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ABSTRACT In the companion article, we proposed that fullerene cages with head-to-tail dihedral angle discrepancies do not
self-assemble. Here we show why. If an edge abuts a pentagon at one end and a hexagon at the other, the dihedral angle about
the edge increases, producing a dihedral angle discrepancy (DAD) vector. The DADs about all five/six edges of a central
pentagonal/hexagonal face are determined by the identities—pentagon or hexagon—of its five/six surrounding faces. Each
‘‘Ring’’—central face plus specific surrounding faces—may have zero, two, or four edges with DAD. In most Rings, the non-
planarity induced by DADs is shared among surrounding faces. However, in a Ring that has DADs arranged head of one to tail
of another, the nonplanarity cannot be shared, so some surrounding faces would be especially nonplanar. Because the head-to-
tail exclusion rule is an implicit geometric constraint, the rule may operate either by imposing a kinetic barrier that prevents
assembly of certain Rings or by imposing an energy cost that makes those Rings unlikely to last in an equilibrium circumstance.
Since Rings with head-to-tail DADs would be unlikely to self-assemble or last, fullerene cages with those Rings would be
unlikely to self-assemble.

INTRODUCTION

When Kroto et al. (1) discovered carbon with 60 atoms in the

form of a truncated icosahedron, the same shape as a modern

soccer ball, they dubbed it ‘‘buckminsterfullerene’’ (60 IPR

in Fig. 1 A). Triskelions (MW ;60,000) (2), trimers of the

protein clathrin (3–6), also self-assemble into this structure

(7,8). Kroto et al. (1) gave the shorter name fullerene to the

group of related cages that have n three-connected vertices,

3n/2 edges, 12 pentagons, and (n�20)/2 hexagons. The

smallest fullerene is the dodecahedron with 20 vertices,

composed of just 12 pentagons and no hexagons (20 in Fig.

1 A). The dodecahedron and the truncated icosahedron are

special in that all of their faces are regular and thus planar.

The fullerenes are infinite in number. For 20 # n # 60

vertices, there are 5770 different, graphically possible,

fullerene cages (9,10). For n ¼ 60 alone, there are 1812

fullerene cage isomers (9,11). The number of isomers in-

creases approximately exponentially for n . 60. Except for

the dodecahedron and the truncated icosahedron, in all of the

fullerene cages, like the one with 70 vertices in Fig. 1 A, the
faces cannot all be regular or planar, and the vertices cannot

all be identical. Such vertices are thus quasi-equivalent (12),

in analogy with the tiles that make up the pentagonal and

hexagonal faces of an icosahedral virus shell. The latter are

described as quasi-equivalent because, although identical at

the molecular level, the tiles are not identical in how they

bind to neighbors, varying with geometric location within

the shell.

Carbon atoms and clathrin triskelia both assemble into a

variety of fullerene cages. Carbon atoms primarily make the

truncated icosahedron (C60) (1) and larger cages (13) like the

one with 70 vertices (14) in Fig. 1 A that obey the isolated-

pentagon rule (IPR) (15,16), but carbon also self-assembles

into a cage with 36 vertices (17). Clathrin triskelia self-

assemble into specific fullerene isomers with 28, 36, 38, 40,

44, and 50 vertices (18,19) as well as with 60 and more (7,8).

This limited number of outcomes is remarkable in two ways.

Firstly, the vast majority of structures that result from random

assembly of vertices into hexagons and pentagons are not

closed cages (10). Why should self-assembly produce any

closed cages at all? Secondly, with so many graphically pos-

sible fullerene cages, why should self-assembly produce so

few, particularly the specific ones that have been observed?

To answer these two questions, we proposed in the

companion article (10) the head-to-tail exclusion rule that

focuses on dihedral angles about edges. Each edge has two

dihedral angles about itself, one at one end and another at the

other end. If the faces at the two ends of an edge are different,

the two dihedral angles are different, hence a dihedral angle

discrepancy (DAD). In Fig. 1 Bwe color-code the three types

of DAD, each a vector with its tail at the edge’s pentagon end

and its head at the edge’s hexagon end, thus pointing from

the smaller to the larger dihedral angle.

The only fullerene cages that have no edges with DAD are

the dodecahedron, with pentagons at both ends of every

edge, and the truncated icosahedron, with pentagons at both

ends or hexagons at both ends of every edge (60 IPR in Fig.

1 A). The existence of other carbon and clathrin fullerene

cages, like the 70 IPR cage in Fig. 1 A, proves that the
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presence of edges with DAD is not in itself a barrier to self-

assembly.

Instead, the head-to-tail exclusion rule states that fuller-

enes with a particular configuration of edges with DAD,

arranged head of one DAD to tail of another DAD, are

unlikely to self-assemble. One such unlikely cage (34-5) is

shown in Fig. 1 A, with four instances of the head of a blue

DAD edge meeting the tail of a red DAD edge. Here we

explain the physical mechanism that underlies the head-to-

tail exclusion rule. The explanation begins with a complete

set of Rings, each comprising a central hexagonal face and

its six surrounding faces (hex-Rings in Fig. 2 A) or a central
pentagonal face and its five surrounding faces (pent-Rings in

Fig. 2 B). We show that, in Rings with head-to-tail DADs

(the ones in the fourth rows of Fig. 2, A and B, marked with

asterisks), self-assembly of the set of surrounding faces would

be improbable because some of those surrounding faces

would be severely nonplanar. The physical reason for the

severe nonplanarity will be summarized in Fig. 3 and justified

in succeeding figures. Therefore, self-assembly of cages

with Rings with head-to-tail DADs would be improbable.

METHODS

Types of rings

In the companion article (10) we order all of the possible hex-Rings and pent-

Rings by label. Each Ring label has three digits. For example, 633 is a hex-

Ring (6) with three (3) pentagons among the six surrounding faces, and it is the

third (3) of three possible arrangements (after 631 and 632) of those pentagons

among the surrounding faces, the arrangement with pentagons most spread

out. For the present purposes, we order the Rings differently, by number

and arrangement of DADs (Fig. 2), but the labels are the same. The Rings

with head-to-tail DADs, marked with asterisks, are deemed ‘‘improbable’’.

Molecular models of rings

We used Spartan ‘04 (Wavefunction, Irvine, CA) to create molecular models

of the Rings in Fig. 2. We created two kinds of model, one from aluminum

atoms and one from carbon atoms. We minimized energy by computing

equilibrium structure with molecular mechanics (MMFF94 (20–24)), which

takes into account deviation of bond (or internal) angle from its ideal value,

deviation of bond (or edge) length from its ideal value, and torsion, related to

nonplanarity of faces. Our use set the electrostatic force to zero, so the

structure of aluminum models is unaffected by the charge on the (trivalent)

FIGURE 1 Fullerene cages and edges with DAD. (A) A fullerene cage has

an even number (n $ 20) of three-connected vertices, 12 pentagonal faces,

and (n-20)/2 hexagonal faces. 20: The smallest fullerene cage is the

dodecahedron, with 20 three-connected vertices and 12 regular pentagonal

faces. It is one of five Platonic solids. 60 IPR: The truncated icosahedron,

with 60 three-connected vertices, 12 regular pentagonal faces, and 20 regular

hexagonal faces, is one of 13 Archimedean solids. None of the pentagons are

adjacent to one another, so the cage follows the isolated pentagon rule. 70

IPR: Only one fullerene cage with 70 three-connected vertices follows the

isolated-pentagon rule. It has 12 pentagonal faces and 25 hexagonal faces.

The 20 green arrows pointing from a pentagon at one end to a hexagon at the

other end mark green DAD edges (see B) around the waist; the five hexagonal
faces with four DAD edges each, and the 10 hexagonal faces with two DAD

edges each are all nonplanar. 34-5: With 34 three-connected vertices, 12

pentagonal faces, and 7 hexagonal faces, this fullerene cage has two kinds of

DAD edge, red and blue (see B). In two of the pentagonal faces, the heads of
blue DAD edges meet the tails of red DAD edges, a total of four head-to-tail

DADs. The isomer number 5 among cages with 34 vertices is from Fowler

and Manolopoulos (9). (B) At any vertex, the dihedral angles are determined

by the three internal angles (e.g., 108� in pentagons or 120� in hexagons) at

the vertex. The dihedral angles about a green DAD edge at its top (hexagon)

and bottom (pentagon) ends are 180� and 138.2�; respectively, a DAD of

41.8�. Corresponding values are also shown for the red and blue DAD edges

as well.
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aluminum atoms at the periphery of the ring that make only two bonds.

Likewise, the structure of carbon models is unaffected by the charge on the

(tetravalent) carbon atoms that have only two or three bonds. We constrained

all bond lengths to 2.5 Å in aluminum and 1.43 Å in carbon. We constrained

all internal angles in hexagonal faces to 120� and all angles in pentagonal

faces to 108�. These constraints cannot all be satisfied perfectly (except in

the dodecahedron with 20 vertices and the truncated icosahedron with 60),

so energy minimization creates a structure that is a best (least energy) com-

promise.

We emphasize that the aluminum and carbon models should be regarded

as heuristic, providing insight into the geometrical relationships that follow

from imposition of the absolute constraint due to connecting the atoms in the

face of weaker constraints on edge lengths and internal angles. As the results

show, different atoms or energy minimization algorithms, that is, different

models, produce similar geometry but differ in quantitative details; for this

reason, we report data from both models.

Measurement of dihedral angle and rotations

We also used Spartan’s dihedral angle function for two purposes. First, if we

click on the points 1, 2, 3, and then 4 in the configuration shown in the top

half of Fig. 4 A, we obtain the angle between the two planes 123 and 234,

that is, the dihedral angle (138.2�) about edge 23 at its top end. If instead we
click on the points 6, 3, 2, and then 5 in the configuration shown in the

bottom half of Fig. 4 A, we obtain the angle between the two planes 632 and

325, that is, the dihedral angle (180�) about edge 23 at its bottom end. The

difference, 180�–138.2� ¼ 41.8�, is the green DAD. Second, if we click on

the points 1, 2, 3, and then 4 in the configuration shown in Fig. 5 A, we

obtain the angle of rotation (torsion angle) between edge 12 and edge 34

about their common edge 23 as shown in Fig. 5 D.

