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ABSTRACT Reaction kinetics in a cell or cell membrane is modeled in terms of the first passage time for a random walker at a
random initial position to reach an immobile target site in the presence of a hierarchy of nonreactive binding sites. Monte Carlo
calculations are carried out for the triangular, square, and cubic lattices. The mean capture time is expressed as the product of
three factors: the analytical expression of Montroll for the capture time in a system with a single target and no binding sites; an
exact expression for the mean escape time from the set of lattice points; and a correction factor for the number of targets
present. The correction factor, obtained from Monte Carlo calculations, is between one and two. Trapping may contribute
significantly to noise in reaction rates. The statistical distribution of capture times is obtained from Monte Carlo calculations and
shows a crossover from power-law to exponential behavior. The distribution is analyzed using probability generating functions;
this analysis resolves the contributions of the different sources of randomness to the distribution of capture times. This analysis
predicts the distribution function for a lattice with perfect mixing; deviations reflect imperfect mixing in an ordinary random walk.

INTRODUCTION

Earlier work (1) described a trapping model that predicts

anomalous subdiffusion at short times and normal diffusion at

long times for diffusion in the presence of a finite hierarchy of

traps. We argued that the trap hierarchy is biologically rea-

sonable. Abundant shallow traps correspond to nonspecific

binding sites; the rare deepest trap corresponds to the bio-

logical target site of the diffusing particle; and the binding

energies of intermediate traps depend on the similarity of the

traps to the target site. We showed that for anomalous sub-

diffusion to occur, the diffusing particle must not be in ther-

mal equilibrium with the traps; there must be some biological

event that turns on the interaction of the diffusing particle with

the traps and targets. The earlier article described the model

qualitatively; here we consider it quantitatively. We consider

the effect on reaction kinetics, specifically the search time

required for the diffusing particle to find its target. Later work

will examine transient anomalous subdiffusion. The kinetics

problem provides a well-defined timescale to characterize the

crossover times for anomalous subdiffusion.

Many workers have discussed reaction kinetics in terms of

random walks; see, for example, den Hollander and Weiss (2)

and Kozak (3). Reactions in bilayers are reviewed by Melo

and Martins (4). The effect of traps and fractal substrates on

kinetics is summarized by Barzykin et al. (5) and ben-Avraham

and Havlin (6). Biochemical applications are discussed by

Berry (7), Dewey (8), and Savageau (9).

We characterize reaction kinetics in terms of the time for a

diffusing particle starting at a random position to first arrive

at an immobile target site. We show that for a single target,

the capture time can be described analytically in terms of two

known quantities, the first passage time for a target without

traps, and the average escape time from the set of traps. The

capture time for multiple targets differs from the capture time

for a single target by a numerical factor of order one; this

correction factor is obtained from Monte Carlo calculations.

The entire range of target numbers is of biological interest;

targets may be a single gene or an abundant protein structure

such as coated vesicles.

METHODS

Monte Carlo calculations were carried out as described earlier (10) except

that the ran2 random number generator (11) was used. General Monte Carlo

techniques for diffusion problems are discussed elsewhere (12). Here

triangular and square lattices were used for the two-dimensional case and the

simple cubic lattice for the three-dimensional. Periodic boundary conditions

were used. Initially a prescribed concentration of immobile traps and targets

were placed at random sites on the lattice. A single tracer was placed at a

random nontarget lattice site, and carried out a random walk until it first

reached a target site. When the tracer was on a trap site, it would try to escape

at each time step, with a prescribed probability of success. For the cal-

culations with multiple sets of traps plus target, typically 1024 or 1000 sets

were used, and the system size was chosen to give the required concen-

tration. As will be discussed in detail, the capture time is sensitive to the

number of sets, and 1000 sets is reasonably close to the asymptotic limit. For

most of the runs, results were averaged over 500 random trap configurations

and 1000 tracers per configuration. For runs with low escape probabilities or

runs on very large systems, fewer repetitions were used, and for some runs

many more repetitions were used to get smoother curves for publication,

as indicated in the captions. Averages of various quantities are given as the

mean 6 SD for the stated number of points.

RESULTS

The trap hierarchy model is potentially applicable to two-

dimensional diffusion in the plasma membrane and three-

dimensional diffusion in the nucleus and cytoplasm, so we
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will treat two-dimensional diffusion on triangular and square

lattices and three-dimensional diffusion on a simple cubic

lattice. The triangular and cubic lattices have coordination

number 6, and as we shall see the results in two dimensions

and three dimensions are surprisingly similar. It is well

known that random walks are sensitive to dimensionality due

to differences in the efficiency of diffusional mixing. One

extreme, the complete graph, is the infinite-dimensional case.

Here every lattice point is directly connected to every other

lattice point so a tracer can move from any point to any other

point in a single time step (13). Mixing is thus perfect in the

sense that the system loses all memory of its previous state at

every time step. A random walk on a three-dimensional lat-

tice gives good mixing; a random walk on a two-dimensional

lattice gives poor mixing; and anomalous subdiffusion on a

two-dimensional lattice gives even worse mixing (7,14,15).

As an intuitive way of quantifying this, consider the

probability of return, a key quantity in the understanding of

randomwalks (16). A tracer starts a randomwalk at the origin

of an infinite lattice.What is the probability that the tracer will

return to the origin? In two dimensions and below, the

probability is 1; for the cubic lattice, 0.341; for the four-

dimensional hypercubic lattice, 0.193 (see (16) p. 153); and

for the complete graph, 0. But for the finite systems and the

timescales considered here, the difference between two-

dimensional and three-dimensional systems is well repre-

sented by the known difference in capture times for a target in

a trap-free system.

The discrete hierarchy of traps is shown schematically in

Fig. 1. It is defined by the number of levels, the ratio of the

number of traps from level to level, and the escape prob-

ability PESC per time step from the first level. The escape

time from a trap of a given level is the reciprocal of the

escape probability per unit time. As discussed elsewhere (1),

it is assumed that for the diffusing particle to escape a trap it

must have enough thermal energy to reach the ground state.

The escape time is thus independent of the energy of the site

to which the particle is moving. We write the hierarchy of

Fig. 1 as 16/8/4/2/T, PESC ¼ 0.1. This hierarchy will be used

as the standard.

Mean capture time

We consider reaction kinetics in the presence of a hierarchy

of traps. A mobile particle starts at a random position on a

finite lattice with periodic boundary conditions and carries

out a random walk on the lattice until it first reaches an

immobile target site. How many time steps are required?

This first passage time can be regarded as a simple example

of a reaction rate or as the time required for a mobile species

to find its biological target. We examine the mean number of

time steps until capture and the distribution of capture times.

To obtain the theoretical mean capture time, we adapt a key

idea from the work of Harder et al. (17). They noted that in a

system with traps, a diffusing particle carries out an ordinary

random walk, with the ordinary distribution of paths from a

random initial position to the target, and the ordinary dis-

tribution of revisits to sites (which depends on dimensional-

ity). The only effect of the traps is to change the timescale for

the random walks. This increase in time gives the transient

anomalous subdiffusion found for a finite hierarchy (1), and

the pure anomalous subdiffusion over all times found for an

infinite hierarchy (17).

