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ABSTRACT Receptor kinases play a key role in the cellular perception of signals. To verify models for receptor activation
through dimerization, an experimental system is required to determine the precise oligomerization status of proteins within living
cells. Here we show that photon counting histogram analysis and dual-color fluorescence cross correlation spectroscopy are
able to monitor fluorescently labeled proteins at the single-molecule detection level in living plant cells. In-frame fusion proteins
of the brassinosteroid insensitive 1 (BRI1) receptor and the Arabidopsis thaliana somatic embryogenesis receptor-like kinases
1 and 3 (AtSERK1 and 3) to the enhanced cyan or yellow fluorescent protein were transiently expressed in plant cells. Although
no oligomeric structures were detected for AtSERK3, 15% (AtSERK1) to 20% (BRI1) of the labeled proteins in the plasma
membrane was found to be present as homodimers, whereas no evidence was found for higher oligomeric complexes.

INTRODUCTION

The classical model for activation of the membrane-located

receptor kinase involves ligand binding induced dimerization of

the receptor, resulting in autophosphorylation of both partners

in the dimer (1,2). The mechanisms by which plant receptors

transduce signals across the cell surface are largely unknown,

but plant receptorsmay also dimerize (3). For both the clavata1

(4) and the brassinosteroid receptor (BR) complexes (5,6),

heterooligomerization has been shown. However, no evi-

dence has been presented that shows the level of oligomer-

ization in living cells in a quantitative manner. Here the

homooligomerization state of the brassinosteroid insensitive

1 receptor (BRI1) and two members of the Arabidopsis
thaliana somatic embryogenesis receptor-like kinase fam-

ily 1 and 3 (AtSERK1 and 3) are studied. BRI1, a plasma

membrane receptor, is one of the components involved in

brassinosteroid signaling. The BRI1 protein consists of an

extracellular domain, a single transmembrane domain, and a

cytoplasmic serine/threonine kinase. The extracellular do-

main contains 25 leucine-rich repeats (LRR) and a 70 amino

acid island domain between the 21st and the 22ndLRR,which

was found essential for BR binding. A BRI1-associated

receptor kinase 1 (BAK1) was identified in an activation-

tagging screen for bri1 suppressors (5) and in a yeast two-

hybrid screen for BRI1 kinase domain interacting proteins

(6). BAK1 is identical to AtSERK3, and both genetic and

molecular data support that BRI1 and BAK1 (AtSERK3) are

part of the same BR receptor complex (7). AtSERK1 is

expressed during ovule and embryo development and facil-

itates the formation of plant embryos from somatic cells (8).

The predicted primary structure of the AtSERK1 protein (69

kDa) consists of an N-terminal signal peptide followed by a

leucine zipper (LZ) domain, 5 LRRunits, a proline-rich domain,

a single transmembrane domain, and the 12 conserved do-

mains of a serine-threonine kinase (9).

To study BRI1, AtSERK3, and AtSERK1 by fluorescence

techniques, complementary DNA (cDNA) was fused

C-terminally to the cyan (CFP) or yellow (YFP) variant of

enhanced green fluorescent protein (EGFP) (10) and tran-

siently expressed in plant cells. Shah et al. (9) have shown by

confocal imaging that the labeled AtSERK1 fusion protein is

localized in the plasmamembrane of such cells. These authors

showed the potential for oligomerization of the AtSERK1

protein by yeast two-hybrid experiments and measurements

of the YFP/CFP fluorescence emission ratio at the membrane

of protoplasts that were cotransfected with both the CFP- and

the YFP-fusion construct. In 15% of the measurements this

ratio was enhanced due to the interaction of AtSERK1-CFP

with AtSERK1-YFP, resulting in Förster resonance energy

transfer (FRET) (11,12). Elimination of the extracellular LZ

domain reduced theYFP/CFP emission ratio to control levels,

indicating that without the LZ domain AtSERK1 is mono-

meric (9). Although FRET provides a molecular proximity

assay with nanometer-scale resolution, techniques to visual-

ize FRET with high spatial resolution such as fluorescence

microscopy (13) and fluorescence lifetime imagingmicroscopy
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(FLIM) (14) require a large amount of fluorescently tagged

molecules (.1 mM). This may be well above physiologically

relevant concentrations. In addition, it is difficult to retrieve

information about the oligomeric status of proteins. Tech-

niques like photon counting histogram (PCH) analysis (15)

and fluorescence correlation spectroscopy (FCS) (16) can

provide this information at the single-molecule detection

level. For FCS and PCH, the fluorescence intensity is

monitored in a small observation volume that is continuously

illuminated.

A particle with a given molecular brightness produces an

intensity fluctuation as it passes the observation volume. Par-

ticleswith a highermolecular brightnesswill result in stronger

intensity fluctuations. Since small particles will diffuse more

rapidly through the observation volume than large molecules,

the duration of the fluorescence bursts contains information

on the diffusion speed of the particles. Both PCH and FCS

analysis use the same experimental data, but each technique

focuses on a different property of the signal. Although FCS is

a measure of the time-dependent decay of the fluorescence

fluctuations, PCH analysis calculates the amplitude distribu-

tion of these fluctuations. This latter technique yields the

distribution ofmolecular brightness per particle wheremolec-

ular brightness is defined as the average fluorescence photon

count rate detected per particle. Müller et al. (17) showed that

PCH analysis is capable of resolving particles having a

brightness ratio of 2. Therefore PCH should have the sensi-

tivity to resolve the number of AtSERK or BRI1 proteins

present in oligomeric complexes, since oligomers consisting

of n monomers are expected to be n times as bright as the

monomer. FCS has been applied successfully to study molec-

ular interactions (for a review, see Hess et al. (16)). In most

applications a small fluorescently labeled molecule binds to

a nonlabeled molecule of much higher molecular weight.