RESULTS

Overview

Fig. 3, described in the next section, summarizes the physical

basis for the head-to-tail exclusion rule, the chief point of this

article: Of the 21 types of Ring in Fig. 2, those six with head-

to-tail DADs would be unlikely to self-assemble because this

arrangement of DADs produces highly nonplanar surround-

ing faces, more specifically external edges with large

external rotation. The key quantity is thus external rotation,

which we shall define below. Given that these six Rings are

unlikely to self-assemble, then graphically possible cages

with any of these six Rings would be unlikely to self-

assemble. By contrast, the nonplanarity caused by DADs in

other Rings is shared among surrounding faces and is thus

reduced, generally halved.

To understand the physical basis, we had to invent three

geometric quantities beyond the DAD that we first described

in the companion article (10). The physical description of

these quantities, DAD D, twist T, external rotation E, and
internal rotation I, and the relationships among them, are

presented in Figs. 4 and 5.

These data (D, T, E, and I) for all of the Rings, presented in
Table 1 and Supplementary Material 1 Table 1, illustrated by

Figs. 6–9 and related by equations, led us to the physical

explanation summarized in Fig. 3.

Some of our reasoning relies on the assumption that

internal angles are ideal, 108� in pentagonal faces and 120�
in hexagonal faces. Supplementary Material 2 Table 1 and

Supplementary Material 2 Fig. 1 justify such reasoning even

when internal angles are not ideal.

Finally, we describe why the highly nonplanar surround-

ing faces, like the one that would be built from external edges

a and b at the bottom of Fig. 3 B, would be unlikely to self-

assemble: By describing such a nascent surrounding face as

nonplanar, we mean that the external rotation E between the

two external edges (e.g., edges a and b) is very large. As a

FIGURE 2 There are 13 hex-Rings (A) and 8 pent-Rings (B) that may be

groupedbynumber and arrangement ofDADs. I: Ringswith noDADedges. II:

Rings with two DAD edges. III: Rings with four DAD edges, arranged head-

to-head or tail-to-tail. IV: Rings with four DAD edges, with one or two head-

to-tail arrangements of DADs. The latter Rings are marked with asterisks.
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result, it is unlikely that another two vertices would be able to

bridge the gap between the vertices at the ends of those two

external edges a and b to complete the nascent surrounding

hexagonal face. Likewise, it is unlikely that another one

vertex would be able to bridge the gap between the vertices

at the ends of external edges b and c to complete the nascent

surrounding pentagonal face. Thus, those Rings would be

unlikely to complete self-assembly. We complement this

description with measurement of the high energy cost of

Rings with head-to-tail DADs in Fig. 10.

Overview of the physical basis

The dashed arrows in Fig. 3 mark the central concept of this

article. The dashed arrows show that external edge b (or b9),
essentially on the floor in the middle part of Fig. 3 A, rises to
an angle intermediate between the angles of external edges a
and c (or a9 and c9) in the lower part of Fig. 3 A after the

surrounding faces have been completed. By contrast, the

dashed arrows in Fig. 3 B show that the angle of external

edges b (or b9) shows almost no change from the middle part

of the figure to the lower part.

Hex-Ring 611, shown in the top part of Fig. 3 A, has only
green DADs. Since it has no DADs arranged head-to-tail, we

describe it as probable in the companion article (10). The

middle part of Fig. 3 A represents the three-dimensional

structure of a fragment of this hex-Ring unfettered by

completion of surrounding faces. With no constraints,

internal angles are ideal, 108� in putative pentagonal (5)

faces and 120� in putative hexagonal (6) faces, and the

central hexagonal face is planar. Because the dihedral angles

about edges that emerge from a 666 vertex—vertices that

join three hexagons—are all 180�, the front four 666 vertices
place the front four external edges a and a9, b and b9, in the

same (horizontal) plane as the central face. The back two

vertices are 566, requiring a dihedral angle of 138.2� about
the tail end of the green DAD, so the back two external edges

c and c9 rise steeply. If completion of the surrounding faces

left these external edges a, b, and c (or a9, b9, and c9) in the

same position, then the hexagonal face that includes edges b
and c (or b9 and c9) would be severely nonplanar. However,

as illustrated in the lower part of Fig. 3 A, based on the data in
Table 1, completion of the surrounding faces raises external

FIGURE 3 Unfettered versus complete versions of hex-Rings 611 and

631. (A, upper) Hex-Ring 611 with two green DADs. (A, middle) The three-

dimensional structure of hex-Ring 611 but with incomplete surrounding

faces. The number 5 marks a nascent surrounding pentagon, and the number

6 marks a nascent surrounding hexagon. Unfettered, the internal angles are

ideal, 108� in nascent pentagons and 120� in nascent hexagons, the central

hexagonal face is planar, and the dihedral angles are ideal. The four 666

vertices cause the front four external edges a, a9, b, and b9 and the central

face to lie in a plane that we designate as horizontal. Due to the green DADs,

the back two external edges c and c9 rise steeply from the horizontal plane.

(A, lower) The same fragment as in the middle part but extracted from hex-

Ring 611 after completion of the surrounding faces. By contrast with the

unfettered structure in the middle part, external edges b and b9 rise from the

horizontal plane approximately half as steeply as external edges c and c9.
The dashed lines draw attention to the change in the angle of rise of external

edges b and b9. (B, upper) Hex-Ring 631 with two pairs of head-to-tail, red-

to-green DADs. (B, middle) The three-dimensional structure of hex-Ring

631 but with incomplete surrounding faces. Unfettered, the internal angles

are ideal, the central hexagonal face is planar, and the dihedral angles are

ideal. The two 666 vertices cause the front two external edges a and a9 and
the central face to lie in a plane that we designate as horizontal. Due to the

green DADs, external edges b and b9 rise steeply from the horizontal plane.

Due to the red DADs, external edges c and c9 rise even more steeply. (B,

lower) The same fragment as in the middle part but extracted from hex-Ring

631 after completion of the surrounding faces. External edges b, b9, c, and c9
rise nearly as steeply as they do in the unfettered structure in the middle part.

The dashed lines draw attention to the absence of change in the angle of rise

of external edges b and b9.
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edges b and b9, thus distributing the nonplanarity among

surrounding faces and reducing the severity of the non-

planarity of the face that would include b and c (or b9 and c9).
Hex-Ring 631, shown in the top part of Fig. 3 B, has

two pairs of head-to-tail DAD edges. We describe it as

improbable (10). With no constraints, the fragment in the

middle of the figure has ideal internal angles and a planar

central hexagon. The two 666 vertices cause the front two

external edges a and a9 to lie in the same (horizontal) plane

as the central face. Due to the green DADs, external edges b
and b9 rise steeply from the horizontal plane. Due to the red

DADs, external edges c and c9 rise even more steeply. If

completion of the surrounding faces left these external edges

in the same position, then both the hexagonal face that

includes edges a and b (or a9 and b9) and the pentagonal face
that includes edges b and c (or b9 and c9) would be severely

nonplanar. Based on the data in Table 1, after completion of

the surrounding faces, external edge b (or b9) rises nearly as

steeply as it does in the unfettered structure. The reason edge

b (or b9) does not move is that if it rose more steeply, the

hexagonal face that includes edges a and b (or a9 and b9)
would then become more nonplanar, but if it rose less

steeply, the pentagonal face that includes edges b and c (or b9
and c9) would become more nonplanar. Insofar as energy

follows the square of deviations from ideal, energy would

rise in both cases. Thus, completion of the surrounding faces

leaves undiminished the severe nonplanarity of the surround-

ing faces bordering the green and the red DAD edges.

In the remainder of Results we show that hex-Ring 631

in Fig. 3 B is representative of Rings with head-to-tail

DADs insofar as having surrounding faces with undimin-

ished nonplanarity. We also show that hex-Ring 611 in

Fig. 3 A is representative of the other Rings with DADs

insofar as the nonplanarity of surrounding faces is dis-

tributed and reduced. We also show why this happens.

A physical description of DAD

As shown in Fig. 1 B, an edge with a green DAD has a

pentagon at one end, a hexagon at the other, and two side

hexagons. In Fig. 4 A, we pull the two ends apart to show that

FIGURE 4 A physical description of DAD and twist. (A) The green DAD

edge has two hexagonal side faces, a pentagon at the top, and a hexagon at

the bottom. Focusing on the two end vertices one at a time, the dihedral

angle about edge 23 at its top is 138.2� and at its bottom is 180�. The DAD is

thus 41.8�, pointing from top to bottom. Bolded vertex numbers are in front;

unbolded vertex numbers are in back. (B) This edge has the same end faces,

both pentagons, so it is without DAD. Focusing on the two end vertices one

at a time, the dihedral angle about edge 23 at its top is 138.2� and at its

bottom is 138.2� as well. The DAD is thus 0�. (C) If the top of the figure in A
is tilted forward and the bottom backward, then edge 23 is foreshortened. (D)
If the top of the figure in C is tilted even farther forward, edge 23 appears as a
point. The 138.2� angle between the near (thick) edges 24 and 21 is the

dihedral angle about edge 23 at its top (vertex 2) end. The 180� angle

between the far (thin) edges 36 and 35 is the dihedral angle about edge 23 at
its bottom (vertex 3) end. The difference, a DAD of 41.8�, conveys

broadening of the dihedral angle from the pentagon (near) end to the

hexagon (far) end. The curved arrow on the left marks counterclockwise

(negative) rotation of the far edge 36 from the near edge 24 about edge 23.
The curved arrow on the right marks clockwise (positive) rotation of the far

edge 35 from the near edge 21 about edge 23. The presence of equal and

opposite rotations is a hallmark of an edge with pure DAD, that is, without

any twist. (E) If the top of the figure in B is tilted forward and the bottom

backward, then edge 23 is foreshortened. (F) If the top of the figure in E is

tilted even farther forward, edge 23 appears as a point. The 138.2� angle

between the near (thick) edges 24 and 21 is the dihedral angle about edge 23
at its top (vertex 2) end. The same 138.2� angle between the far (thin) edges
36 and 35 is the dihedral angle about edge 23 at its bottom (vertex 3) end.

The difference is 0�, so this edge has no DAD. (G) Starting with the

configuration in F, far (thin) edges 36 and 35 are both rotated counter-

clockwise, and edge 23 is said to acquire counterclockwise (negative) twist.