In quantitative terms, for any individual random walk in

the presence of a single target, the capture time tcapt can be

written as the sum of the diffusion times tdiff ij from trap i to
trap j and the escape times tesc i from the ith trap. We have

tcapt ¼ tdiff 01 1 tesc 1 1 tdiff 12 1 tesc 2 1 . . . (1)

so that

tcapt ¼ tdiff 1 tesc; (2)

where tdiff is the sum of the diffusion times from trap to trap

and tesc is the sum of the excess escape times from all the

traps encountered. The excess escape time does not include

the single time step required for a visit to a site in the absence

of traps, so that if no traps are present, tcapt¼ tdiff as required.
Importantly, tdiff is the same as in the trap-free case.

We average this over many random walks. (Means are

indicated by capitalized subscripts.) The mean tDIFF is just

the Montroll first passage time tM(N), which gives the

capture time for a single target in a finite system with no traps

as a function of the number of lattice points N. The mean

excess time in the traps is the product of the mean excess

time per trap and the mean number of time steps until

capture, that is

tESC ¼ ðÆtESCæ� 1ÞtM: (3)

Here ÆtESCæ is the mean escape time averaged over all sites

in the system, trap and nontrap, but excluding target sites
FIGURE 1 A typical hierarchy of discrete traps and target, written as 16/

8/4/2/T.
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because target sites do not delay the diffusing particle but

immediately stop the random walk. (This definition must be

changed when the reaction probability of the diffusing par-

ticle with the target is ,1.) Both tM and ÆtESCæ are dimen-

sionless, expressed as a number of time steps. The average of

Eq. 2 then becomes

tCAPT ¼ ÆtESCæ tM ðNÞ: (4)

Equation 4 holds in the case of a single target. If there are a

total of S targets we use the first passage time tM(N/S),
calculated for the average number of lattice points per target.

This is a mean-field approximation so as discussed in detail

later a correction factor A(S, CT) is necessary and the final

equation is

tCAPT ¼ AðS; CTÞÆtESCætMðN=SÞ: (5)

Here the number fraction of targets isCT, the number fraction

of traps is Ct, and the number fraction of traps plus targets is

CTt. These are defined in terms of the total number of points

in the lattice N ¼ L2 or L3 where L is the lattice edge. We

define C9T to be the number fraction of traps based on the

number N9 of nontarget sites in the lattice. Note that A and tM
depend on the lattice and dimensionality but ÆtESCæ does not.
When Eq. 5 is applied to a physical system, the dimensionless

capture time would be converted to a physical time by a

factor Dt given by ‘2 ¼ 2dD0Dt, where ‘ is the lattice

constant, d is dimensionality, and D0 is the diffusion

coefficient in the trap-free system. Values of ‘ and Dt would
be chosen to resolve the spatial separation of the binding sites

and the differences in escape times from the binding sites.

The Montroll first passage time is the mean number of

time steps for a random walker to go from a random initial

site to a prescribed immobile target site. It depends on the

size, lattice, and dimensionality of the system. For two-

dimensional lattices, the asymptotic formula for the first

passage time is

tMð2DÞ ¼ N

N � 1
½A1N lnN1A2N1A3 1A4=N1 . . .�; (6)

where the Ai are lattice-dependent constants. The capture

time was introduced by Montroll (18) in work on the ki-

netics of photosynthesis. Arithmetic errors for the square

lattice were corrected by den Hollander and Kasteleyn (19).

The theoretical results were compared with exact numerical

results by Kozak ((3) pp. 262–265). This review includes a

convenient summary (Table III.4 in (3)) of the corrected

numerical coefficients for various lattices. For the triangular

lattice we use A1 ¼
ffiffiffi
3

p
=2p ¼ 0:275 664 448; A2 ¼ 0:235

214 021; A3 ¼ �0:251 407 596; and A4 ¼ �0.044 485 7.

The first three coefficients are exact theoretical values from

Montroll (18) and A4 is the numerical value of Kozak (3).

The effect of the A4 term is negligible here. For the square

lattice we use the theoretical values of den Hollander and

Kasteleyn (19), A1 ¼ 1/p ¼ 0.318 309 886, A2 ¼ 0.195 062

532, A3 ¼�0.116 964 779, and A4 ¼ 0.484 065 704. For the

square lattice, Kozak (3) found that if A1, A2, and A3 are fixed

at their theoretical values and A4 is fit to exact numerical

results, the value of A4 is shifted by only 0.44%. The Monte

Carlo results and Eq. 6 agree quantitatively. For the range of

systems considered, N ¼ 42 to 3002, the ratio of the Monte

Carlo value to the calculated value was 1.00003 6 0.00048

(mean 6 SD for 19 points) for the triangular lattice and

1.00007 6 0.00124 (18 points) for the square lattice.

Finding an analytical expression for the simple cubic lat-

tice is more problematic. Montroll (18) proved that tM(3D)¼
a0N 1 O(N1/2) with a0 ¼ 1.516 386. . .. Kozak (3) obtained

exact numerical results for a centrosymmetric trap with

periodic boundary conditions for the seven odd cubes N¼ 33

to 153 and fit them to a two-term curve of Montroll’s form.

The fit was good over a limited region but was bad for small

N and the asymptotic value was incorrect. Using that form

to fit the Monte Carlo data obtained here gave a poor fit.

Extending the series in inverse half-powers of N through

1=N
ffiffiffiffi
N

p
gave reasonable least-squares fits at the data points

themselves but was unacceptable because at intermediate

points the fit showed spurious structure, including a para-

bolic minimum. A more satisfactory empirical description of

the Monte Carlo data was a fit to a quotient of polynomials

tMð3DÞ
N

¼ N

N � 1

a0 1A1=
ffiffiffiffi
N

p
1A2=N

11B1=
ffiffiffiffi
N

p
1B2=N

; (7)

where a0 is the exact asymptotic value from Montroll (18)

and the factor of N/(N – 1) accounts for the fact that in the

Monte Carlo calculations the initial position cannot be a

target. Montroll (20) showed how this factor is included in

the formalism.

The Monte Carlo data set contains 29 points with N from

23 to 3003, so we are making heavy demands on an asymp-

totic formula. The results agree well with Kozak’s exact re-

sults for the seven odd cubes N ¼ 33�153; the ratio of the

Monte Carlo to the exact capture times was 0.99926 0.0006

for traps at random positions and 1.0009 6 0.0013 for cen-

trosymmetric traps. The Monte Carlo simulations went to

much higher N than would be practical with Kozak’s exact

method. For small N the Monte Carlo results were highly

reproducible. Five independent runs for N¼ 33 gave tCAPT¼
30.474 6 0.033, and for 153, 4811.48 6 4.84. Independent

runs for N ¼ 143 with 0.5, 0.5, 5, and 50 million repetitions

gave tCAPT ¼ 3899.14 6 2.60; a run with 0.05 million

repetitions gave 3878.1,�8.1 SD from the others, suggesting

that 0.5 million repetitions was sufficient but 0.05 million

was not. More repetitions for large systems would be better

(note the outlier at N¼ 1503 in Fig. 2 b) but were impractical.