Autocorrelation analysis can distinguish the small, faster

diffusing molecules from the large, slower diffusing complex

and quantify both fractions. Meseth et al. (18) examined

the resolving power of FCS to distinguish particles of differ-

ent molecular size. When the molecular brightness of the

fluorophore does not change upon interaction, the diffusion

coefficients of the particles have to differ by a factor of at

least 1.6.

This corresponds to amolecular weight ratio of;4,which is

required to distinguish the species without prior knowledge of

the system. Therefore, to determine the distribution of protein

monomers, dimers, and possible higher states of oligomers

fromFCS analysis, the exact values of themolecular brightness

of each species have to be known. These parameters cannot be

obtained from the autocorrelation curves directly but can be

retrieved from PCH analysis. Another possibility to study the

interacting receptors is dual-color fluorescence cross correla-

tion spectroscopy (FCCS) as has been developed by Schwille

et al. (19). Here two spectrally different fluorescent groups,

e.g., green and red emitting dyes, are used to label each of the

interacting partners. Each dye is excited and detected by

separate light sources and detectors.Molecular interactions can

be studied by following the coincidence of the fluorescence

fluctuations in the two detectors. The amplitude and decay of

the cross correlation curves correspond to the number and

dynamics of those complexes that carry both fluorescent dyes

(19). So far only a few articles have been published using either

PCH or FCCS to study molecular complexes in living cells

(20–31). In this work we combined both techniques to study

fluorescently tagged BRI1, AtSERK3, and AtSERK1 recep-

tors. The results show that an accurate determination of the

oligomerization status of individual proteins in living cells is

possible through the use of FCCS and PCH.

MATERIALS AND METHODS

Constructs

The full-length cDNA of the BRI1 was polymerase chain reaction (PCR) am-

plified from expressed sequence tags obtained from Kazusa DNA Research

Institute (Kisarazu, Japan) by using primers BRI1_F CATGCCATGGATG-

AAGACTTTTTCAAGCandBRI1_RCATGCCATGGCTAATTTTCCTTC-

AGGAA containing an NcoI restriction site. The cDNA was then inserted

upstream of the enhanced cyan fluorescent protein (ECFP) or EYFP tags in the

NcoI site of the pMON999 (Monsanto, Saint Louis, MO) vectors to generate

BRI1-ECFP and BRI1-EYFP fusions, respectively. The AtSERK3 cDNA was

PCRamplifiedwith primersSerk3_FCATGCCATGGAACGAAGATTAATG-

ATC and Serk3_RCATGCCATGGCTCTTGGACCCGAGGG and subcloned

in the NcoI site of the vectors pMON999-ECFP/EYFP. The full-length and

truncated (AtSERK1kin andAtSERK1DLZ) fusions of AtSERK1 to ECFP and

EYFP were described before (9). Control experiments were performed using

pMon999 lacking the sequence encoding for a fluorescent protein to estimate

the contribution of autofluorescence, which is dependent on culture growth

conditions and seasonal influences. All constructs were verified by sequencing.

Protoplast isolation

Cowpea mesophyll protoplasts were prepared by first peeling off the lower

epidermis of the primary leaves of 10-day-old Vigna unguiculata, using

forceps. Three leaves were floated on a 15 ml enzyme solution (0.1%

cellulase, 0.05% pectinase, 10 mM CaCl2, and 0.5 M mannitol, pH 5.5) for

3.5 h at room temperature with gentle shaking. The cells were washed twice

by adding 2 ml solution containing 10 mM CaCl2 and 0.5 M mannitol

followed by centrifugation for 5 min at 600 rpm.

Transfection

Ten micrograms of purified plasmid in 30 ml water was added to 0.5–

13 106 protoplasts in 75–150 ml solution of 0.6 M mannitol, 10 mM CaCl2,

pH 5.5. After gentle mixing, 3 ml solution containing 40% (w/v)

polyethylene glycol Mw 6000, 0.6 M mannitol, 0.1 M Ca(NO3)2 was

added. The protoplast suspension was incubated for 10 s under gentle

shaking followed by addition of 4.5 ml washing solution consisting of 0.5 M

mannitol, 15 mMMgCl2, and 0.1%MES (2-(N-morpholilino)ethanesulfonic

acid), pH 5.5 to stop the transfection. After incubation at room temperature

for 20 min, the cells were washed three times and incubated in petri dishes at

room temperature under constant illumination. To study the effect on

dimerization of the BRI1 receptor, 2,4-epibrassinolide (EBR) (Sigma-

Aldrich, Zwijndrecht, The Netherlands) was applied to the protoplasts in a

concentration of 1 mM from 0.5 mM stock solution in 80% ethanol, and the

protoplasts were taken for measurements after 2 h incubation with BR.
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Fluorescence fluctuation measurements