The DAD is still zero. The left curved arrow marks the counterclockwise

rotation of the left edges 36 from 24 about edge 23, and the right curved

arrow marks the identical counterclockwise rotation of the right edges 35

from 21 about edge 23. The presence of identical rotations is the hallmark of

an edge with pure twist. The dihedral angles between the front (thick) edges

(138.2�) and between the back (thin) edges (138.2�) are unchanged, so DAD
remains zero. (H) Starting with the configuration in D, if far (thin) edges 36
and 35 are both rotated counterclockwise, edge 23 is said to acquire

counterclockwise (negative) twist. The DAD is still 41.8�. The left curved

arrow marks a large counterclockwise rotation of the left edges 36 from 24
about edge 23, and the right curved arrow marks a small clockwise rotation

of the right edges 35 from 21 about edge 23. The difference between the left
and right rotations is the same as the difference between the left and right

rotations in D because the difference represents the DAD, which is

unchanged. The average of the two rotations is the twist. This edge has both

DAD and twist.
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TABLE 1 Representative aluminum models

Ring Edge type Ext rot (E) Int rot (I) +E
half

+I
half Dist of E (a) DAD (D) Twist (T) +D

half

+D=2
half

+T
half

611

Pent Sym 0.00 0.00 �31.51 0.00 0.00 0.00 31.51 15.76 �15.76

Hex Green �16.34 12.03 52% 28.37 �2.16

Hex Twist �15.17 �12.03 48% 3.14 �13.60

Hex Sym 0.00 0.00 31.51 0.00 0.00 0.00 �31.51 �15.76 15.76

Hex Twist 15.17 12.03 �3.14 13.60

Hex Green 16.34 �12.03 �28.37 2.16

Sum 0.00 0.00 0.00 0.00 0.00 0.00 0.00

621

Pent Red �8.65 8.37 �48.45 �3.78 18% 17.02 �0.14 44.67 22.34 �26.12

Hex Green �21.98 3.76 45% 25.74 �9.11

Hex Twist �17.82 �15.91 37% 1.91 �16.87

Hex Twist 17.82 15.91 48.45 3.78 �1.91 16.87 �44.67 �22.34 26.12

Hex Green 21.98 �3.76 �25.74 9.11

Pent Red 8.65 �8.37 �17.02 0.14

Sum 0.00 0.00 0.00 0.00 0.00 0.00 0.00

623

Pent Sym 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Hex Green �12.90 14.55 27.45 0.83

Hex Green 12.90 �14.55 �27.45 �0.83

Pent Sym 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Hex Green �12.90 14.55 27.45 0.83

Hex Green 12.90 �14.55 �27.45 �0.83

Sum 0.00 0.00 0.00 0.00 0.00 0.00 0.00

631

Pent Sym 0.00 0.00 �42.82 0.00 0.00 0.00 42.82 21.41 �21.41

Pent Red �16.65 0.03 39% 16.68 �8.31

Hex Green �26.17 �0.03 61% 26.14 �13.10

Hex Sym 0.00 0.00 42.82 0.00 0.00 0.00 �42.82 �21.41 21.41

Hex Green 26.17 0.03 �26.14 13.10

Pent Red 16.65 �0.03 �16.68 8.31

Sum 0.00 0.00 0.00 0.00 0.00 0.00 0.00

632

Pent Red �14.94 3.57 �18.91 �0.11 18.51 �5.69 18.80 9.40 �9.51

Hex Green �29.50 2.13 31.63 �13.69

Hex Green 25.53 �5.81 �31.34 9.86

Pent Twist 3.89 3.85 19.00 0.16 �0.04 3.87 �18.84 �9.42 0.07

Hex Twist 2.81 1.84 �0.97 2.33

Pent Red 12.30 �5.53 �17.83 3.39

Sum 0.09 0.05 �0.04 0.07 �0.04 �0.02 �9.44

531

Pent Sym 0.00 0.00

Pent Blue �15.05 �1.24 �31.01 0.76 49% 13.81 �8.15 31.77 15.89 �15.13

Hex Red �15.96 2.00 51% 17.96 �6.98

Hex Red 15.96 �2.00 31.01 �0.76 �17.96 6.98 �31.77 �15.89 15.13

Pent Blue 15.05 1.24 �13.81 8.15

Sum 0.00 0.00 0.00 0.00 0.00 0.00 0.00

532

Hex Twist �5.99 �5.70 �11.20 3.52 53% 0.29 �5.85 14.72 7.36 �3.84

Pent Blue �5.21 9.22 47% 14.43 2.01

Pent Blue 5.21 �9.22 11.20 �3.52 �14.43 �2.01 �14.72 �7.36 3.84

Hex Twist 5.99 5.70 �0.29 5.85

Pent Sym 0.00 0.00 0.00 0.00

Sum 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Angles of interest (in degrees) associated with all of the edges of representative hex-Rings and pent-Rings composed of aluminum atoms. Edge lengths were

constrained to 2.5 Å, and internal angles were constrained to 108� in pentagonal faces and 120� in hexagonal faces. Electrostatic interactions were turned off.
The equilibrium geometry of each Ring structure was determined by molecular mechanics calculations (MMFF94) (20–24) in Spartan ‘04. External rotation

(E) and internal rotation (I) were measured. DAD (D) and twist (T) were calculated from E and I according to Eqs. 1 and 2.
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the dihedral angle about the top of vertical edge 23, at the
566 vertex 2, is 138.2�, whereas the dihedral angle about the
bottom of edge 23, at the 666 vertex 3, is 180�. (Please note
that we bold near-vertex numbers.) The difference, a DAD,

is 41.8� (10). By contrast, if the faces at the two ends of an

edge are the same, as is the case in Fig. 4 B for vertical edge

23, the end vertices are both 566, the dihedral angles (138.2�)
at the two ends of the edge are the same, and the edge has

no DAD.

To show the DAD physically, we tilt the top of Fig. 4 A
forward, foreshortening edge 23 (Fig. 4 C). If the top of that

figure is tilted farther forward to become Fig. 4 D, edge 23
appears as a point, showing near (thick) edges 24 and 21 and
the 138.2� dihedral angle between them, along with far (thin)

edges 36 and 35 and the 180� dihedral angle between them.

In Fig. 1 B, we represented this change in dihedral angle, the
green DAD, by the green vector with its tail at the narrow

(pentagon) end and its head at the broad (hexagon) end.

Thus, as shown by Fig. 4 D, the green DAD represents an

increase of 41.8� in dihedral angle, a broadening from tail

end (138.2�) to head end (180�).
Viewed along edge 23, the edge that appears as a point in

Fig. 4 D, near edge 24 rotates counterclockwise (negative)

into far edge 36, as shown by the curved arrow on the left.

And, near edge 21 rotates clockwise (positive) into far edge

35, as shown by the curved arrow on the right. As will be

described below, this rotation (in degrees of angle) on the

one side minus this rotation on the other side measures the

overall broadening from the front edges to the back edges,

the DAD.

As was shown in Fig. 1 B, because the side faces may be

two hexagons, a hexagon and a pentagon, or two pentagons,

there are three types of DAD edge that we color green

(41.8�), red (18.4�), and blue (14.6�), respectively, with the

vectors always pointing from the pentagon (narrow dihedral

angle) end of the edge to the hexagon (broad dihedral angle)

end of the edge.

Edges may have twist as well as DAD

For an edge without any DAD, as in Fig. 4 B, the far edges
could be directly behind the near edges, as shown by tilting

the top of Fig. 4 B forward into Fig. 4 E and farther forward

into Fig. 4 F, and then the near edges would obscure the far

edges. However, even without any DAD, the far edges may

not be directly behind the near edges due to twist of edge 23.
For example, Fig. 4 G shows a rotation of both far (thin)

edges 36 and 35 in the same (counterclockwise) direction

from the near (thick) edges 24 and 21. The DAD is still 0�.
Likewise, without altering the 41.8� DAD required by the

arrangement of faces in Fig. 4 A, the broadening shown in

Fig. 4 D may be accompanied by twist, as illustrated in Fig.

4H. Because the twist of the near (thick) edges into the (thin)
far edges is counterclockwise, the resulting rotation from

near edge 24 into far edge 36 is no longer equal and opposite

to the rotation from near edge 21 into far edge 35, as was the
case in Fig. 4 D but the difference between the two rotations

remains 41.8�.
Below, in Fig. 5, we place the sign and magnitude of the

DAD (D) and the twist (T) in the context of Rings.

Row I hex-Rings

The hex-Rings in Row I of Fig. 2 A have no DAD edges.

Hex-Ring 601 alone would form a plane of planar hexagons.

All of the hexagons in the truncated icosahedron (Fig. 1 B)
are Ring 633.

Row II hex-Rings

Sym edges

All of the hex-Rings in Row II of Fig. 2 A have two DAD

edges. As can be seen in Ring 611, for example, each of

these hex-Rings has a vertical line of mirror symmetry that

bisects two Sym edges, the Sym edge at the top and the Sym9
edge at the bottom, splitting each hex-Ring into mirror-

symmetric halves.

Internal and external rotation

Hex-Ring 611, shown in Fig. 5 A, is representative of the

Row II hex-Rings. The pentagon is at the back (Fig. 5 B).
The bowl-like structure of the tilted and slightly rotated Ring

in Fig. 5 B curves upward because the pentagon pulls the

back part of the structure up from the floor. In this figure, we

can look down the foreshortened green DAD edge 23, one of
the edges of the central face and therefore a central edge. The

two edges 21 and 34 are internal edges with respect to their

common central edge 23. (Edges 21 and 34 are also central

edges, but when we focus attention on central edge 23, they
become internal edges.) We call rotation from near (thick)

internal edge 21 into far (thin) internal edge 34 about central

edge 23 internal rotation (I).
The enlargement in Fig. 5 C focuses on this region of the

Ring. After additional backward tilt into Fig. 5 D, an end-on

view down the green DAD edge 23 makes that edge appear as

a point and makes the associated internal planes 321 and 234
appear as internal edges 21 and 34. The right-hand screw rule

determines the sign of the rotation between near edge 21 and

far edge 34 about edge 23. It is positive in this case: If you

point your right thumb into the page, from near vertex 2 to far
vertex 3, you have to turn your fingers in the clockwise

(positive) direction for their tips to go from near edge 21 to far
edge 34. (The sign of the rotation is the same if you point your

right thumb out of the page, from far vertex 3 to near vertex 2.
In that case, you also have to turn your fingers clockwise for

their tips to go from far edge 34 into near-edge 21.) Because
the curved arrow on the left in Fig. 5 D represents the internal

rotation (I) from near (thick) edge 21 to far (thin) edge 34
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about their common edge 23, the curved arrow is clockwise

when the rotation is positive. This is so in all of our figures.