The least-squares fit to the Monte Carlo data gave the

coefficients in Eq. 7 as a0 ¼ 1.516 386 ¼ constant, A1 ¼
190.340 805, A2 ¼ 60.901 235, B1 ¼ 133.054 765, and B2 ¼
289.573 263. This function fit the entire range well; the ratio

of the Monte Carlo to the calculated value was 0.99979 6
0.00224, n¼ 29. The curve still showed a spurious parabolic
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minimum but the minimum was below N ¼ 23. Asymptotic

expansion of this function gave tMð3DÞ;1:516386N�
11:4216

ffiffiffiffi
N

p
11141:49� 148574=

ffiffiffiffi
N

p
1 . . . . All these coef-

ficients are for a system with periodic boundary conditions;

the effect of boundary conditions on capture times is ex-

amined in detail by Walsh and Kozak (21). Fig. 2 a shows

the capture times from Eqs. 6 and 7 as a function of the target

concentration CT ¼ 1/N in a log-log plot. Fig. 2 b shows

the scaled Monte Carlo data for the cubic lattice and the fit of

Eq. 7.

The effect of traps is taken into account by the mean

escape time. In general,

ÆtESCæ ¼ 1

N9
+
m

i¼0

9ni tESC i ¼ 1

N9
+
m

i¼0

9 ni

P
i

ESC

: (8)

Here the prime indicates that target sites are excluded from

the sum, n0 is the number of nonbinding sites, tESC 0 ¼ 1, ni
is the number of binding sites in the ith level, tESC i ¼ 1=Pi

ESC

is the mean escape time from an ith-level binding site, m is

the total number of trap levels, and N9 is the total number of

lattice points excluding targets. For the standard hierarchy

16/8/4/2/T with PESC ¼ 0.1,

ÆtESCæ ¼ ð1� C9tÞ11C9t
16

30
3 101

8

30
3 10

2

�

1
4

30
3 10

3 1
2

30
3 10

4

�
; (9)

giving for a 32 3 32 lattice with a single set of target and

traps ÆtESCæ¼ 25.3695 and for a 103 103 10 lattice ÆtESCæ¼
25.9550.

If only one target is present, these factors account for the

capture time quantitatively, as shown in Fig. 3, where tCAPT¼
tM (curve ST). If traps and one target are present, tCAPT ¼
tMÆtESCæ (curve STt). The corresponding plot for data for the

square lattice gives results scarcely distinguishable from Fig.

3 a, as the small difference between the first passage times

for the triangular and square lattices in Fig. 2 a suggests.

Monte Carlo calculations for a variety of trap hierarchies

showed good agreement of the Monte Carlo capture time

tCAPT MCwith the capture time from Eq. 5. The ratio tCAPT MC/

tCAPT for ST curves has already been given. For the STt

curves, for the triangular lattice the ratio is 1.00065 6
0.00143, n ¼ 12; for the square lattice, 0.99870 6 0.00187,

n¼ 12; and for the cubic lattice, 0.999116 0.00171, n¼ 11.

Maximum concentrations here are 0.0625 for ST curves and

0.0278 for STt curves in two dimensions, and 0.125 for ST

curves and 0.0156 for STt curves in three dimensions.

Fig. 3 shows that if multiple targets are present, the capture

time increases by a small factor; compare curve MT with ST,

and curve MTt with STt. This effect is quantitated in Fig. 4,

giving the correction factor A(S, CT) as a function of the

number S of sets of traps and targets, at several target

concentrations CT. If tCAPT MC is the capture time from

Monte Carlo calculations, then we define A as

AðS;CTÞ ¼ tCAPTMCðS;CTÞ
tCAPTMCð1;CTÞÆtESCæ: (10)

For the three runs with CT # 0.01, the calculated tM could be

used instead of the Monte Carlo value. But in two di-

mensions for CT ¼ 0.25, the Montroll capture time for S ¼
1 is off by 15%; it is hardly surprising that an asymptotic

formula breaks down for N ¼ 4. In two dimensions the

multiple trap effect contributes a factor of 1.0–1.75, and in

three dimensions, a factor of 1.00–1.25. The effect is in-

dependent of the number of sets of traps and targets after a

few hundred sets are included, as Fig. 4 shows. Systems of

targets alone and systems of targets and traps fall on the same

curves, indicating that ÆtESCæ accounts for the effects of traps
on the means.

FIGURE 2 Capture times for a random walker in the presence of one

target but no traps. (a) Log-log plot of the Montroll capture time tM as a

function of the target concentration CT ¼ 1/N for the two-dimensional case

(triangular and square lattices) and the three-dimensional case (simple cubic

lattice), from Eqs. 6 and 7 with coefficients given in the text. For the two-

dimensional lattices, the theoretical results and the numerical results of

Kozak are indistinguishable on the scale of this figure. (b) Scaled Monte

Carlo capture times for the cubic lattice tM(3D)/N as a function of log N, and

least-squares fit Eq. 7. Horizontal line, theoretical asymptotic limit imposed

by Eq. 7.
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The reason for the dependence on the number of sets is

random fluctuations in the trap density. For multiple targets

we use the Montroll capture time per set tM(N/S). This is a
mean-field approximation, which takes into account the

mean number of lattice sites per target but neglects fluctu-

ations in the arrangements of targets. Periodic boundary

conditions are used in all the Monte Carlo calculations, so the

system is always infinite in that sense, but the size of the unit

cell limits the scale of the fluctuations in target spacing. This

effect is similar to well-known results in the kinetics of the

annihilation reaction A1 B/ 0, where the particles in areas

of average density vanish rapidly but the long-time kinetics is

determined by areas enriched by chance in one species

(22,23). These results imply that there will be a slow increase

in the capture time as the size of the unit cell is increased, to

give a singular limit in an infinite system. To test for this slow

increase would require further Monte Carlo calculations

beyond the scope of this work.

The results do not depend on the discrete hierarchical

structure of the traps, as shown by three controls in excellent

agreement with Eq. 5 and Fig. 4. The first is a series of runs

FIGURE 3 Monte Carlo capture times for the standard trap hierarchy.

Log-log plots of tCAPT as a function of the target concentration CT. (a)

Triangular lattice. (b) Cubic lattice. Points: Monte Carlo results for single

targets (ST, circles), multiple targets (MT,1), a single set of traps and target

(STt, triangles), and multiple sets of traps and targets (MTt, 3). Lines: the-

oretical values, tCAPT ¼ tM for single targets (ST) from Eqs. 6, 7 and tCAPT ¼
tM ÆtESCæ for a single set of traps and targets (STt). In these examples the

total concentration of traps and targets CTt ¼ 31CT, so the total con-

centrations can be high; in the MTt series the maximum concentrations

are CT ¼ 0.02861, CTt ¼ 0.8868 in panel a and CT ¼ 0.02827, CTt ¼ 0.8764

in panel b.

FIGURE 4 Dependence of the capture time on the number S of targets or

sets of targets and traps for fixed target concentrations CT. Values of A(S,

CT) are defined in Eq. 10. (a) Triangular and square lattices. (b) Cubic lattice.
Note the changes in scale and CT. Circles and lines, targets but no traps;

triangles, traps and targets. The standard hierarchy of traps is used, 16/8/4/2/

T, PESC ¼ 0.1. In panel a for CT ¼ 0.01, the upper line is for the square

lattice and the lower line is for the triangular lattice. Panel a also shows

results for two alternative trap distributions on the triangular lattice, 1 for

CT ¼ 0.01, the continuous distribution of Eq. 11, and 1 for CT ¼ 1/1024,

the uniform discrete distribution 7/7/7/7/T. Runs were set up so that all

concentrations and values of S were exact, although this limited the

concentrations used. For example, when CT ¼ 0.01, the first series of runs

had only target sites at a fixed concentration and the system size was varied.