The fluorescence fluctuation experiments were carried out with a Confocor2/

LSM510 microscope (Carl Zeiss, Jena, Germany) as have been described

before (23). Briefly, the ECFP- and/or EYFP-labeled samples were excited

with the 458 nm and/or 514 nm line of an Argon-ion laser. The excitation light

was focused by a Zeiss water immersion C-Apochromat 403 objective lens

(numerical aperture ¼ 1.2) into the sample that was stored in 96-well plates

(Whatman, Maidstone, UK) with borosilicate bottom. The fluorescence was

separated from excitation light by a dual dichroic filter, reflecting both the 458

and 514 nm lines. A secondary dichroic filter, LP510, separated the emission

into two different detection channels. The fluorescence emission was detected

with avalanche photodiodes (Perkin-Elmer Optoelectronics, Vaudreuil,

Canada) placed behind size adjustable pinholes. To maximize the overlap

of both detection volumes, the position and diameter of the pinholes were

optimized with ECFP. Appropriate band-pass filters (BP470-500 for CFP and

BP527-562 for YFP, respectively) were used for spectral selection. Measure-

ments were performed in protoplasts 5–9 h after transfection.

Since only 60% of the cells were successfully transfected, those cells

were selected that had a fluorescence intensity higher than 12 or 20 kHz in

the cell membrane or cytoplasm, respectively, which was above the highest

intensity (6 and 12 kHz, respectively) observed for the local autofluor-

escence. For cross correlation measurements only cells were selected that

expressed both the CFP and the YFP fusion proteins. The observation

volume element was positioned in the cytoplasm or in the middle of the

upper plasma membrane that was identified by acquiring a fluorescence

intensity scan along the optical (z) axis. The laser power was set not higher
than 2.5 kW cm�2 for the 458-nm laser line and 3.1 kW cm�2 for the 514-nm

laser line to prevent photobleaching, cellular damage, and photophysical

effects. These excitation intensities were still sufficient to achieve reasonable

signal/noise ratios (SNRs) (5–10) within measurement times of 60–180 s.

Greater than 3.2 (458 nm) or 4.0 kW cm�2 (514 nm), respectively, photo-

bleaching and dye saturation lead to significant distortions of the correlation

and PCH curves.

Auto and cross correlation analysis

The theoretical basis of FCS has been previously described and reviewed

(16,32,33). Fluctuations of the fluorescence intensity observed in detection

channel i, Fi(t), can be described by the normalized correlation function Gij(t)

GijðtÞ ¼ 11
ÆdFi ðtÞ3 dFj ðt1 tÞæ

ÆFiæ3 ÆFjæ
with i ¼ j for autocorrelation; (1)

where dFi(t) describes the deviation of signal i from the time-average

fluorescence intensity, ÆFiæ, according to dFi(t)[ Fi(t)� ÆFi(t)æ. In this study
the fluorescence intensity fluctuations were caused by the two-dimensional

(2D) diffusion of the fluorescently labeled membrane proteins through the

diffraction-limited observation volume. In addition, EYFP shows signal

variations due to fluctuations between fluorescent and dark states. This

results in the following correlation function

GðtÞ ¼ 11 1� Fbackground

Ftotal

� �2

3
1

ÆNæ
3

1� T1 Te
�t

=tT

ð1� TÞ +
m

Fm 3
1

11
t

tdif;m

� �
0
BB@

1
CCA

with Fm ¼ ðh2

mYmÞ
+
m

hmYm

� �2; (2)

where the first term corrects for the background fluorescence (Fbackground).

The value of this parameter was determined by averaging the fluorescence

intensity in the membrane of wild-type protoplasts. N is the mean number

of molecules in the observation volume. The fraction and relaxation time of

molecules in the dark state are given by T and tT. Each molecular species,

m, contributes to the correlation curve function according to its fraction

(Ym), molecular brightness (hm), and mean diffusion time (tdif,m). The

latter parameter is related to the translational diffusion constant D ac-

cording to

tdif ¼
v

2

xy

4D
; (3)

with vxy the axial radius of the observation volume.

FCCS experiments were performed using two spectrally different dyes

(ECFP and EYFP), two laser wavelengths, and two detectors. The two fluo-

rescence intensity signals are cross correlated according to Eq. 1 with i 6¼ j.
In the ideal case where the two detection volumes of the CFP and YFP de-

tection channels share the same observation volume and when the dyes are

fully spectrally separated the cross correlation function GCY(t) follows from

GCYðtÞ ¼

11
ÆCCYæ

VeffðÆCCæ1 ÆCCYæÞðÆCYæ1 ÆCCYæÞ
1

11
t

tdif;CY

� �:

(4)

Note that in Eq. 4 the time-independent part of the cross correlation

function, GCY(0), is not only related to the concentration of doubly labeled

particles, CCY, observed in the observation volume, Veff, but is also

dependent on the particles labeled by only one type of dye, CC and CY. The

effective observation volume was estimated from the cross correlation curve

using a sample of ECFP. Here we make use of the cross talk of ECFP since

some emission of ECFP will be detected in the YFP detection channel. The

emission of EYFP in the CFP channel could be omitted. The following

expression (34) corrects for the cross talk:

GCYð0Þ ¼

11
NC

hCCY

hYYY

� �
1NCY 11

hCCY

hYYY

� �

ðNC 1NCYÞ NY 1NC

hCCY

hYYY

� �
1NCY 11

hCCY

hYYY

� �� �;

(5)

where NC, NY, and NCY are the number of particles labeled with ECFP,

EYFP, and both dyes, respectively. The hdye,excitation,emission values

correspond to the molecular brightness values for the dyes as detected for

the different excitation and emission wavelengths. For example hCCY

should be read as the molecular brightness of ECFP as detected in the

YFP channel using the 458 nm ‘‘CFP’’ laser line. In our experimental

system the oligomers do not consist only of particles carrying both the

ECFP and the EYFP label, but multiple ECFP or multiple EYFP labels

could also be present. From the PCH analysis of single FP-labeled

AtSERK1 and BRI1, it became evident that the observed oligomeric

structures consist of dimers. Therefore Eq. 5 has to be modified to take

into account the presence of ECFP-ECFP or EYFP-EYFP labeled dimers.