The two edges 26 and 35 are part of surrounding faces. We

call them external edges with respect to their common central

edge 23, and we call rotation from near (thick) edge 26 to far
(thin) edge 35 about central edge 23 external rotation (E). By
the right-hand screw rule, this rotation E in Fig. 5 D is neg-

ative in sign. Because we draw the curved arrow representing

external rotation E from near (thick) external edge 26 to far

(thin) external edge 35, the counterclockwise rotation

signified by the curved arrow is negative in sign.

In summary, for both internal and external rotations I and
E, clockwise rotations are positive in sign, and counter-

clockwise rotations are negative in sign.

The relationship between DAD (D) and internal and external
rotations I and E

We call the diagram in Fig. 5 D an elevation diagram. Sym

edge 34 and Sym edge 01 in Fig. 5 A define the floor of the

Ring and define the horizontal plane, so we draw edge 34 in

Fig. 5 D as horizontal. The elevation diagram thus shows the

elevation of the internal and external edges with respect to

horizontal. It also shows the internal and external rotations I
and E from near (thick) edges to far (thin) edges.

Table 1 and the complete Supplementary Material 1 Table

1A list the measured E and I with respect to each of the six

central edges of Ring 611 modeled with aluminum atoms.

Edge 23 is one of the edges of Ring 611 with a green DAD.

The elevation diagram for this green DAD edge (Fig. 5 D)
shows that the internal and external rotations edge appear to

be nearly equal and opposite. For one of the green DAD

edges of hex-Ring 611, I ¼ 112.03� and E ¼ �16.34�,
confirming the impression that I and E are nearly equal and

opposite. Corresponding measured values are listed for Rings

modeled with carbon atoms in Supplementary Material 1

Table 1B. The values in the complete Supplementary Mate-

rial 1 Tables 1A and 1B are qualitatively in complete agree-

ment, so we cite data for just the aluminum models of Rings

in the text and construct figures from the aluminum models.

The angle between the near (thick) external edge 26 and

the near (thick) internal edge 21 in Fig. 5 D is the dihedral

angle about the green DAD edge 23 at its vertex 2 end. The

angle between the far (thin) external edge 35 and the far

(thin) internal edge 34 is the dihedral angle about green DAD

edge 23 at its vertex 3 end. The DAD is the difference,

shown by the narrowing of the dihedral angle from the near

(thick) hexagon end at vertex 2 of the green DAD edge 23 to
the far (thin) pentagon end at vertex 3 of the green DAD edge

23. This narrowing (reduction, negative in sign) of the angle

between the near (thick) edges to the angle between the far

(thin) edges in Fig. 5 D is thus the very picture of a DAD in

a Ring. Equivalently, we may speak of the broadening

(increase, positive in sign) of the angles from the pentagon

end to the hexagon end. Thus,

FIGURE 5 Development of the elevation diagram of the green DAD edge

of hex-Ring 611. (A) With the four points 1, 2, 3, and 4 in this configuration,
the dihedral angle between two planes 123 and 234 gives the angle of

rotation of far (thin) edge 34 from near (thick) edge 12 about their common

edge 23. Far edge 34 and near edge 12 are part of the central face and are

thus internal edges. The angle through which far internal edge 34 is rotated

from near internal edge 12 (about their common edge 23), the internal

rotation about edge 23, is equal to the dihedral angle between the 123 and the
234 planes. Far edge 35 and near edge 26 are part of a surrounding face and
are thus external edges. The angle through which far external edge 35 is

rotated from near external edge 26, the external rotation about edge 23, is
equal to the dihedral angle between the 623 and 235 planes. (B) Rotating the
Ring in part A clockwise and then tilting the top of the Ring backward makes

common edge 23 appear shorter. The near internal edge 21 and the near

external edge 26 are thick, and the far internal edge 34 and the far external

edge 35 are thin. (C) An enlargement of part of B. (D) Tilting the top of C

farther backward shortens edge 23 even more, making it appear as a point

and making the four planes appear as lines. In this elevation diagram, the

change in dihedral angle of internal edges 34 from 12 provides the internal

rotation I, and the change in dihedral angle of external edges 35 from 26
provides the external rotation E.
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D ¼ I � E: (1)

As given by Eq. 1, the magnitude calculated for the DAD (D)
of this edge is (112.03�) � (�16.34�) ¼ 128.37�.
This value is not equal to the ideal 41.8� for a green DAD

because the internal angles are not all equal to the ideal an-

gles 120� in the hexagons or 108� in the pentagons. We dis-

cuss the effect on D of departures from ideal internal angles

in The Effect of Internal Angles that Deviate from Ideal is

Small in Supplementary Material 2. That section shows that

the effect of nonideal angles onD is much greater when a 666

vertex is involved, as in a green DAD edge, than in a case

where no 666 vertex is involved, as in a red or blue DAD

edge (Fig. 1 B). Specifically, dropping one of the angles at a

666 vertex by 1� from the ideal 120� to 119� reduces dihedral
angles from the ideal 180� by;11.5�. By contrast, dropping
one of the ideal angles at 566, 556, and 555 vertices by 1�
reduces dihedral angles from the ideal by 1.2�–1.9�, 0.7�–
1.4�, and 0.5�–1.2�, respectively (essentially trivial amounts).

Complete sets of elevation diagrams

Fig. 6 A also shows the upwardly curving bowl created by

Ring 611. In Fig. 6 B, the elevation diagrams for all six

central edges are shown in the corresponding surrounding

faces. For example, the elevation diagram outside the green

DAD edge at the upper right is identical to that in Fig. 5 D.
In Fig. 6 B, that green DAD edge has a small arrowhead at

its lower right to specify where your eye would be as you

sight down that edge, thus specifying near and far internal

and external edges with respect to that central edge, just as

they were in Fig. 5. All of the other central edges have small

arrowheads as well to specify near and far edges in their

elevation diagrams. All of the arrowheads point in the same

counterclockwise direction. As a result, in all of the elevation

diagrams, sighting down a central edge from its arrowhead puts

internal edges on the left and external edges on the right.

As in Fig. 5 D, in each elevation diagram, near-internal

and external edges are shown as thick line segments, and far

internal and external edges are shown as thin line segments.

Also as in Fig. 5D, the signs of the rotations follow the right-

hand screw rule, and our convention is to show curved

arrows that point from near to far edges with respect to a

central edge to represent I and E rotations. Thus, the sign of a

curved arrow that points clockwise is positive.

The relationship among twist (T), DAD (D), and internal
and external rotations I and E

Recalling Fig. 4 G, twist T is the average of the internal and

external rotations about a central edge:

T ¼ I1E

2
: (2)

As already shown in Fig. 4, a central edge with I ¼ E has

D¼ 0 and twist T equal to I and to E. For example, the Twist

edge on the right side of Ring 611 in Fig. 6 B should not have

any D because its end faces are the same, both hexagons.

When that edge is rotated and tilted to sight straight down it,

as shown by its elevation diagram outside the Twist edge on

the lower right of Fig. 6 B, the internal and external rotations
can be seen to be nearly equal, I ¼ �12.03� and E ¼
�15.17� (Table 1), with curved arrows in the same coun-

terclockwise direction. Twist T calculated by Eq. 2, the

average of I and E, is�13.60� (Table 1). Because the internal
angles are not all ideal, the D of this Twist edge is not zero,

but it is small; by Eq. 1, D is just (�12.03�) � (�15.17�) ¼
13.14� (Table 1).
Because of nonideal internal angles, the green DAD edge

with D of 128.37� does have some Twist T, but it too is

small: [(112.03�)1 (�16.34�)]/2 ¼ �2.16� by Eq. 2. Thus,
the green DAD edge has predominantly D, and the Twist

edge has predominantly T.
The total D in the right mirror-symmetric half of Ring 611

is 31.51�, the sum of 28.37� for the green DAD edge and

3.14� for the Twist edge.
Equations 1 and 2 lead to additional equations that reveal

how internal and external rotations depend on DAD and twist:

I ¼ D

2
1 T; (3)

E ¼ �D

2
1 T: (4)

Because of the pentagon, external edges c and c9 in Fig. 6 A
have large angles with respect to the horizontal, as can be

seen in the elevation diagram in the pentagon above the

upper Sym edge in Fig. 6 B.

Because its end faces are the same, this Sym edge has no

DAD; because of the overall symmetry of the Ring, it has no

twist either. Due to symmetry and Eq. 3, there is also no

internal rotation about this Sym edge. Due to symmetry and

Eq. 4, there is no external rotation about this Sym edge

either, and external edges c and c9 have the same angle with

respect to horizontal. The same reasoning applies to the

lower Sym9 edge. However, for the Sym9 edge, there is no

adjacent pentagon, so the elevations of the external edges a
and a9 from the horizontal plane are very small. In general,

the D and T, I, and E about Sym edges are all zero.

Ideally, hex-Ring 611 has the two green DAD edges with

D and no T (approximately correct), the two Twist edges with

T but no D (also approximately correct), and two Sym edges

with neither D nor T (exactly correct). The actual values of E,
I, D, and T about all of the central edges in 611 are given in

Table 1 and the Supplementary Material 1 Tables 1A and 1B.

The Supplementary Material 1 Tables show qualitatively the

same story for the other Row II hex-Rings.