There was one target in a 103 10 grid, four targets in a 203 20 grid, and so

forth to 3600 targets in a 600 3 600 grid. The second series used the same

target concentrations and grids but one set of 30 traps per target, so the total

concentration was CTt ¼ 0.31. For runs with targets and traps, 500 trap

configurations were used, and 1000 tracers per trap configuration. For runs

with traps alone, to get smooth curves 1000 trap configurations were used

and 10,000 tracers per trap configuration.
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with a single target and a single level of traps at area fractions

0.01, 0.02, 0.05, 0.1, 0.2, and 0.5, and the corresponding

series with 1024 traps at a trap concentration of CT¼ 0.0001.

The second is the uniform discrete distribution 7/7/7/7/T

used previously (1). The third is a continuous random distri-

bution in which the escape time is Px
ESC with x a uniformly

distributed random variate between a and b. If t ¼ 1/PESC,

the mean escape time from a trap site is then (1/ln t)(tb – ta)/
(b – a) by a standard transformation (24) so that the mean

escape time for the lattice is

ÆtESCæ ¼ ð1� C9tÞ11C9t
1

ln t

t
b � t

a

b� a
: (11)

Here we use a ¼ 1, b ¼ 4, PESC ¼ 0.1, and 30 traps so that

the number of traps is the same as in the standard example of

Fig. 1, and the range of escape times is the same. The 7/7/7/7/

T and continuous cases give data very similar to the STt and

MTt results of Fig. 3 a but with larger times because ÆtESCæ is
larger. Values of A for the uniform discrete and the con-

tinuous distributions are shown in Fig. 4 a.

Distribution of capture times

The simplest description of the scatter in the capture times is

the standard deviation s. It is convenient to scale s by the

mean tCAPT; this accounts for most of the variation, and the

range of s/tCAPT is a concentration-dependent factor be-

tween 0 and 1.5. Scaling by the Monte Carlo value of tCAPT
accounts for the effects of system size, traps, and multiple

targets as in Eq. 5. The ratio s/tCAPT is a distinct factor

showing the effect of traps and multiple targets on the

standard deviation beyond their effect on the mean.

As the target concentration increases, s/tCAPT increases

from 1 at small CT, say 10
�6, to a maximum at;CT � 0.01,

and then levels off or decreases at higher concentrations.

Table 1 shows values of s/tCAPT at fixed concentrations, CT¼
0.01 for the triangular lattice and CT ¼ 0.008 for the cubic

lattice, for a specified system size L and number of sets of

traps and targets S. For a pure exponential distribution, the

standard deviation equals the mean, and indeed for the

case of a single target, the Monte Carlo value of the ratio is

very close to one. Both traps and multiple targets increase

s/tCAPT; traps have more effect than multiple targets and the

effect is greater in the triangular lattice than in the cubic.

The actual distribution is more informative. In this section

we discuss the Monte Carlo results, and in the next we

predict the distributions approximately from a perfect-

mixing calculation. Several independent factors contribute

to the scatter: the distribution of capture times in the absence

of traps; the number and depth of traps visited in each

random walk; and the random escape time from each trap at

each visit. The relative contributions can be seen in the

Monte Carlo results; features of the histograms are predicted

qualitatively by the perfect-mixing approximation.

The starting point is the distribution of capture times for a

single target with no traps. In a finite system the fraction of

capture times is asymptotically

fn ¼ ½expð1=tÞ � 1�expð�n=tÞ; (12)

the discrete form of an exponential decay with time constant

t, assuming that the initial position of the diffusing particle

cannot be a target site (25,26). In the case of a complete

graph the distribution is known exactly at all times. If there

are N lattice sites of which one is a target site, at each step the

tracer moves to the target site with probability 1/N (because

in the program the tracer can move to its current location or a

different site), so the probability of capture at the nth time

step is

PðnÞ ¼ 1� 1

N

� �n�1
1

N
: (13)

The coefficients for the complete graph Eq. 13 and the

discrete exponential Eq. 12 are identical if t ¼ �1/ln(1� 1/N),
so for N � 1, t ¼ N.
In a plot ofMonte Carlo values of ln f(t) versus t, the single-

target curve ST of Fig. 5 a is consistent with Eq. 12, as

confirmed by fitting many similar histograms of Monte Carlo

results on the triangular, square, and cubic lattices and

obtaining the time constant t. In two dimensions for both

triangular and square lattices, there were deviations from

exponential decay for the first few bins and then exponential

decay with time constant t. Bin sizes were varied depending

on the mean capture time so the initial deviations are only

described qualitatively. For the cubic lattice the deviations

were smaller and for the complete graph, the histogram was

exponential even at the shortest times. The behavior in an

infinite system is discussed at the end of this section.

For multiple targets (curve MT, Fig. 5, a and c) the

distribution is somewhat broader due to fluctuations in the

local target density. When traps are present (curves STt and
MTt), the distributions shift to much higher means and

broaden considerably because each diffusing particle is likely

to visit a different random sample of traps and the escape time

from each trap visited is random, specifically, Poisson-

distributed with mean 1=Pi
ESC. As further evidence that the

presence of traps broadens the distribution, if the STt andMTt

TABLE 1 Ratio s/tCAPT

L S tCAPT MC s/tCAPT MC

Triangular lattice, CT ¼ 0.01

Single target 10 1 151.74 1.0094

Multiple targets 316 1024 224.65 1.1537

Single set of traps and target 10 1 38396. 1.2858

Multiple sets of traps and targets 316 1024 57101. 1.4032

Cubic lattice, CT ¼ 0.008

Single target 5 1 157.17 0.9993

Multiple targets 50 1000 180.14 1.0234

Single set of traps and target 5 1 31731. 1.2809

Multiple sets of traps and targets 50 1000 36481. 1.2954
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histograms are scaled by ÆtESCæ (dividing t by ÆtESCæ and

multiplying the fraction by ÆtESCæ), the scaled distributions are
still wider than the ST and MT distributions, respectively.

If the distributions are replotted in log-log form, in the

presence of a hierarchy of traps (curves STt and MTt) in two

dimensions there is an initial period of approximate power-

law decay followed by slow exponential decay (Fig. 5 b). In
three dimensions (Fig. 5 d) there is an initial transient

followed by a period of approximate power-law decay and

finally an exponential decay. The ST and MT curves here do

not show power law decay; the ST curves are simply log-log

plots of pure exponentials. A power-law distribution of first

passage times is well known for anomalous subdiffusion

(27); for example, in the continuous-time random walk (28),

random walks on percolation clusters and Sierpiński gaskets

with periodic boundary conditions (29), and weakly chaotic

motion modeled as a random walk on a self-similar hierarchy

of traps (30), though these examples are for somewhat

different first passage time problems. So it is not surprising

that here transient anomalous subdiffusion to a target results

in a transient power-law distribution of capture times.