The molecular brightness of these dimers is twice the value of the mono-

meric form, as has been determined by PCH. Hence, since the contribu-

tion of each species to the correlation curve scales with the square of the

relative brightness, the amplitude of the cross correlation curve now reads
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The fluorescence intensity traces were stored, correlated, and analyzed in a

home-developed software package which allows global fitting with several

typesoffittingmodels, usingMarquardt least squarefitting algorithms (35).The

quality of the fitting was checked using the minimal value of x2 and by visual

inspection of the fitted trace and the residuals. Fitting parameters were aver-

aged over 25–40 different FCS-curves, each curve obtained in another plant

cell.

Photon counting histogram analysis

A theoretical overview of PCH has been described in the literature (15,17).

The experimentally determined histogram of photon counts can be described

by a theoretical distribution function that is dependent on the molecular

brightness (h) and the number of particles (N). The experimental intensity

traces were stored using a sampling frequency of 200 kHz. The data were

analyzed in a home-developed software package (35) where it was binned to

5 kHz and fitted to a one- or two-species model including autofluorescence

background assuming a 2D Gaussian detection volume for the membrane

targeted proteins and a three-dimensional (3D) Gaussian detection volume

for AtSERK1kin-FP and the free fluorescent proteins. The brightness of the

autofluorescence was fixed to the values obtained in mock transfected cells

(first two rows in Table 1). Control experiments using fluorescent proteins in

the cytoplasm and membrane localized phospholipids (b-BODIPY530/550

C5-HPC) confirmed that at the SNR achieved in the cellular experiments no

distinction could be made between models with or without restricted

diffusion (36). To ensure that we could compare the retrieved molecular

brightness values directly, without the need to correct for different diffusion

times (37), PCH curves were generated using a binning of 20, 5, 1, and 0.1

kHz (Supplementary Fig. 1). The values remained stable when the binning

was larger than 1 kHz. To validate the number of species included in the

PCH fitting model, PCH traces and fits were exported to Igor Pro

(Wavemetrics, Lake Oswego, OR). The reduced xd
2
n (Eq. 7) (17) indicates

the quality of the fit model used and gives a measure of the ability to

distinguish between the PCH curves of n and (n � 1) species systems.

Values of xd
2
n lower than 1 indicate that the data statistics are not sufficient to

resolve the species completely, whereas a xd
2
n larger than 1 indicates that

more species than assumed in the fitting model are present:

HereM is the number of data points, d the number of fitting parameters, and

kmin and kmax are the minimal and maximal, respectively, number of photon

counts per bin. Nn and hn represent the number of particles and molecular

brightness of the nth species. sk is the standard deviation of finding k counts
r times out of M trials and P (k; N1,..,Nn, h1,.., hn) are the theoretical nth

species PCH functions (15).

RESULTS AND DISCUSSION

Expression of AtSERK1-, AtSERK3-, and BRI-VFP
fusion proteins

The full-length AtSERK1-, AtSERK3-, or BRI1-ECFP/EYFP

constructs were transfected into protoplasts. The confocal

images, acquired in the middle of the spherically shaped

protoplast, showed the localization of ECFP labeled AtSERK1

(Fig. 1 A), labeled AtSERK3 and BRI1 (data not shown) at the
plasma membrane, similar to what has been observed in

Arabidopsis roots for BRI1 (38) and BAK1 (AtSERK3) (5). A
more extensive description of the localization of AtSERK3

and BRI1 has been given by Russinova et al. (39). A lateral

intensity scan through the equatorial plane of the protoplast

displays two strong fluorescent peaks separated;50mm from

each other (Fig. 1 C), which corresponds to the average

diameter of a protoplast. The fluorescence intensities in the

cytoplasm, vacuole, and nucleus were similar to the values

obtained in nontransfected cells. The labeling pattern is similar

to a protoplast loadedwith themembranemarkerBODIPYFL-

HPC (data not shown), and it is therefore concluded that the two

peaks represent the plasma membrane at the left and right

border of the protoplast.

Two AtSERK1 constructs were included as negative con-

trols for AtSERK1 oligomerization. The first is AtSERK1kin,

encoding only the intracellular kinase domain fused to ECFP

and EYFP. This results in localization of the fluorescent fusion

protein in the cytoplasm (Fig. 1 B). Previous work clearly

indicated that AtSERK1kin-ECFP/EYFP proteins did not show

any oligomerization as determined by fluorescence spectral

imaging microscopy (FSPIM) (9). The expression pattern is

similar to that found in protoplasts expressing (nontargeted)

