | All IPR | 1 | All IPR | |
72 | 38 | 26 | 11190 | 1 | 0 | 1 | All IPR | 1 | All IPR | |
74 | 39 | 27 | 14246 | 1 | 0 | 1 | All IPR | 1 | All IPR | |
76 | 40 | 28 | 19151 | 2 | 0 | 2 | All IPR | 2 | All IPR | |
78 | 41 | 29 | 24109 | 5 | 0 | 5 | All IPR | 5 | All IPR | |
80 | 42 | 30 | 31924 | 7 | 0 | 7 | All IPR | 7 | All IPR | |
82 | 43 | 31 | 39718 | 9 | 0 | 9 | All IPR | 9 | All IPR | |
84 | 44 | 32 | 51592 | 24 | 0 | 24 | All IPR | 24 | All IPR | |
86 | 45 | 33 | 63761 | 19 | 0 | 19 | All IPR | |||
88 | 46 | 34 | 81738 | 35 | 0 | 35 | All IPR | |||
90 | 47 | 35 | 99918 | 46 | 0 | 46 | All IPR | |||
92 | 48 | 36 | 126409 | 86 | 0 | 86 | All IPR | |||
94 | 49 | 37 | 153493 | 134 | 0 | 134 | All IPR | |||
96 | 50 | 38 | 191839 | 187 | 0 | 187 | All IPR | |||
98 | 51 | 39 | 231017 | 259 | 0 | 259 | All IPR | |||
100 | 52 | 40 | 285913 | 450 | 0 | 450 | All IPR |
The number of hexagons (hexs) is (n - 20)/2. With 12 pentagons, the number of faces is 12 more. The number of graphically possible cages and graphically possible cages that obey the isolated pentagon rule (IPR cages) were counted by use of the Fullgen program or the CaGe program, which use a productive algorithm (38). For each n, the isomer with the lowest number of pentagon pairs (Np) is listed according to the (FM) isomer numbering in Fowler and Manolopoulos (24). These lowest Np values are listed in Table 4.1 of Fowler and Manolopoulos. Probable cages have no improbable Rings, and the number and identify of these are listed for each n. Cages with 84 < n ≤ 100 were not investigated with respect to improbable rings.