Fig. 5 e shows that the hierarchy yields a significant

power-law region, but the uniform discrete distribution 7/7/

7/7/T and the uniform continuous distribution of Eq. 11 give

more complicated curves. The three curves coincide at small

times, representing the time for the tracer to begin to see the

differences in the structures of the sets of traps. Fig. 5 f shows
that, as the depth of the hierarchy is increased, the power-law

region increases considerably just as the region of anomalous

diffusion does in Fig. 4 a of Saxton (1). The scaling of the

exponential decay time with system size will be analyzed and

compared to other characteristic times in later work.

These results are related to a large body of work begun by

Rosenstock (31) on trapping of random walkers. This work is

reviewed by ben-Avraham and Havlin (6) and Hughes (16),

and extensively by den Hollander and Weiss (2). Note that

the nomenclature in that literature is different from that in

this article. There, for the reaction A 1 B / B, if A is

immobile it is called a target and if B is immobile it is called a

trap. Here we define targets as immobile reactive sites that

terminate the random walk and traps as immobile nonreactive

binding sites that delay the diffusing particle.

FIGURE 5 Distribution of capture times from

Monte Carlo calculations for the standard example,

16/8/4/2/T but with PESC ¼ 0.2 so that all the

curves can be shown conveniently on the same

scale. Changes in noise levels within a curve are

due to changes in bin width. Vertical lines at top,

means. Notation in panels (a–d): ST (red), single

target but no traps; MT (blue), multiple targets but

no traps; STt (green), single set of traps and target;

MTt (purple), multiple sets of traps and targets. (a)

Log fraction versus time for two dimensions, grid

size 103 10 for the ST and STt curves, and 3203
320 for the MT and MTt curves. (b) The same data

versus log time to show the power-law region in the

STt and MTt curves. (c) Log fraction versus time

for three dimensions, grid size 53 53 5 for the ST

and STt curves, and 50 3 50 3 50 for the MT and

MTt curves. (d) The same data versus log time. The

MT and MTt curves are for 1024 sets in two

dimensions and 1000 in three dimensions. (e) The

standard hierarchy 16/8/4/2/T (red) gives a power-

law region but the uniform discrete distribution 7/7/

7/7/T (green) and the continuous uniform distribu-

tion (blue) give more complicated curves. All three

runs were on a 30 3 30 triangular lattice, and

5 million repetitions were used instead of the usual

0.5 million to separate the histograms more cleanly.

(f) Increasing the number of levels in the hierarchy

increases the size of the power-law region. The

hierarchies used are 2/T, 4/2/T, 8/4/2/T, 16/8/4/2/T,

32/. . ./2/T, and 64/. . ./2/T with PESC ¼ 0.1. For

clarity the curves are shifted downward by 0, 1, 2,

3, 4, and 5 units, respectively. One target and set of

traps was used on a triangular lattice. The system

size was varied between 83 8 and 663 66 to keep

the trap concentration as constant as possible,

0.029726 0.00098; that is, an SD of 3.28% of the

mean.

766 Saxton

Biophysical Journal 94(3) 760–771



That literature uses the survival probability or decay law

Fn, the probability that the diffusing particle has survived at

least n steps without reaching the target. The decay law is

found in terms of the number Sn of distinct sites visited at

time step n in an infinite lattice. Assume the diffusing particle

starts on a nontarget site. Then we have the exact result

Fn ¼ Æð1� CTÞSn�1æ; (14)

because a particle captured at the nth step must have been on

Sn�1 nontarget sites previously. The average is over random

walks and target configurations. This expression can be

expanded in cumulants at short times to give

Fn ¼ exp½�lÆSnæ1 l
2
Var Sn=2�; (15)

where l ¼ �ln(1 – CT), ÆSnæ is the mean number of sites

visited, and Var Sn is the variance of Sn. Here ÆSnæ and Var Sn
can be found from Monte Carlo calculations. Alternatively

one can use the exact series for ÆSnæ or simple approxima-

tions to the exact series (32,33), and a series for Var Sn ((16)
section 6.2, (34)). The first-order term in Eq. 15 is the

Rosenstock approximation (31), which is roughly correct in

two dimensions and better in three. If the second-order term

is included, agreement with Monte Carlo results is much

better (35–37).

At long times the decay law is a stretched exponential,

explained in physical terms by Balagurov and Vaks (38),

Grassberger and Procaccia (22), Kayser and Hubbard (39),

and Redner (40). This behavior is due to the existence of rare

target-free regions. The probability that a tracer is in a target-

free region is small but the escape time from the region is

large, and the competition of these factors gives a stretched

exponential. The crossover to a stretched exponential was

examined by indirect methods (41–44). Direct attempts to

find the crossover failed; it appears that one cannot reach the

long-time limit in a practical finite system (25,42).

The decay law Fn is the cumulative distribution function

of the probability distribution function used in Fig. 5. To

compare the approaches we substitute Monte Carlo values of

Sn and Var Sn into Eq. 15, and then find the probability dis-

tribution function at time ½tðn11Þ � tðnÞ�=2 as ½Fðn11Þ�
FðnÞ�=½tðn11Þ � tðnÞ�:
Equation 15 is particularly useful in an infinite system

because one can find Sn and Var Sn in a target-free system

and predict Fn as a function of target concentration. The

approach is less useful for finite systems because Sn and Var

Sn depend on the system size. For a small system it is

necessary to calculate Sn and Var Sn for each system size, but

large systems are in the asymptotic region of the A(S, CT)

curve (Fig. 4) and a single set of values of Sn and Var Sn can
be used. Thus in Monte Carlo calculations for CT ¼ 0.01,

0.02, 0.05, 0.10, and 0.20, Eq. 15 does not predict Fn well

for a 10 3 10 triangular lattice but for a 320 3 320 lattice it

predicts Fn well (data not shown).

Perfect-mixing distribution of capture times

If we assume perfect mixing, we can obtain the distribution

of capture times by an exact numerical method based on

probability generating functions (PGF). These generating

functions are the sort used in the probability literature ((45)

pp. 48–51, (46) pp. 31–33), not the generating functions

based on the structure function of the lattice commonly used

in analysis of random walks (and used by Montroll to derive

the capture times) (2,16,26). In a PGF, escape probabilities

are written as polynomials in z, and each power of z

represents one time step. When different random processes

are combined, the powers of z keep track of the number of

time steps required; the coefficient of zn gives the probability

of n time steps.

We assume a single set of traps and a target. We consider

the modified standard example, 16/8/4/2/T with PESC ¼ 0.2

so that the mean escape time from the shallowest traps is t ¼
1/PESC ¼ 5. There are three contributions to the scatter in

capture times: the distribution of capture times in the absence

of traps, the distribution of traps encountered, and the

distribution of escape times from each trap encountered.