ECFP. However, in contrast to AtSERKkin-ECFP, the small

cytosolic ECFP is able to enter the protoplast nucleus. The level

of expression and the localization of the proteins were found to

be independent of the type of fluorescent protein used for

labeling. The second control was the AtSERKDLZ-ECFP/

GCYð0Þ ¼ 11
ðNC 1 4NCCÞ hCCY

hYYY

� �
1NCY 11

h
CCY

hYYY

� �

ðNC 1NCY 1 2NCCÞ NY 1 2NYY 1 ðNC 1 2NCCÞ hCCY

hYYY

� �� �
1NCY 11

h
CCY

hYYY

� �� � : (6)

x
2

dn ¼ Min
fN;hg

+
kmax

k¼kmin

M

Qðk;N1;N2; ::;Nn;h1;h2; ::;hnÞ �
Qðk;N1; ::;Nn�1;h1; ::;hn�1Þ

sk

� �2

kmax � kmin � d
: (7)
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EYFP proteins. The deletion of the LZ domain resulted in

proteins being targeted to the plasma membrane comparable

to the wild-type proteins but that were no longer able to form

homodimers (9).

Photon counting histogram analysis of
labeled proteins

AtSERK1 and BRI1 were seen to form oligomeric structures

in the plasma membrane (9,38), but the exact composition of

these aggregates is not known. PCH analysis can retrieve this

composition on the basis of differences in molecular bright-

ness between single labeled monomers and multiple labeled

complexes. To detect the fluorescence fluctuations of the

proteins, the observation volume was positioned in the upper

plasma membrane of the transfected protoplasts after

determining the fluorescence intensity profile along the optical

(z) axis. Measurements of free fluorescent protein and

AtSERK1kin were performed in the cytoplasm. Since PCH

and FCCS are techniques to analyze the relative fluores-

cence fluctuations, an upper concentration limit exists

above which no information can be retrieved. The lower

concentration limit is set by the number and the relative

brightness of background components such as endogenous

autofluorescent molecules. The concentration of fluorescent

dye used in fluctuation spectroscopy is typically 100 pM-

1 mM in vitro, but in cowpea protoplasts a lower concen-

tration of 5 nM is required to detect ECFP or EYFP in the

cytoplasm. Here, the fusion constructs were expressed under

control of the strong 35S promoter that leads to high levels

of expressed protein (.1 mM) after prolonged incubation

times.

To identify the time window where the expression level of

the fluorescent proteins is optimal for fluctuation analysis, the

molecular brightness and autocorrelation amplitude, G(0),
have been monitored over time. G(0) � 1 is related to the

inverse number of fluorescent particles in the observation

volume and thus is a measure for the concentration of fluo-

rescent particles. In the first 3 h after transfection the acquired

TABLE 1 Photon counting histogram analysis of the fluorescent proteins expressed in plant protoplasts

Construct hCFP chan (kHz/mol) NCFP chan (�) hYFP chan (kHz/mol) NYFP chan (�)

no FP* 0.4 6 0.2 3.5 6 1.4 0.3 6 0.0 2.0 6 0.7

no FPy 0.4 6 0.1 22 6 16 0.3 6 0.1 24 6 12

ECFPy 8.9 6 0.5 1.2 6 0.4 – –

EYFPy – – 9.3 6 0.5 0.85 6 0.22

AtSERK1-FP* (1st component) 10.9 6 1.3 1.3 6 0.3 11.0 6 0.5 1.4 6 0.4

(2nd component) 22.3 6 0.2 0.20 6 0.04 19.8 6 1.1 0.19 6 0.10

AtSERK1-FPDLZ* 10.6 6 1.8 1.8 6 0.5 11.0 6 0.7 1.6 6 0.3

AtSERK1-FPkin
y

9.2 6 0.6 0.95 6 0.09 9.1 6 0.7 1.1 6 0.3

AtSERK3-FP* 11.4 6 0.9 2.0 6 0.6 11.3 6 0.9 2.0 6 0.3

BRI1-FP* (1st component) 11.0 6 0.6 1.6 6 0.5 11.1 6 1.1 1.7 6 0.4

(2nd component) 22.5 6 1.0 0.31 6 0.07 20.8 6 1.3 0.40 6 0.06

CAAX-ECFP* 10.6 6 0.2 2.0 6 0.4 – –

CAAX-(ECFP)2* 20.3 6 0.8 1.9 6 0.6 – –

The molecular brightness, h, and number of molecules, N, were retrieved by PCH analysis from the data acquired in the CFP and YFP detection channels. All

PCH curves were fitted according to a single-species 2D (membrane) or 3D (cytoplasm) model, except for the data of AtSERK1 and BRI1, which had to be

fitted by a two-species model to obtain a satisfactory fit. The standard deviations represent the variation of the parameter over experiments in different cells

(n ¼ 35).

*Experiments in the plasma membrane.
yExperiments in cytoplasmic regions lacking chloroplasts.