Half hex-Rings

As can be seen in Fig. 6 A for hex-Ring 611, the Sym and

Sym9 edges are parallel and thus form a plane that we define
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as horizontal. Therefore, within each right or left symmetric

half of hex-Ring 611, the sum of the internal rotations I over
the two non-Sym edges, that is, the DAD edge and the Twist

edge, must be zero. Thus,

+
half

I ¼ 0: (5A)

If edge 1 refers to the DAD edge and edge 2 refers to the

Twist edge, then

I1 ¼ �I2: (5B)

Indeed, for Fig. 6 B on the right side, I1 ¼ �12.03� and I2 ¼
112.03� (Table 1). This rule applies to all of the Row II

hex-Rings, as can be verified in Table 1 and Supplementary

Material 1 Table 1.

Incorporating Eq. 3 into Eq. 5B produces Eq. 6A:

D1

2
1 T1 ¼ �

�
D2

2
1 T2

�
: (6A)

It follows that

T1 1 T2 ¼ �1

2
ðD1 1D2Þ (6B)

or

+
half

T ¼ �1

2
+
half

D: (6C)

Therefore, as can also be verified in Table 1 and the

Supplementary Material 1 Table 1, the sum of the T values

over the two non-Sym edges in each symmetric half-Ring of

a Row II hex-Ring is half of the sum of the D values in that

symmetric half-Ring but opposite in sign. For example, for

the right symmetric half of Ring 611,+
half

T ¼ 115:76� and
+

half
D ¼ �31:51�:

The sum of the external rotations E in the symmetric half

of a Row II hex-Ring is not equal to zero, but taking into

account the zero external rotation about the Sym edges, we

can derive a useful relationship by use of Eq. 4, again

assigning edge 1 to the green DAD edge and edge 2 to the

Twist edge:

+
half

E ¼ ð�D1=21 T1Þ1 ð�D2=21 T2Þ; (7A)

therefore,

+
half

E ¼ ð�D1=2� D2=2Þ1 ðT1 1 T2Þ ¼ �1

2
+
half

D1 +
half

T:

(7B)

Applying Eq. 6C:

+
half

E ¼ �+
half

D ¼ 2+
half

T: (8)

FIGURE 6 Internal and external rota-

tions in the models of probable Ring

611 and Ring 623 composed of alumi-

num atoms. (A) In this view, the model

of hex-Ring 611 from aluminum atoms

appears as an upwardly curving bowl.

The pentagon is at the back and rises

above the floor, and two green DAD

edges emerge from it. With reference to

the a and a9 edges, nearly on the floor of
the bowl, the b and b9 edges rise, and the
c and c9 edges rise even more. (B) The
central face in this aluminum model of

Ring 611 has two Sym edges (S and S9)
that cross the line of mirror symmetry.

Each mirror-symmetric half also has a

green DAD edge (G or G9) and a Twist

edge (T or T9). Each of the central edges
has an elevation diagram in its sur-

rounding face. In each elevation dia-

gram, the internal edges are shown on

the left, the external edges on the right.

This convention follows from looking

end-on down each central edge from the

point of view of its associated arrow-

head. As in Fig. 5 D, a clockwise

rotation from a front (thick) edge to a

back (thin) edge is positive. The central

edges are labeled S, G, and T—Sym,

Green, and Twist—for the right side of the Ring and S9, G9, and T9 for the left side. The external edges are labeled a, b, and c for the right side of the Ring and
a9, b9, and c9 for the left side. (C) Hex-Ring 623, here shown as an upwardly curving bowl, has four green DAD edges. (D) The elevation diagrams for Ring 623

follow the description in part B, except that the labeling of central edges (G, G9, G$, G$9) and of external edges (a, a9, a$, a$9) takes advantage of the two
mirror-symmetric axes between left and right halves and between top and bottom halves.
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Equation 8 states three relationships that hold for Row II

hex-Rings, relationships that can be verified in Table 1 and

the Supplementary Material 1 Table 1. The most critical

relationship is this one: In each (left or right) symmetric half

of a hex-Ring, the sum of the external rotations is equal and

opposite to the sum of the DADs. The DADs are responsible,

quantitatively, for the external rotations. For example, for the

right symmetric half of hex-Ring 611, +
half

E ¼ 131:51;
and correspondingly +

half
D ¼ �31:51�: Later, we show

that the key to the physical mechanism of the head-to-tail

exclusion rule is the distribution and magnitude of the

external rotations that must sum to the total magnitude of the

DADs in each half Ring.

Whole hex-Rings

Around any whole Ring, I generally sums to zero. This is so

because a sequence of internal rotations from any one

internal edge to the next, to the next . . . and ultimately back

to itself must end up back in its starting position. This is also

so for a sequence of external rotations from any one external

edge ultimately back to itself, so around any whole Ring, E
generally sums to zero as well. Thus, the sum of the internal

and external rotations over the six edges of a hex-Ring is zero:

+
whole

I ¼ 0; (9)

+
whole

E ¼ 0: (10)

These two rules may be observed by following the full

sequence of internal (or external) rotations on the left (or

right) sides of the six elevation diagrams for hex-Ring 611

in Fig. 6 B. The data in Table 1 and the Supplementary

Material 1 Table 1 confirm these rules for this and the other

Row II hex-Rings. (In Nonzero Sum of Internal and

External Rotations Around a Whole Ring, offered in Sup-

plementary Material 2, we describe a minor exception to

Eqs. 9 and 10.)

Because of mirror symmetry in the case of the Row II hex-

Rings, the external and internal rotations I and E about

mirror-equivalent edges, like the green DAD edge on the

right (I ¼ 112.03� and E ¼ �16.34�) and the green DAD

edge on the left (I ¼ �12.03� and E ¼116.34�) in Fig. 6 B,
are equal and opposite, as may be confirmed in Table 1 and

Supplementary Material 1 Table 1 as well. Also, the Ds of
mirror-equivalent edges (like the green DAD edges) are

equal and opposite (e.g., 128.37� and �28.37�), as are the

Ts (e.g.,�2.16� and12.16�), as can be seen in Fig. 6 B. As a
result, over the top half of each Row II hex-Ring (e.g., left

green DAD edge, top Sym edge, and right green DAD edge

in Fig. 6 B), the sums of the E, I, D, and T values are all zero.

Likewise, the sums of these values over each bottom half

(e.g., left Twist edge, bottom Sym9 edge, and right Twist

edge in Fig. 6 B) are zero.

Equal sharing of external rotations between DAD
and Twist edges

If the internal angles were all the ideal 120� and 108�, the
DAD edges would have D but no T, and the Twist edges

would have T but no D. In that case, the above Eqs. 3 and 4

would give the effects of the DAD rather simply: For the

DAD edge, ID ¼1D/2 and ED ¼ �D/2. For the Twist edge,
IT ¼ �D/2 and ET ¼ �D/2. As demanded by Eqs. 5A and B

and Eq. 8, the sum of the internal rotations in a symmetric

half-Ring (1D/2 1 �D/2) is zero, and the sum of the

external rotations in a symmetric half-Ring (�D/2 1 �D/2)
is �D. Of particular importance, the external rotation ul-

timately due to a DAD of magnitude D would be distributed

equally (�D/2) between the two non-Sym edges. In fact, E
about the DAD edge and E about the Twist edge in each

symmetric half of Ring 611 are close to equality (Fig. 6 B).
Fig. 7 A provides an equivalent description of the physical

situation. Following the numbers in that diagram:

1. The green DAD vector, running from its pentagon end to

its hexagon end, has a DAD of magnitude D. The

broadening of the dihedral angle from the pentagon end

to the hexagon end causes

2. counterclockwise external rotation E ¼ �D/2 about the

DAD edge, and

3. equal but opposite—clockwise—internal rotation I ¼
1D/2 about the DAD edge.

4. Because the sum of the internal rotations must be zero in

a symmetric half (Eqs. 5A and 5B), the clockwise

internal rotation I ¼ 1D/2 about the DAD edge must be

balanced by an opposite—counterclockwise—internal

rotation I ¼ �D/2 about the Twist edge.

5. Because the Twist edge has no DAD, the counterclock-

wise internal rotation I ¼ �D/2 about the Twist edge

must be accompanied by an equal—also counterclock-

wise—external rotation E ¼ �D/2 about the Twist edge.

Due to these relationships, the DAD and Twist edges share

the external rotation due to the D of the DAD, each taking

half (�D/2).
If the internal angles are not all ideal, the situation is a little

more complicated. However, if the two halves are mirror-

symmetric, the Sym edges are still parallel, and I and E
rotations of the Sym edges are still zero. Also, the internal

rotations about the DAD and Twist edges are still equal and

opposite (ID ¼ �IT). However, the DAD edge may have

some T, and the Twist edge may have some D, so the

external rotations do not necessarily distribute perfectly

equally (�D/2) about each of the two edges. For Ring 611,

the external rotation about the green DAD edge on the right

is116.34�, whereas that about the Twist edge is115.17�. If
a is the percent of total D about the DAD edge of a

symmetric half, then (100�a) would be the percent of the

totalD about the Twist edge. In the ideal case, awould equal
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50%. Table 1 and Supplementary Material 1 Table 1 show

that a for the Row II hex-Rings is 52% for Ring 611, 63% for

Ring 622, 45% for Ring 643, and 55% for Ring 651. Thus,

the data show that the Row II hex-Rings do distribute the

nonplanarity nearly equally between the surrounding face at

the DAD edge and the surrounding face at the Twist edge.

The approximately equal sharing of nonplanarity makes

sense with regard to minimization of energy. The Hookean

energy cost of deviation from an ideal value goes as the

square of the magnitude of the deviation: two deviations of

magnitude ½ cost less than 1 deviation of magnitude 0 and

one of magnitude 1, thus 2 3 (½)2 ¼ ½ vs. 1 3 12 1
13 02 ¼ 1. More simply, stretching two identical springs in

series stretches each one by half of the total stretch.

This sharing of external rotation in hex-Ring 611 explains

the difference between the middle and bottom parts of Fig. 3

A. In the middle, the surrounding faces are not completed,

the central face is planar, only back external edges c and c9
rise (steeply) from the (horizontal) floor, and middle external

edges b and b9 remain on the floor. Completion of the sur-

rounding faces produces Fig. 6 B, in which edges b and b9
rise from the floor approximately half as steeply as edges c
and c9. By extracting just the central face and the external

edges from the completed Ring 611 in Fig. 6 B, the bottom of

Fig. 3 A shows clearly this sharing of external rotation.