The first contribution is the PGF for the capture times for a

single target with no traps,

gCAPTðzÞ ¼ a1z
1 1 a2z

2 1 a3z
3 1 . . . ; (16)

where the coefficients ai are obtained from theory (Eq. 12 or

Eq. 13) or Monte Carlo calculations. There is no z0 term

because it is assumed that the diffusing particle cannot start

on the target. This contribution is shown in Fig. 6, a and b, on

linear and logarithmic scales. The second contribution is from

the distribution of trap depths; for the example considered,

the PGF for the hierarchy of traps is analogous to Eq. 9,

gHIERðzÞ ¼ ð1� C9tÞz1C9t
16

30
z
5 1

8

30
z
25 1

4

30
z
125 1

2

30
z
625

� �
:

(17)

The first term represents the single time step required to leave

a nontrapping site, and the terms in brackets represent the

mean number of time steps required to leave the four levels

of traps in the hierarchy. The third contribution is from the

random variation in the escape time from a trap. Let p ¼
PESC be the escape probability in one time step, and let q ¼
1 – p. Then the probabilities of escape in the first three time

steps are pq0, pq1, and pq2, respectively, and in general,

gESCðp; zÞ ¼ +
N

n¼0

z
n11

pq
n ¼ pz

1� qz
: (18)

This is a variant of the geometric distribution, and the mean

is 1/p ¼ t. We use this PGF in the form gESC(t, z). To
combine PGFs, we use a standard result on stopped dis-

tributions: If SN is the sum of a random number N of random

variates, SN ¼ Y1 1 Y2 1 . . . 1 YN, and gY(z) is the PGF of
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Y, and gN(z) is the PGF of N, then the PGF of SN is gN[gY(z)]
((45) p. 344, (46) pp. 16–18, 74–77).

To isolate the effect of the traps, we find the partial PGF

gCAPT HIERðzÞ for capture in the presence of target and traps,

but not including the variation in escape times,

gCAPT HIERðzÞ ¼ gCAPT½gHIERðzÞ�
¼ a1½gHIERðzÞ�1 1 a2½gHIERðzÞ�2

1 a3½gHIERðzÞ�3 1 . . . : (19)

This curve is shown in Fig. 6, a and b. The distribution is

much wider than the distribution with no traps, and there are

sharp peaks and valleys due to specific sequences of traps.

To obtain the complete distribution, we combine all three

PGFs. We combine gHIER with gESC by substituting the four

functions gESC(t, z) from Eq. 18 for z in the second term of

Eq. 17, giving

gHIER ESCðzÞ ¼ ð1� C9tÞz1

C9t
16

30
gESCð5; zÞ5 1 8

30
gESCð25; zÞ25 1

�

4

30
gESCð125; zÞ125 1 2

30
gESCð625; zÞ625

�
: (20)

We substitute gHIER ESCðzÞ for z in Eq. 16 to give

gCAPT HIER ESCðzÞ ¼ a1½gHIER ESCðzÞ�1 1 a2½gHIER ESCðzÞ�2 1
a3½gHIER ESCðzÞ�3 1 . . . : (21)

We expand Eq. 21 in powers of z to give the PGF of the

combined distribution. The first few terms of the expansion

can be done by hand. The large-scale expansion was done in

Mathematica (Wolfram Research, Champaign, IL). (To do

the expansion, one chooses a maximum power, here 3000,

and uses the Series function to expand the polynomials re-

taining terms through order z3000. Real coefficients are used,
and integer exponents.) The resulting coefficients of z are

exact numerical values.

We compare the distributions from Eq. 21 with histograms

fromMonte Carlo simulations. The dimensionality is varied to

vary the efficiency of mixing. In all cases a single set of traps

plus target is used, 16/8/4/2/T with PESC ¼ 0.2 rather than the

usual value of 0.1 to show the interesting structure more

conveniently. System sizes are 153 15 in two dimensions, 63
6 3 6 in three dimensions, and 225 for the complete graph.

Results are similar in the three cases so detailed data are

presented only for the two-dimensional case, where mixing is

least efficient. Fig. 6 a shows a linear plot of the distributions,
and Fig. 6 b shows a logarithmic plot of the same data. The

gCAPT curve is the histogram ofMonte Carlo capture times for

a system with a target but no traps. The distribution is expo-

nential after ;40 time steps. The gCAPT_HIER curve includes

the effect of the traps assuming that the escape times are equal

to their means. This distribution decreases much more slowly

than gCAPT, and shows structure because gHIER has only five

powers of z. The obvious structure is at 125 and 625. The final

FIGURE 6 Probability distributions of capture times from the perfect-

mixing approximation and Monte Carlo calculations. (a) Linear plot for the
two-dimensional case. (b) Logarithmic plot for the two-dimensional case.

Here gCAPT is a histogram ofMonte Carlo capture times for a single target and

no traps, and gCAPT_HIER (Eq. 19) combines gCAPT with gHIER to give the

distribution for one set of traps and a target, assuming a fixed escape time from

the traps. The final prediction, gCAPT_HIER_ESC (Eq. 21), also takes into

account the distribution of escape times from traps. TheMonte Carlo result for

one set of traps and target is given by gMC. The distributions gCAPT_HIER and

gCAPT_HIER_ESC are of significant magnitude well beyond 3000 time steps; the

cumulative distribution functions for the Monte Carlo data at 3000 time steps

are 0.568 in two dimensions and 0.654 in three. (c) Ratio of the Monte Carlo

distribution to the calculated distribution log gMC/log gCAPT_HIER_ESC for the
two-dimensional case, the three-dimensional case, and the complete graph.

For the complete graph the ratio of the log coefficients was 0.99996 0.0070

for 2500 time points. In all these calculations, to get smooth histograms large

runs were used (104 trap configurations and 104 tracers per trap configuration).
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curve gCAPT_HIER_ESC brings in the distribution of escape

times gESC, which smooths out the peaks and valleys from

gHIER. The gMC curve is the observed Monte Carlo distribu-

tion for a single set of traps and target. The perfect-mixing

curve agrees qualitatively but not quantitatively with the two-

dimensional Monte Carlo results. For the three-dimensional

case the results are similar but the gCAPT curve becomes

exponential after;15 points and the perfect-mixing curve is

closer to the Monte Carlo curve. For the complete graph, the

perfect-mixing distribution of capture times agrees with the

Monte Carlo results quantitatively, as required; the complete

graph was chosen to match the assumptions in the perfect-

mixing approximation. Here the input capture times were

from Eq. 13, not Monte Carlo values. The degree of agree-

ment between the perfect-mixing approximation and the

Monte Carlo distributions is shown in Fig. 6 c as the ratios

log gMC/log gCAPT_HIER_ESC for the three cases. Agreement

is qualitative for the two-dimensional and three-dimensional

cases, but good enough to show that we understand the

sources of the scatter. The deviations from the perfect-mixing

approximation reflect known differences in mixing.

Lattice versus continuum models

The approximations in a lattice model of diffusion are

reviewed in the literature (47,48). The main approximation is

that the model averages out motion over distances of less than

a lattice constant. The approximations involved in a lattice

model of a reaction are beyond the scope of this article (see,

for example, (4,49)) but we consider one aspect here, the

continuum analog of the Montroll equation for the first pas-

sage time. This equation gives the time for a mobile particle

initially at a random lattice point to reach an immobile target.

An analogous continuum result in two dimensions is the first

passage time for diffusion in an annular region (50). Here

a target of radius s is at the center of a circular region b, with
s� b, and the reactant is initially distributed uniformly in the

annulus. The mean capture time is

t2D ¼ b2

2D
ln
b

s
� 3

4

� �
: (22)

So if the number of lattice points N } b2, then to first order,

t2D } N ln N, in agreement with the Montroll result Eq. 6.