FIGURE 1 Expression of AtSERK1-ECFP. (A) Fluorescent confocal

images of ECFP-labeled AtSERK1 protein expressed in cowpea protoplasts

16 h after transfection. CFP fluorescence, detected using a 480DF30 band-

pass filter, is green in the false color-coded image, and chlorophyll fluo-

rescence (LP650) is indicated by a red color. (B) AtSERK1kin-ECFP. The
confocal images were acquired in the equator of the protoplast by accu-

mulating four subimages of 512 3 512 pixels with a focused laser beam of

458 nm set at 2.5 kW cm�2. The bar represents 10 mm. (C) Lateral fluo-

rescence intensity scans in the equator of cowpea protoplasts expressing

AtSERK1-ECFP (black line) or AtSERK1kin-ECFP (gray line). The inten-

sity profile of nontransfected cells is indicated by the dotted line.
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autocorrelation curves have very low SNR and low correlation

amplitudes. PCH analysis of these data traces according to a

single speciesmodel identified a highnumber ofmoleculeswith

a low molecular brightness as source for the intensity fluctu-

ations. Thefluctuations observedare causedby the presenceof a

large number of dim, autofluorescent molecules. No indication

for the presence of the relatively bright ECFP fusion proteins

was found. Three hours after transfection the SNR of the

autocorrelation and PCH curves improved significantly. After 9

h the normalized autocorrelation amplitude was approximately

equal to 1 and the PCH histogram approached a Poissonian

distribution. This indicates that the expression levels of

fluorescent proteins were so high that no information could be

retrieved from the fluctuation analysis. Therefore, fluctuation

FIGURE 2 Oligomerization of ECFP fusion proteins in protoplasts from PCH analysis. In the top left panel typical ECFP fluorescence intensity traces are

displayed for AtSERK-ECFP (black) and BRI1-ECFP (gray). The traces are stable during the measurement time and do not show spikes or drifting. From the

fluorescence intensity trajectories, PCHs were derived for ECFP, CAAX-ECFP, CAAX-(ECFP)2, AtSERK1-ECFP, BRI1-ECFP, and AtSERK3-ECFP. The

lines in the panels represent the fits to the data points (diamonds) using a single-species model (gray line) or a two-species model (black line) with background.

In the panels below the histograms the normalized residuals between fit and experimental data are plotted. The residuals indicate the quality of the fit for both

models.
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experiments in transfected protoplasts were performed 5–9 h

after transfection.

The expression level of ECFP, EYFP, and the fluores-

cently labeled proteins was homogeneous throughout the

population of successfully transfected protoplasts and

remained stable during the measurement (Fig. 2 A). No

intensity drift was observed, as reported for EGFP in HeLa

cells (40) and Dictyostelium cells (41). The PCHs were

analyzed according to a model assuming the presence of a

single species and an autofluorescent component. The single

species fits led to a good description of the experimental

histograms for ECFP (Fig. 2 B). Similar results were

obtained for protoplasts expressing EYFP or the fluores-

cently labeled AtSERK3, AtSERK1DLZ, and AtSERK1kin.

The normalized residuals produced by the fits are close to

1 and distributed randomly. The fits yield a xd
2
n � 0:9,

indicating the proper choice of fitting model. It was noted

that the differences in expression level of the fusion pro-

tein among the cells did not affect the average molecular

brightness, as shown for AtSERK1-ECFP and two control

constructs, ECFP and CAAX-(ECFP)2, in Fig. 3. CAAX-

(ECFP)2 is a fusion protein containing two ECFP moieties

that is targeted to the plasma membrane due to the presence

of a CAAX amino acid motif that results in posttranslational

attachment of an isoprenyl group to the cysteine residue (42).

The molecular brightness of CAAX-ECFP measured in

the membrane yields 10.6 6 0.2 kHz per molecule and is

similar for all the membrane targeted ECFP-fusion proteins

used in this study, although the fusion proteins are slightly

dimmer compared to the free fluorescent protein (Table 1).

This brightness is somewhat higher than the ones retrieved

for ECFP and its cytoplasmic fusion proteins, which can be

explained by the differences in the point spread function

assumed in the 2D and 3D Gaussian fitting models. The

molecular brightness of 20.36 0.8 kHz for CAAX-(ECFP)2
(Fig. 2) agrees well with the expected doubling of the

molecular brightness compared to CAAX-ECFP. Only the

PCH analysis of fluorescent AtSERK1-ECFP and BRI1-

ECFP required a multicomponent model to fit the data, since

the reduced xd
2
n for the single-species model was 16 and 21,

respectively. The two-species fit resulted in a xd
2
2 of 0.8 and

0.7 with randomly distributed residuals (Fig. 2).

Expansion of the fitting model by a third species did not

result in an improvement of x2 (xd
2
3 ¼ 0.8; not shown). The

fitting results identified a large fraction of AtSERK1-FP

(86%) and BRI1 (77%) molecules with a molecular bright-

ness of 10.9 kHz per molecule. This value corresponds well

to the value obtained from CAAX-ECFP, and therefore this

fraction is considered to represent the monomeric form of

AtSERK1 and BRI1. The second fraction of molecules had a

brightness value of approximately twice the value of the

larger fraction (similar to CAAX-(ECFP)2) and most likely

represented the dimerized molecules (22 kHz per molecule).

A similar fraction with a doubled molecular brightness has

been observed using the EYFP fusion proteins. The AtSERK1-

FPDLZ and AtSERK3-FP fusion proteins gave rise to photon

count distributions that could be fitted by a single-species

model with a brightness value corresponding to that of the

negative control, the CAAX-ECFP membrane protein. In

addition, the single molecular brightness value found for

AtSERK1-FPkin corresponded to the one found for the free

fluorescent protein. Therefore it was concluded that the de-

letions in AtSERK1DLZ and AtSERK1kin prevent the recep-

tor to dimerize, confirming the data obtained with the same

constructs using FSPIM (9). No evidence was found for the

homooligomerization of labeled AtSERK3 (Fig. 2). This

result is in accordance with the data obtained by FRET-FLIM

measurements where no lifetime reduction was observed upon

cotransfection of both ECFP- and EYFP-fusion proteins (38).