Row-III hex-Rings

Each of the two hex-Rings in Row-III of Fig. 2 A has two

pairs of head-to-head green DAD edges (623) or two pairs of

tail-to-tail red DAD edges (642), two Sym edges, and no

Twist edges. All of the equations above for Row-II hex-

Rings apply to Row-III hex-Rings. However, Row-III hex-

Rings have mirror-symmetric top and bottom halves as well

as mirror-symmetric left and right halves, so these have an

additional simplifying constraint. From the upper to the

lower green DAD edges of hex-Ring 623, each of the values

of I, E, D, and T is equal and opposite (Table 1), as can be

seen in Fig. 6D. For example, for the green DAD edge on the

upper right, these values are �14.55�, 112.90�, �27.45�,
and �0.83�; for the green DAD edge on the lower right, all

of these values are the same magnitude but have the opposite

sign (Table 1). The same is true for the upper and the lower

red DAD edges of hex-Ring 642 (Supplementary Material

1 Table 1). The sum of the Is, the Es, the Ds, and the Ts in
each of the halves—left, right, upper, and lower—is thus zero.

Like the situation in hex-Ring 611, where E and I are

nearly equal and opposite, the internal and external rotations

about each of the green DAD edges in hex-Ring 623 are nearly

equal and opposite (Fig. 6 D), with for example I¼ �14.55�
and E ¼112.90� for the green DAD edge on the upper right

of Fig. 6 D (Table 1). Also, like the situation in hex-Ring 611,

these green DAD edges in hex-Ring 623 have D (�27.45�)
but almost no T (�0.83�). Of particular note, external rotation
about each green DAD edge (112.90� for the upper right in
Fig. 6 D) is close to but slightly less than half of the magni-

tude of its green D (�27.45�). Internal rotation (�14.55�)
takes up slightly more than half. In the IPR fullerene with 70

vertices in Fig. 1 C, all of the five hexagons with four green

DADs are Ring 623s, and each behaves in this manner.

The situation in hex-Ring 642 is similar in that less than

half of the DAD ends up as external rotation. At each red

DAD edge, the internal rotation (114.06�) takes up consid-

erably more than half of its red D (117.66�), so the external

rotation (�3.60�) takes up considerably less than half of that

red D. Because the internal rotation is larger than the

external, the edge has T as well as D, but the T (15.23�) has
the same sign as the D (117.66�).
Above, we showed that each DAD edge in a Row-II hex-

Ring reduces its external rotation ideally 1), by splitting its

D between internal rotation (1D/2) and external rotation

(�D/ and 2), then the Twist edge repays the internal rotation
(�D/2) and incurrs equal external rotation (�D/2). Ideally,
each DAD edge in a Row-III hex-Ring reduces its external

rotation by the same mechanism, splitting its D between

internal rotation (1D/2) and external rotation (�D/2).
However, in place of a Twist edge, the second edge in a

Row-III hex-Ring is also a DAD edge, with the second DAD

FIGURE 7 Sharing versus nonsharing of rotations. (A) In Ring 611,

viewed cup-up, the green DAD 1 broadens the dihedral angle from the

pentagon to the hexagon end of that edge by 1D�, causing downward

(counterclockwise, negative) external rotation 2 of ;�D/2� and downward

(clockwise, positive) internal rotation 3 of ;1D/2�. Because the sum of the

internal rotations in a symmetric half must be zero, internal rotation 4 must

be equal and opposite that of inward rotation 3, thus �D/2�. Because the

Twist edge T9 (not labeled but symmetrically placed to Twist edge T) has no

DAD, external rotation 5 must be equal to the inward rotation 4, thus�D/2�
as well. As a result, the external rotations 2 and 5 are each ;�D/2�. (B) In
Ring 631, viewed cup-up, the red DAD 1 broadens the dihedral angle by

�R�, causing downward (counterclockwise, negative) external rotation 2 of

;�R� and no internal rotation. Likewise, the green DAD 3 broadens the

dihedral angle by �G�, causing downward (counterclockwise, negative)

external rotation 4 of ;�G� and no internal rotation.
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pointing in the opposite direction from the first. As a result,

this second edge splits its�D between internal rotation (�D/
2) (which automatically pays off the internal rotation of the

first DAD edge) and external rotation (1D/2). Ideally, the
external rotation at each DAD edge is reduced to half of the

magnitude of its D for Ring 642. In fact, the data show that

the external rotations of the green DAD edges in Ring 642

are reduced to even less than half.

Row-IV hex-Rings

Hex-Ring 631, with two Sym edges

Like the Row II hex-Rings, hex-Ring 631 (Fig. 8, C and D)
has two Sym edges, and the above equations apply to the

remaining two edges in each mirror-symmetric half. Also,

like the Row-III hex-Rings, hex-Ring 631 has two DAD

edges in each half. However, as shown in Fig. 8 A, these two
DAD edges are in a head-to-tail arrangement, from head of red

DAD edge withD¼116.68� to tail of green DAD edge with

D ¼ 126.14� (Table 1). The total D in the mirror-symmetric

half is 142.82�.
In addition, the total external rotation in a half (equal to

minus the sum of the two Ds by Eq. 8, hence �42.82�) must

be taken up by just these two edges, the red DAD edge and

the green DAD edge, since no Twist edge is available. The

resulting very large external rotations, �16.65� and �26.17�,
are visible in the elevation diagrams in Fig. 8 B. The reason
for the absence of sharing of the external rotations is that any

FIGURE 8 Internal and external ro-

tations in the models of the improbable

Row IV hex-Rings 631 (A and B), 621

(C andD), and 632 (E and F) composed

of aluminum atoms. The diagrams

follow the description in the legend of

Fig. 6.
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shifting of the D about one DAD edge into internal rotation

would increase the external rotation about the next DAD

edge. Indeed, because essentially all of the D is taken up

exclusively by external rotation at these two DAD edges, the

internal rotations are very small (10.03� and �0.03�), as
demanded by Eq. 1 and shown in the elevation diagrams in

Fig. 8 B.
Fig. 7 B provides an equivalent description of the physical

situation. Following the numbers in that diagram:

1. The red DAD vector, running from its pentagon end to its

hexagon end, has a DAD of magnitude R. The broad-

ening of the dihedral angle from the pentagon end to the

hexagon end causes

2. a counterclockwise external rotation E ¼ �R but no

internal rotation about the red DAD edge.

3. The green DAD vector, running from its pentagon end

to its hexagon end, has a DAD of magnitude G. The
broadening of the dihedral angle from the pentagon end

to the hexagon end causes

4. a counterclockwise external rotation E ¼ �G but no

internal rotation about the green DAD edge.

Because each of the external rotations about the red and

green DAD edges takes up the entire broadening due to its

DAD, there is no sharing of external rotations and no shar-

ing of the broadening between external and internal rotations.

The absence of sharing of the external rotations explains

the similarity between the middle and bottom parts of

Fig. 3 B. The severity of the nonplanarity of the putative

surrounding hexagonal face outside the green DAD edge and

of the putative surrounding pentagonal face outside the red

DAD edge is fully preserved in the completed Ring.

Because the internal rotations of the DAD edges in Ring

631 are so small, each of these DAD edges must therefore

twist (�8.31� and �13.10�) by an amount equal to minus

half of its D, as can be observed in Fig. 8 B. Thus, about each
DAD edge, T is half of its D but opposite in sign (Table 1).

With essentially no internal rotation, the central face is planar

or nearly so (Fig. 8 A), but the external rotations are very

large, and the faces external to the green DAD edge and to

the red DAD edge are highly distorted (nonplanar).

Hex-Rings 621 and 641, with only one Sym edge

Unlike the situation of the hex-Rings in Rows I–III and of

hex-Ring 631, the only line of mirror-symmetry in Row-IV

hex-Rings 621 and 641 passes through two vertices (Figs.

2 A and 8 D). There are thus no parallel Sym edges, no

requirement that the sum of the internal and external

rotations in each right and left mirror-symmetric half equals

zero, and Eqs. 5A and 5B and Eqs. 6A–6C do not apply.

Addition of the third non-Sym edge in each half produces

a revised form of Eqs. 7A and 7B for hex-Rings 621

and 641:

+
half

E ¼ð�D1=21 T1Þ1 ð�D2=21 T2Þ

1 ð�D3=21 T3Þ; (7A9)

+
half

E ¼ ð�D1=2� D2=2� D3=2Þ1 ðT1 1 T2 1 T3Þ

¼ �1

2
+
half

D1 +
half

T:
(7B9)

For example, in Table 1 for the right half of hex-Ring 621,

+
half

E ¼ 148.45�, �1
2
+

half
D ¼ 122.34�, and +

half
T ¼

126.12�. Because the two terms on the right side of Eq.

7B19 turn out to be nearly equal, Eq. 8 is still approximately

true, with +E ¼ �+D in each symmetric half containing a

green DAD edge, a red DAD edge, and a Twist edge (Fig. 8,

C and D). With head-to-tail DADs, the D values add, the

total D in a symmetric half is very large, and the total E in a

half is correspondingly very large, as is apparent in the ele-

vation diagrams of hex-Ring 621 in Fig. 8 D.
Unlike hex-Ring 631, the two hex-Rings 621 and 641

have a Twist edge to take up some of the external rotation

(Fig. 8, C and D). For Ring 621, the red DAD edge on the

right distributes the effect of its D half by external rotation

(18.65�) and half by internal rotation (�8.37�), so its T
(10.14�) is essentially zero (Fig. 8D; Table 1). However, the
external rotation of the green DAD edge (121.98�) is very
large, larger in magnitude than half of the green D (�25.74�)
(Table 1) by virtue of a twist T (19.11�) of opposite sign that
increases the external rotation. (In this respect, having D and

T of opposite sign (Table 1), the green DAD edge is similar

to the two DAD edges of hex-Ring 631.) The external rota-

tion in the Twist edge (117.82�) is also quite large to satisfy
Eq. 8, essentially balancing the internal rotation of the red

DAD edge (Fig. 8 D). In summary, the external rotation about

the red DAD edge is not severe, so the surrounding face at

the red DAD edge is not so nonplanar, but the price is very

large external rotation about the green DAD and Twist

edges, causing more severe nonplanarity of the surrounding

faces at those edges.