The continuum capture time for concentric spheres (50) t3D ¼
b3/3sD likewise gives t3D } N as in Eq. 7. These first-passage

solutions are appropriate for the model used here (1) in

which the interaction of the diffusing particle with traps and

targets is turned on by some external event at t ¼ 0.

DISCUSSION

To a biophysicist, transient anomalous subdiffusion may be

an interesting phenomenon or a useful probe of the equil-

ibration of the diffusing species with cellular binding sites,

reflecting the search of the mobile species for its biological

target (1). But to a cell, the biological importance of transient

anomalous subdiffusion is likely to be its effect on kinetics.

We have examined the effect of nonreactive binding sites

on one of the simplest diffusion-mediated reactions, the

reaction of a mobile particle with an immobile target, with

reaction occurring with probability 1 on collision. If the sys-

tem is simply one target, then the capture time is given by the

Montroll first-passage time tM (Eqs. 6 and 7), which depends

only on the dimensionality, lattice, and size of the system. If

nonreactive binding sites of finite depth are added, tMmust be

multiplied by the mean escape time ÆtESCæ (Eqs. 8 and 9),

which depends on the trap concentrations and depths. If there

are multiple targets, there is a numerical factor A between

1 and 2 obtained from Monte Carlo results (Fig. 4). This

factor depends on the target concentration and the number of

sets and reaches a constant value after a few hundred sets.

Most of the difference between the two-dimensional and

three-dimensional cases is given by tM; there is a small

difference in the correction factor A.
For reaction in the presence of a finite hierarchy of traps,

the statistical distribution of capture times shows at short

times the power-law region typical of anomalous subdiffu-

sion and fractal systems, and at large times the exponential

region expected in finite systems (Fig. 5, a–d). Similarly in

plots of log Ær2æ/t versus log t there is a crossover from

anomalous to normal diffusion (1). An exact numerical

method was presented to find the distribution for the perfect-

mixing case. This method is qualitatively correct for the two-

dimensional and three-dimensional cases, and shows that the

main contribution to the width of the distribution is the

distribution of traps visited in each random walk.

The model is highly general. It is applicable in two and

three dimensions, provided the appropriate Montroll time

and factor A is chosen. As pointed out in the paragraph at Eq.

11, the model applies to both continuous and discrete hier-

archies of traps. The hierarchy is not required; the model

applies to a single level of traps at various total trap conc-

entrations and to a uniform distribution of traps 7/7/7/7/T.

The effect of the hierarchy is to extend the interval of

anomalous subdiffusion (1) and the power-law region in the

distribution of capture times (Fig. 5 f). An important

limitation is the use of a lattice model, and the extension to

the continuum will be essential for applications.

A restriction of the model is the assumption that the initial

position of the tracer is random. As discussed in detail earlier

(1), this assumption implies that the system is in a nonequi-

librium state and that some external event turns on the

interaction of the tracer with the traps. The event could be the

binding of a ligand to a receptor or the entry of a protein into

the nucleus, for example. This assumption leads to the mean

escape time ÆtESCæ given by Eq. 8, in which all lattice sites are
weighted equally. If the tracer is equilibrated with the traps,

the mean escape time would be a Boltzmann-weighted

average, weighting the deeper traps more heavily and in-

creasing the mean escape time considerably.
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Potential applications of the model are two-dimensional

signaling reactions in the plasma membrane, three-dimen-

sional signaling reactions in the cytoplasm, and three-dimen-

sional reactions of proteins or subnuclear bodies in the

nucleus. What is required to model one of these reactions is

the number and depth of the traps, the number of target sites,

and a correction for the effects of obstruction on diffusion.

Themost straightforward way to find the number and depth of

the traps is to use single-particle tracking, as outlined earlier

(1). It is appealing to try to apply proteomics to this problem.

Genomics yields the abundance of DNA sequences and

proteomics yields the abundance of proteins (51). Studies of

the interactome (52) identify binding sites of soluble proteins

to DNA (53–55), binding among soluble proteins (56), and

binding among integral membrane proteins (57). Some of

these studies simply classify interactions as binding or not;

others examine the interactions more quantitatively. The

interaction of transcription factors with DNA seems the most

thoroughly characterized (53–55). The major difficulty is

determining the fraction of physically accessible, unoccupied

binding sites (58). The second quantity required, the number

of copies of the target, can be obtained from biochemical,

fluorescence, or genomic measurements. The final quantity

required is the diffusion coefficient of a nonbinding mobile

species as similar as possible to the reactive species. This can

be obtained experimentally, or if enough information is

available on the abundance, size, shape, and mobility of the

obstacles, the effect on diffusion can be modeled.

Much work has been done recently on the role of statistical

fluctuations in cellular dynamics given the low copy number

of some species in cells (59–64). Spatially resolved modeling

has shown that diffusion can be a significant source of noise

in biological reactions. In a very simple model of gene

expression by van Zon and tenWolde (65), RNA polymerase

binds reversibly to a promoter region to form a complex; the

complex produces protein and dissociates; and the protein is

degraded at a constant rate. When RNA polymerase binding

is rate-determining, protein production occurred in bursts,

with periods of rapid protein production followed by periods

of pure decay. The spatially resolved model was much

noisier than a well-stirred model because the arrival times of

RNA polymerase at the promoter were broadly distributed in

the spatially resolved model but more narrowly Poisson-

distributed in the well-stirred model. We note that as Fig. 6

shows, the distribution of arrival times in a system with traps

is even broader than in the trap-free diffusive system used by

van Zon and ten Wolde (65). Later work from that laboratory

(66) presented a spatially resolved continuum model of noise

production in mRNA and protein synthesis by a gene

controlled by a repressor. This model did not include one-

dimensional diffusion of the repressor on DNA. Diffusion-

induced noise was shown to be significant. Rapid rebinding

of the repressor to the DNA upon dissociation was a key

factor; the system could be described as well-stirred provided

that reaction rates were renormalized by the average number

of rebindings. If traps are added to this model, traps near the

repressor binding site will slow the rapid rebinding and the

trap hierarchy in general will slow longer-range transport.

Interestingly, this model gave a distribution of repressor-

DNA association times that is a power law at short times

corresponding to rapid rebinding, and exponential at long

times, as in a well-stirred system. The distribution is of the

form found here (Fig. 6) for a much different model.

The results presented here show that if a mobile reactant

has to search through a large number of nonreactive binding

sites to find its target site, the variation in total trapping time

may be a major contributor to diffusion-induced noise. The

predicted wide statistical distribution of capture times must

also be taken into account in comparing simulation with

experiment.

I thank an anonymous reviewer of my earlier article (1) for pointing out the

work of Hanson et al. (30) and suggesting the work on the square lattice.

This work was supported by National Institutes of Health grant No.

GM038133.

REFERENCES

1. Saxton, M. J. 2007. A biological interpretation of transient anomalous
subdiffusion. I. Qualitative model. Biophys. J. 92:1178–1191.

2. den Hollander, F., and G. H. Weiss. 1994. Aspects of trapping in
transport processes. In Contemporary Problems in Statistical Physics.
Society for Industrial and Applied Mathematics, Philadelphia, PA.
147–203.