In comparison with AtSERK1, AtSERK3 lacks the second

cysteine pair flanking the LRR in the extracellular domain, and

this pair might be essential for intermolecular interactions and

receptor homodimerizaton (43).

Fluorescence (cross) correlation microscopy of
ECFP and EYFP labeled proteins

To confirm the presence and to monitor the diffusion prop-

erties of the homooligomeric structures, dual-color FCCS

was applied to the protoplasts expressing both ECFP and

EYFP fusion proteins. It has been noted that all fluorescence

bursts detected in the CFP channel were accompanied by

simultaneous bursts in the YFP channel. This phenomenon is

caused by the ‘‘cross talk’’, the emission of the ECFP

fluorophore in the YFP detector due to its long emission tail in

the spectrum. The cross talk intensity ratio in the bursts, IYFP/

ICFP, as determined from CAAX-ECFP transfected proto-

plasts amounted to 0.30 6 0.12, and this value was used to

correct the YFP intensity trace after both traces were cor-

rected for background fluorescence. Alternatives for elimi-

nating cross talk are pulsed interleaved excitation (27), in

FIGURE 3 Apparent molecular brightness of ECFP and fusion proteins as

a function of expression level. The fluorescence intensity has been measured

in the cytoplasm of protoplasts expressing ECFP and in the upper plasma

membrane of protoplasts expressing CAAX-(ECFP)2 or AtSERK1-ECFP

between 5 and 9 h after transfection. The PCH data were fitted according

to a single-species model with background assuming 2D (membrane) or 3D

(cytoplasm) Gaussian diffusion.
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which each fluorophore is excited and detected sequentially,

or the use of other labels that are spectrally well separated.

Besides the genetically encoded fluorophores like GFP, one

of the recently developed in vivo chemical labeling strategies,

such as biarsenide dyes (44) or the acyl carrier protein system

(45), can be chosen.

From the photon arrival time traces, the auto- and cross

correlation curves were calculated using Eqs. 2, 5, and 6. Fig.

4 presents the auto- and cross correlation curves measured in

the protoplasts transfected with the ECFP/EYFP and ECFP/

EYFP fusion proteins. The positive control CAY, consisting

of an ECFP moiety fused to EYFP via a 25 amino acid linker

(23), gives rise to high cross correlation amplitude with

respect to the autocorrelation amplitudes since all particles

contain both labels. For both AtSERK1 and BRI1 but not for

AtSERK3, cross correlating particles could be detected. The

diffusion coefficients of the proteins were obtained by fitting

the auto and cross correlation curves from 25 to 40 different

cells to a 2D diffusion model (Table 2). The obtained

diffusion times were converted into diffusion coefficients

according to Eq. 3 using axial radii of the observation volume

of 225 nm (CFP channel), 238 nm (YFP channel), and 230 nm

(cross correlation). The corresponding sizes of the detection

volumes (19), required for calculating the protein concentra-

tions, are 0.24 fl (CFP), 0.34 fl (YFP), and 0.30 fl (cross

correlation). No multicomponent or restricted anomalous

diffusion models were required to analyze the data, as

reported for membrane proteins in other cell types (36).

When ECFP-labeled proteins can only form complexes

with EYFP-labeled proteins, the number of protein com-

plexes can be directly retrieved from the FCCS-curve. From

PCH analysis of single FP-labeled AtSERK1 and BRI1, it

was evident that the oligomeric structures consist of dimers.

Therefore in the FCS analysis we have to consider that not

only do the dimers consist of particles carrying both the

ECFP and the EYFP label (NCY), but also dimers with two

ECFP (NCC) or EYFP (NYY) labels may be present. To

retrieve NCY the parameters describing the auto and cross

correlation curves were globally linked. Cross correlation

curves were analyzed by combining Eqs. 4 and 6, and

FIGURE 4 Autocorrelation (blue, CFP channel; orange,
YFP channel) and cross correlation curves (black) of free

ECFP and EYFP, CAY, AtSERK1, BRI1, and AtSERK3

in cotransfected cowpea protoplasts. The curves (thin

lines) have been corrected for noncorrelating background

and cross talk. The measurement time for these samples

was 2 min. The curves were fitted according to a model

describing 2D Brownian motion (thick lines), and the fit

residuals are displayed in the panels below.
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autocorrelation curves were analyzed according to Eq. 2.

Parameters hCCY and Fbackground were set to zero since the

curves have been corrected for background already. The

analysis of the AtSERK1 yielded NCY ¼ 1.0 6 0.3, which

corresponds to 7% of the total amount of AtSERK1 protein.

Fitting the CFP and YFP autocorrelation curves of AtSERK1

with a three-component 2D Brownian motion model, fixing

the amount of cross correlating particles, and taking into

account the differences in molecular brightness yielded

NCC ¼ 0.5 6 0.1 and NYY ¼ 0.4 6 0.1 complexes for the

CFP and YFP channels, respectively.