The situation in Ring 641 is similar to that in Ring 621,

except that the external rotation about the Twist edge is

unremarkable, whereas the red DAD edge has almost all

external rotation and no internal rotation (Supplementary

Material 1 Table 1). Correspondingly, the magnitude of the T
is half of its D but of opposite sign. The external rotation

about the green DAD edge is also more than half of the

magnitude of its DAD, with T of sign opposite to its D. In
summary, the surrounding face at the Twist edge is not so

nonplanar, but the surrounding faces at the two DAD edges

suffer extra nonplanarity.

Hex-Ring 632, with only one head-to-tail arrangement
of DADs

Of all the 21 Rings, hex-Ring 632 is the only one without any

line of symmetry (Figs. 2 A and 8, E and F). Also, all of the
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other excluded Rings have two head-to-tail arrangements of

DADs, but Ring 632 has just one. Nonetheless, the external

rotation about every one of the four DAD edges is more than

twice the internal rotation (Fig. 8 F; Table 1). Indeed, the

external rotation about the green DAD edge in the head-to-

tail arrangement (129.50�) is very large, partly because the

green DAD edge has a large D (�31.63�) but partly because

it has almost no internal rotation (�2.13�). The external

rotation about the other green DAD edge (�25.53�) is also
very large. Thus, all four of the surrounding faces would be

nonplanar, and the ones at the green DAD edges would be

highly nonplanar.

Pent-Rings

Each of the pent-Rings has a line of mirror-symmetry that

bisects one Sym edge and one vertex (Fig. 2 B). Therefore,
like Rings 621 and 641, none of the pent-Rings has parallel

Sym edges, and Eqs. 5A and 5B, Eqs. 6A–6C, and Eq. 8

cannot be applied rigorously. Excluding the Sym edge, for

which I¼ 0 and E¼ 0, each symmetric half has two working

edges. Therefore, the original Eqs. 7A and 7B still apply.

Moreover, Eq. 8 is still approximately true, that+E ¼ �+D
in each mirror-symmetric half (Table 1 and Supplementary

Material 1 Table 1). All of the other equations above still

apply to the pent-Rings.

Moreover, as described in the section of Supplementary

Material 2 called The Effect of Internal Angles that Deviate

from Ideal is Small, the dihedral angles at 566, 556, and 555

vertices are little affected by internal angles that deviate from

the ideal. That is, the measured Ds about red and blue DAD

edges remain very close to their ideal values 18.4� and 14.6�.
For the same reason, the measured D about edges that are not

supposed to have D, like Twist and Sym edges, remains zero

or very close to zero. Thus, in these pent-Rings, the Twist

edges have T but no D, the Sym edges generally have no D
and no T, and virtually all of the D is restricted to the DAD

edges (Table 1 and Supplementary Material 1 Table 1). In

addition, each of the values of I, E,D, and T is generally equal

and opposite from one mirror-symmetric half to the other.

Row I pent-Rings

The Row I pent-Rings in Fig. 2 B have no DAD edges. All of

the pentagons in the dodecahedron (Fig. 1 A) are pent-Ring
551. All of the pentagons in any IPR fullerene, including the

truncated icosahedron, are pent-Ring 501.

FIGURE 9 Internal and external ro-

tations in models of the probable pent-

ring 532 (A) and the improbable pent-

Ring 531 (B) composed of aluminum

atoms. The diagrams follow the de-

scription in the legend of Fig. 6.
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Row II pent-Rings

In the key characteristic, the Row II pent-Rings are similar to

the Row II hex-Rings: The external rotation induced by the

DAD edge is shared between the DAD and Twist edges. For

example, as a percent (a) of the total external rotation in each
mirror-symmetric half, the external rotation in the DAD edge

in pent-Ring 532 in Fig. 9, A and B, is 47%, with the Twist

edge taking up 53% (Table 1). (The I, E, D, and T about the

Sym edge are all zero.) The corresponding percentages (a)
for the DAD edges in pent-Rings 511, 522, and 541 are 60%,

58%, and 63% (Supplementary Material 1 Table 1A). With

the exception of pent-Ring 511, the percentages are similar

in the carbon models (Supplementary Material 1 Table 1B).

Row III pent-Rings

There are no Row III pent-Rings.

Row IV pent-Rings

Like the other pent-Rings, pent-Rings 521 and 531 have a

line of mirror symmetry that bisects one Sym edge and

passes through a vertex rather than another Sym edge (Fig. 2

B and Fig. 9, C and D). Therefore, Eqs. 5A and 5B and Eqs.

6A–6C do not apply, but Eq. 8 is approximately true, that

+E¼ �+D in each mirror-symmetric half (Table 1). Specifi-

cally, for the right side of Ring 521,+E ¼130.50�, whereas
+D ¼ �31.66�. Likewise, for the right side of Ring 531,

+E ¼ 131.01�, whereas +D ¼ �31.77�. Like the other

Rings with mirror-symmetry, the I, E, D, and T values are

equal and opposite in the two halves. Like Row IV hex-Rings

621, 631, and 641, these two pent-Rings have in each mirror-

symmetric half a head-to-tail arrangement of DAD edges,

specifically blue head to red tail (Fig. 2 B).
Because these pent-Rings have a Sym edge, they are even

more like hex-Ring 631, in that in each mirror-symmetric

half, two edges—not three—share the external rotations due

to their DADs (Fig. 9 D). Thus, as in hex-Ring 631, in the

right side of pent-Ring 531 essentially all of the D (�13.81�
and �17.96� for the blue and red DAD edges) must be taken

up by external rotation (115.05� and 115.96�) at these two
DAD edges. Internal rotations are thereby minimized

(11.24� and �2.00�) (following Eq. 1), producing a nearly

planar central face, as shown by the elevation diagrams for

Ring 531 (Fig. 9 D). The external rotations are therefore

large for three reasons: the total D in each half-Ring is the

sum of two Ds; the internal rotations are nearly zero; and

there is no third edge to share the external rotations. These

large external rotations (Fig. 9 D) mean that the surrounding

faces at the DAD edges would be highly nonplanar.

Head-to-tail DADs, nonplanar faces, and relative
energy among Rings

In Fig. 10 we mark each highly nonplanar surrounding face

with an asterisk, the criterion being an external rotation about

a central edge of;20� or more for a surrounding hexagon or

;10� or more for a surrounding pentagon. We justify the

difference in criterion because completion of a surrounding

hexagon is achieved by addition of two vertices beyond the

external edges, whereas completion of a surrounding pen-

tagon is achieved by addition of just one. We reason that two

vertices would have twice the flexibility of one in attempting

to bridge the gap between the ends of the external edges that

are pointing off in different directions.

Molecular mechanics (20–24), which was used to obtain

the structures of the carbon Rings that gave rise to the data in

FIGURE 10 The energy cost of nonplanar faces in Rings with head-to-tail

DADs. The criterion for a highly nonplanar surrounding hexagon is that its

central edge has more than ;20� of external rotation. The criterion for a

highly nonplanar surrounding pentagon is that its central edge has more than

;10� of external rotation. For a particular surrounding face, if the criterion is
met for both aluminum and carbon models, the asterisk is large; if the

criterion is met for only one model, the asterisk is small. The number to the

right of each Ring label is the energy for that ring relative to the baseline

Ring to the far left of that row. The energy was computed for carbon Rings

with molecular mechanics, but all bonds were single bonds, and electrostatic

interactions were turned off. The Rings in each row have the same number of

atoms. (A) Hex-Rings. (B) Pent-Rings.

Physical Basis for the Head-to-Tail Rule 953

Biophysical Journal 94(3) 938–957



Supplementary Material 1 Table 1B, also provided energies

of the Rings (Fig. 10). However, as described in Methods,

electrostatic interactions were turned off, and all of the

carbon-carbon bonds were single bonds. Nonetheless, com-

parison is possible among Rings with the same number of

carbon atoms (e.g., 621, 622, and 623 in Fig. 10 A), pro-
viding data consistent with a severe energy cost associated

with head-to-tail DADs.

As shown for hex-Rings in Fig. 10 A, with hex-Ring 623

as baseline, hex-Ring 621 with its two pairs of head-to-tail

DADs is 34.7 kcal/mol higher in energy. With hex-Ring 633

as baseline, the energy of hex-Ring 632 with one pair is 26.5

kcal/mol higher, and the energy of 631 with two pairs is 78.2

kcal/mol higher. With hex-Ring 642 as baseline, hex-Ring

641with two pairs is 39.4 kcal/mol higher. For pent-Rings in

Fig. 10 B, with pent-Ring 522 as baseline, the cost of two

pairs of head-to-tail DADs is 25.3 kcal/mol, and with pent-

Ring 532 as baseline, the cost is 12.1 kcal/mol. These

energies are many RT, ;0.6 kcal/mol at room temperature.

(The ideal gas constant R is 2 cal K�1 mol�1, and the absolute

temperature T is 298 K.) If equilibrium obtained, based on the

Boltzmann equation, the ratio of the concentrations of a Ring

with head-to-tail DADs to a Ring without would be between

e�12.1/0.6 and e�78.2/0.6, very small ratios indeed.

DISCUSSION

DADs generate nonplanar faces

All of the faces of a dodecahedron and of a truncated

icosahedron can be planar because every edge has the same

types of faces at its two ends: two pentagons in the case of the

dodecahedron (20 in Fig. 1 A) and either two pentagons or two
hexagons in the case of a truncated icosahedron (60 IPR in Fig.

1 A). All other fullerene cages, an infinite number of them (9),

have some edges with a pentagon at one end and a hexagon at

the other. Such an edge has different dihedral angles about its

two ends, a DAD (Fig. 1 B) (10), so one or both of the two

faces alongside the edge must be nonplanar. Thus, all other

fullerene cages must have some faces that are nonplanar.

Many of these other fullerene cages exist in nature. Clathrin

triskelia self-assemble into fullerene cages of different sizes,

including ones with 28, 36, 38, 40, 44, 50, and .60 vertices

(8,18,19). This flexibility enables clathrin to endocytose

cargo over a very wide range of sizes (8). Carbon atoms self-

assemble into cages with 36 (17), 60, 70 (14), and more (13)

vertices. Therefore, the presence of DADs and nonplanar

faces must be compatible with self-assembly of both clathrin

and carbon.