3. Kozak, J. J. 2000. Chemical reactions and reaction efficiency in com-
partmentalized systems. Adv. Chem. Phys. 115:245–406.

4. Melo, E., and J. Martins. 2006. Kinetics of bimolecular reactions in
model bilayers and biological membranes. A critical review. Biophys.
Chem. 123:77–94.

5. Barzykin, A. V., K. Seki, and M. Tachiya. 2001. Kinetics of diffusion-
assisted reactions in microheterogeneous systems. Adv. Colloid
Interface Sci. 89:47–140.

6. ben-Avraham, D., and S. Havlin. 2000. Diffusion and Reactions
in Fractals and Disordered Systems. Cambridge University Press,
Cambridge, UK.

7. Berry, H. 2002. Monte Carlo simulations of enzyme reactions in two
dimensions: fractal kinetics and spatial segregation. Biophys. J. 83:
1891–1901.

8. Dewey, T. G. 1997. Fractals in Molecular Biophysics. Oxford
University Press, New York.

9. Savageau, M. A. 1995. Michaelis-Menten mechanism reconsidered:
implications of fractal kinetics. J. Theor. Biol. 176:115–124.

10. Saxton, M. J. 1996. Anomalous diffusion due to binding: a Monte
Carlo study. Biophys. J. 70:1250–1262.

11. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.
1992. Numerical Recipes in FORTRAN: The Art of Scientific
Computing, 2nd Ed. Cambridge University Press, Cambridge.

12. Saxton, M. J. 2007. Modeling 2D and 3D diffusion. In Methods in
Membrane Lipids (Methods in Molecular Biology, Vol. 400). A. M.
Dopico, editor. Humana Press, Totowa, NJ. 295–321.

13. Bollt, E. M., and D. ben-Avraham. 2005. What is special about dif-
fusion on scale-free nets? New J. Phys. 7:26.

14. Argyrakis, P., and R. Kopelman. 1987. Self-stirred vs. well-stirred
reaction kinetics. J. Phys. Chem. 91:2699–2701.

15. Kopelman, R., and Y.-E. Koo. 1991. Reaction kinetics in restricted
spaces. Israel J. Chem. 31:147–157.

770 Saxton

Biophysical Journal 94(3) 760–771



16. Hughes, B. D. 1995. Random Walks and Random Environments, Vol.

1. Oxford University Press, New York.

17. Harder, H., S. Havlin, and A. Bunde. 1987. Diffusion on fractals with

singular waiting-time distribution. Phys. Rev. B. 36:3874–3879.

18. Montroll, E. W. 1969. Random walks on lattices. 3. Calculation of
first-passage times with application to exciton trapping on photosyn-
thetic units. J. Math. Phys. 10:753–765.

19. den Hollander, W. T. F., and P. W. Kasteleyn. 1982. Random walks
with spontaneous emission on lattices with periodically distributed
imperfect traps. Physica A. 112:523–543.

20. Montroll, E. W. 1969. Random walks on lattices containing traps.
J. Phys. Soc. Jpn. Suppl. 26:6–10.

21. Walsh, C. A., and J. J. Kozak. 1982. Exact algorithm for d-dimensional
walks on finite and infinite lattices with trap. II. General formulation
and application to diffusion-controlled reactions. Phys. Rev. B. 26:
4166–4189.

22. Grassberger, P., and I. Procaccia. 1982. The long-time properties of

diffusion in a medium with static traps. J. Chem. Phys. 77:6281–6284.

23. Toussaint, D., and F. Wilczek. 1983. Particle-antiparticle annihilation
in diffusive motion. J. Chem. Phys. 78:2642–2647.

24. Rose, C., and M. D. Smith. 2002. Mathematical Statistics with
Mathematica. Springer, New York. 117–148.

25. Weiss, G. H., S. Havlin, and A. Bunde. 1985. On the survival
probability of a random walk in a finite lattice with a single trap. J. Stat.
Phys. 40:191–199.

26. Weiss, G. H. 1994. Aspects and Applications of the Random Walk.
North-Holland, Amsterdam. 157–160.

27. Metzler, R., and J. Klafter. 2004. The restaurant at the end of the
random walk: recent developments in the description of anomalous
transport by fractional dynamics. J. Phys. A. 37:R161–R208.

28. Rangarajan, G., and M. Z. Ding. 2000. First passage time distribution
for anomalous diffusion. Phys. Lett. A. 273:322–330.
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53. Kinney, J. B., G. Tkačik, and C. G. Callan. 2007. Precise physical
models of protein-DNA interaction from high-throughput data. Proc.
Natl. Acad. Sci. USA. 104:501–506.

54. Maerkl, S. J., and S. R. Quake. 2007. A systems approach to measuring
the binding energy landscapes of transcription factors. Science. 315:
233–237.

55. Mukherjee, S., M. F. Berger, G. Jona, X. S. Wang, D. Muzzey, M.
Snyder, R. A. Young, and M. L. Bulyk. 2004. Rapid analysis of the
DNA-binding specificities of transcription factors with DNA micro-
arrays. Nat. Genet. 36:1331–1339.

56. Kerppola, T. K. 2006. Visualization of molecular interactions by
fluorescence complementation. Nature Revs. Mol. Cell. Biol. 7:449–456.

57. Miller, J. P., R. S. Lo, A. Ben-Hur, C. Desmarais, I. Stagljar, W. S.
Noble, and S. Fields. 2005. Large-scale identification of yeast integral
membrane protein interactions. Proc. Natl. Acad. Sci. USA. 102:
12123–12128.

58. Biggin, M. D. 2001. To bind or not to bind. Nat. Genet. 28:303–304.

59. Bar-Even, A., J. Paulsson, N. Maheshri, M. Carmi, E. O’Shea, Y.
Pilpel, and N. Barkai. 2006. Noise in protein expression scales with
natural protein abundance. Nat. Genet. 38:636–643.

60. Cai, L., N. Friedman, and X. S. Xie. 2006. Stochastic protein
expression in individual cells at the single molecule level. Nature.
440:358–362.

61. Golding, I., J. Paulsson, S. M. Zawilski, and E. C. Cox. 2005. Real-
time kinetics of gene activity in individual bacteria. Cell. 123:1025–
1036.

62. Kaern, M., T. C. Elston, W. J. Blake, and J. J. Collins. 2005.
Stochasticity in gene expression: from theories to phenotypes. Nature
Rev. Genet. 6:451–464.

63. Raj, A., C. S. Peskin, D. Tranchina, D. Y. Vargas, and S. Tyagi. 2006.
Stochastic mRNA synthesis in mammalian cells. PLoS Biol. 4:1707–
1719.

64. Rosenfeld, N., J. W. Young, U. Alon, P. S. Swain, and M. B. Elowitz.
2005. Gene regulation at the single-cell level. Science. 307:1962–1965.

65. van Zon, J. S., and P. R. ten Wolde. 2005. Green’s-function reaction
dynamics: a particle-based approach for simulating biochemical
networks in time and space. J. Chem. Phys. 123:234910.

66. van Zon, J. S., M. J. Morelli, S. Tănase-Nicola, and P. R. ten Wolde.
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