The sum of these complexed molecules (NCC 1 NYY 1
NCY) corresponds to 15% 6 5% of the total amount of

protein, which agrees well with the values of 14% as

obtained from PCH. Therefore it was concluded that ;14%

of AtSERK1 is present in a dimerized form in the plasma

membrane. Spectral imaging (9) and FRET-FLIM measure-

ments (39) of AtSERK1-ECFP/EYFP fusion proteins at the

protoplast membrane have shown that a small percentage

of the AtSERK1 protein might exist as oligomers. It also

appeared that there are only certain regions in the plasma

membrane where AtSERK1 proteins are not monomeric. This

indicates that a minority of the AtSERK1 receptor molecules

on the plasma membrane is in a predimerized state. This

observation is in line with EGF receptor dimerization. In

mammalian cells 12% of the high-affinity ErbB1 receptors are

dimerized in specific regions of the plasma membrane. Based

on the quantitative determination of FRET on the EGF re-

ceptor in mammalian cells, it was suggested that the high-

affinity subclass of receptors is present in a predimerized state

in the absence of the ligand (46).

Since it is not known whether ligands that bind to

AtSERK1 are present in the growth medium, it is not pos-

sible to assign the presence of AtSERK1 dimers to ligand-

induced dimerization or to preassociated receptor molecules.

Therefore, identification of the ligand will be essential for

determining the exact functioning of AtSERK1. The mutated

forms of AtSERK1, AtSERK1DLZ, lacking the LZ domain,

AtSERK1kin, lacking the transmembrane and extracellular

domain, did not result in a cross correlating complex, and

therefore it is concluded that these domains are essential in

dimerization of the AtSERK1 receptor. The total number of

fluorescent receptor molecules in the cell membrane of

protoplasts (diameter ;50 mm) can be estimated from the

average number of fluorescent receptors (;12) that have

been detected in our microscopic field of view (;0.2 mm2).

Assuming a homogeneous receptor distribution over the

membrane of a spherical protoplast,;300,000 receptor mol-

ecules are present per cell. This number is in the same range

as the number of receptor molecules per cell in EGF-expressing

mammalian cells (47).

The FCCS results confirmed the dimerization of BRI1

(22%6 5% in dimeric form), whereas no evidence was found

for oligomerization of AtSERK3. To determine whether

brassinolide (BL) treatment of the protoplasts expressing

BRI1-ECFP would affect the oligomerization status, PCH

experiments were performed on protoplasts incubated with

0–10 mM BL (Fig. 5). In the absence of exogenous BL, 20%

of the BRI1-ECFP in the plasma membrane was present as a

homodimer, resulting in an average molecular brightness of

8.7 kHz per molecule. Titration of 0.5–10 mM BL altered

neither the fraction nor the oligomerization state of the labeled

BRI1 proteins, indicating that the oligomerization state of the

protein is ligand independent.

CONCLUSIONS

Dual-color FCCS and PCH were successfully applied to

study the oligomerization state and mobility of Arabidopsis
thaliana somatic embryogenesis receptor kinases (AtSERK1

and 3) and Brassinosteroid insensitive receptor (BRI1) in the

plasma membrane of cowpea protoplasts. PCH analysis of

fluorescently labeled proteins showed that a small fraction of

the AtSERK1 (13%) and BRI1 (20%) fusion proteins in the

TABLE 2 Diffusion coefficients (31013 m2s�1) of the fluorescent fusion proteins expressed in plant protoplasts

Construct(s) D (CFP channel) D (YFP channel) D (Cross correlation channel)

AtSERK1-ECFP or -EYFP* 4.0 6 0.5 4.2 6 0.6 n.f.

AtSERK1-ECFP and -EYFP* 4.2 6 1.3 3.9 6 0.7 2.6 6 0.7

AtSERK1DLZ-ECFP or -EYFP* 3.7 6 0.5 4.0 6 0.5 n.f.

AtSERK1DLZ-ECFP and -EYFP* 4.2 6 0.9 4.1 6 0.6 n.f.

AtSERK1kin-ECFP or -EYFPy 90 6 8 84 6 5 n.f.

AtSERK1kin-ECFP and -EYFPy 78 6 16 75 6 15 n.f.

AtSERK3-ECFP and -EYFP* 4.4 6 0.7 4.6 6 0.6 n.f.

BRI1-ECFP and -EYFP* 4.5 6 0.8 4.3 6 0.5 3.8 6 0.8

CAAX-ECFP and -EYFP* 5.3 6 0.7 5.2 6 0.7 n.f.

CAAX-(ECFP)2* 5.1 6 0.8 n.f. n.f.

ECFP or EYFPy 370 6 41 410 6 46 n.f.

The diffusion coefficients were obtained from FCS or FCCS analysis. All FCS curves were fitted according to a single-species model, except for the data of

AtSERK1 and BRI1, which were fitted to a two-species model. The standard deviations represent the variation of the diffusion coefficient over experiments

in different cells (n ¼ 25–40 for each type of sample). n.f., not found.

*Experiments in the plasma membrane.
yExperiments in cytoplasmic regions lacking chloroplasts.
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plasma membrane is present in dimerized form, whereas no

indication was found for higher oligomeric complexes. No

evidence was found for homooligomerization of AtSERK3.

These results were confirmed by FCCS. In addition, it was

shown that both monomeric and dimerized forms of the

AtSERK1 and BRI1 fusion proteins diffuse in the plasma

membrane according to normal two-dimensional Brownian

motion. Our results show that it is feasible to determine the

oligomerization status of individual proteins in living cells.

Although we focused on homooligomerization here, the

techniques described in this work can also be applied to

analyze heterooligomerization, and therefore future studies

can be performed to study the interactions between the

AtSERK family members, BRI1, and other components

involved in brassinosteroid signaling.

SUPPLEMENTARY MATERIAL
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article, visit www.biophysj.org.
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