However, the number of fullerene cages that has been

identified is quite limited. We proposed the hypothesis that a

head-to-tail arrangement of DADs in a cage precludes self-

assembly of that cage (10). This rule excludes all but 66

fullerene cages out of 222,509 graphically possible cages

with 20 # n # 84 vertices. All of the clathrin and carbon

cages in this range of n whose structure has been identified

are among this group of 66. The 66 cages are comprised of

15 small non-IPR fullerene cages for n # 60, the truncated

icosahedron (a.k.a. buckminsterfullerene) for n ¼ 60, and all

of the 50 large fullerene cages that obey the isolated

pentagon rule for 60, n# 84. The last finding suggests that

the head-to-tail rule provides a geometric explanation for the

IPR rule for large carbon fullerenes (S. Schein and T.

Friedrich, unpublished).

The geometric explanation of the head-to-tail
exclusion rule

Here we show that that a Ring with a head-to-tail arrange-

ment of DADs would have some severely nonplanar

surround faces. This implicit geometric consequence may

impose a kinetic barrier to prevent assembly of Rings with

head-to-tail DADs or may impose an energy cost to make

those Rings unlikely to last in a competitive (equilibrium)

situation. For carbon fullerenes, investigators point out that

the energy on a per-carbon basis of the less abundant C70 is

lower than that of the more abundant C60, part of the

reasoning that ascribes selection among carbon fullerenes to

kinetics (26). By contrast, clathrin triskelia are not so tightly

embedded in cages (27,28) and exchange with triskelia in the

cytoplasm (29–31), so self-assembly of clathrin may be

described in equilibrium terms (e.g., (32,33)). In either case,

the geometric picture of head-to-tail DADs that we describe

here would exclude cages with head-to-tail DADs.

To develop the geometric picture, we first had to discover

the affect of a single DAD on a Ring, where a Ring is defined

as a central face and its immediately surrounding faces. With

our focus on one edge of the central face—a central edge—we

define the two adjacent central-face edges as internal edges

and the two adjacent surrounding-face edges as external edges

(Fig. 5). A DAD arises if the face at one end of the central

edge is a pentagon and the face at the other end is a hexagon

(Fig. 1 B). In that case, the dihedral angle about the central

edge at the pentagon end is less than the dihedral angle about

the central edge at its hexagon end. Necessarily, the angle be-

tween the internal and external edges at the pentagon end is

less than the angle between the internal and external edges at

the hexagon end (Fig. 5 D).
For a Ring with one DAD in each symmetric half—the

Ring placed cup-up—the broadening of dihedral angle

caused by the DAD is shared approximately equally between

1), a downward rotation of the external edge at the hexagon

end with respect to the external edge at the pentagon end; and

2), a downward rotation of the internal edge at the hexagon

end with respect to the internal edge at the pentagon end. For

example, the green curved arrow 2 on the left in Fig. 7 A
shows the downward rotation from external edge c9 to

external edge b9, and the green curved arrow 3 on the right

shows the approximately equal downward rotation from the

internal Sym edge S to the internal Twist edge T9. As a result,
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the black curved arrow 5 on the left in Fig. 7 A shows the

downward rotation from external edge b9 to external edge a9,
and the black curved arrow 4 on the right shows the

approximately equal upward rotation from the internal green

DAD edge G9 to the internal Sym edge S9.
In Rings with head-to-tail DADs in each symmetric half,

the broadening about each DAD edge is not shared between

external and internal rotation. Instead, the broadening is

achieved largely or entirely by a downward rotation of the

external edge at the hexagon end with respect to the pentagon

end (Fig. 8 and Fig. 9D). Inward rotation does not contribute at
the first DAD edge because it would have to be paid back by

additional downward external rotation at the second DAD edge.

Likewise, inward rotation does not contribute at the second

DAD edge because it would have to be paid back by addi-

tional downward external rotation at the first DAD edge. This

standoff is most clearly seen in Fig. 7B, which shows no internal
rotation at either of the red or green DAD edges of Ring 631.

This geometric picture emerged after definition of four

quantities, DAD D, twist T, internal rotation I, and external

rotation E, followed by measurement of I and E and cal-

culation of D and T for all of the central edges in molecular

models of all of the 16 Rings with DADs (Fig. 2; Table 1,

Supplementary Material 1 Table 1). These data revealed

relationships among the quantities, led us to recognize the

geometric bases for the relationships, and enabled us to write

the equations that underlie those relationships.

External rotation and nonplanar
surrounding faces

When the external edge at the hexagon end of a central edge

is rotated downward with respect to the external edge at the

pentagon end, the surrounding face at that central edge must

be nonplanar. Therefore, we speak of surrounding faces as

nonplanar because the term is familiar, but from the point of

view of the assembling Ring or the assembled Ring, what we

mean specifically is that the two external edges are not in the

same plane. The nascent (nonplanar) surrounding face may

never actually assemble because vertices are unable to bridge

the gap between the ends of the external edges that are

pointing in different direction—thus a kinetic barrier. Or, if

the Ring can assemble at all, the Ring with severely non-

planar surrounding faces would be a high-energy structure

that would be replaced by a lower energy Ring with which it

is in equilibrium.

Ironically, in Schein and Sands-Kidner (10) we identified

the Ring type of all of the faces in a fullerene cage merely as

a convenient way to tally head-to-tail DADs. Now, we un-

derstand that the geometric relationships at issue require the

Ring. The failure to complete (kinetics) or keep (equilibrium)

those Rings with head-to-tail DADs is at the heart of the

exclusion mechanism. The Rings with head-to-tail DADs are

improbable, either in initial assembly (kinetics) or over time

in competition with other Rings (equilibrium).

How improbable?

As just stated, the severe nonplanarity of a surrounding face

suggests that a Ring with such a face is unlikely to self-

assemble. In addition, all of the improbable Rings have

multiple—two, three, or four—highly nonplanar surround-

ing faces (the ones marked by asterisks in Fig. 10), so the

relative probability of an improbable Ring versus a probable

Ring should be that low probability to the second, third, or

fourth power. Moreover, among the 222,443 excluded cages

out of the 222,509 mathematically possible fullerene cages

with 20–84 vertices, the smallest number of improbable

Rings is two (10), though most have more, lowering the

probability of an excluded cage with such Rings by another

power of two or more.

Quasi-equivalent vertices

The vertices in fullerene cages are similar in that they are

all three-connected and join pentagons and hexagons. In a

dodecahedron—aPlatonic, regular polyhedron—all of the ver-

tices are 555, joining three regular pentagons, so these vertices

are equivalent. Likewise, all of the vertices in a truncated

icosahedron—an Archimedean, semiregular polyhedron—are

566, each joining a regular pentagon and two regular hexagons,

and are equivalent.

No other fullerene cage has a single type of vertex. The

vertices in other fullerene cages include two or more of the

four vertex types 555, 556, 566, and 666 (10). Triskelia at

different vertex types in a single cage may be described as

quasi-equivalent, in analogy with otherwise identical capsid

protein tiles of virus shells that bond differently depending

on geometric position in the surface of the shell (12). In ad-

dition, since internal angles are generally not exactly equal to

the ideal 108� in pentagons or 120� in hexagons, potentially

every vertex in a cage may be different from one another.

Flexible and reliable self-assembly

The challenge faced by clathrin is to be able to self-assemble

about cargo of a wide range of sizes. Perfectly identical

triskelia could produce only two fullerene cages, the

dodecahedron with 20 vertices and the truncated icosahedron

with 60. For both clathrin and carbon, relaxing the require-

ment for identical vertices permits cages with faces that

are not regular and often nonplanar. However, were there no

additional geometric constraints, addition of vertices to

produce hexagons and pentagons at random would fail in the

vast majority of cases to produce a closed, fullerene cage (10).

Fortunately, there is an implicit geometric constraint, the

head-to-tail exclusion rule (10), which from the point of view

of the physical mechanism described here might better be

described as the no-Rings-with-head-to-tail-DADs rule.

Because it is a geometric constraint, it may act as a kinetic

barrier to prevent assembly of such Rings or as an energy
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penalty that prevents maintenance of such high-energy Rings

under equilibrium assembly conditions.

This implicit geometric constraint has two consequences.

First, it blocks random completion of hexagons and penta-

gons, permitting only a subset of paths of fullerene growth,

along what we have called ‘‘probable roads’’ (10), in

contrast to what investigators of carbon fullerenes have

called the ‘‘pentagon road’’ (34,35) and ‘‘fullerene road’’

(36,37) hypotheses. Second, these probable paths lead to a

limited repertoire of clathrin and carbon fullerene cage

structures, specifically the 15 small, non-IPR cages for 20#
n , 60, the truncated icosahedron (n ¼ 60), and the IPR

cages for n . 60 (10). This repertoire, though limited in

structure, includes fullerene cages of a wide range of n: 20–
28, 32, 36–44, 50, 60, and$70. In addition, clathrin can self-

assemble into non-fullerene cages with heptagonal faces

(19,38), so clathrin may be able to produce cages with the

few missing n as well.

Icosahedral virus shells are also flexible in structure but

much less so. Different icosahedral virus shells have 60T
triangular subunits, with T taken from a series 1, 3, 4, 7, 12,

13, 19, 21. . . (12,39). The subunits associate into pentamers

with five subunits and hexamers with six. The number n of

vertices of equivalent icosahedral fullerene cages is 60 T/3¼
20 T. Thus, the T¼ 1 structure is the dodecahedron (n¼ 20),

the T¼ 3 structure is the truncated icosahedron (n¼ 60), and

the T ¼ 4 structure is the icosahedral IPR fullerene isomer

with n ¼ 80. Moreover, in a few cases a particular virus may

form shells of different T numbers (40–44). Clearly, though,

the restriction to icosahedral structures limits virus structure

to a very small number of isomers with quantal jumps in T
number.

Therefore, in a single cell, to enclose cargo of different

sizes, evolution has selected a caging system whose building

blocks are vertices (as in clathrin) rather than tiles (as in

viruses). This choice reflects both flexibility in cage size and

reliability in cage assembly, the physical basis of which is an

implicit geometric constraint, the head-to-tail exclusion rule.

SUPPLEMENTARY MATERIAL

To view all of the supplemental files associated with this

article, visit www.biophysj.org.

We are grateful to Kendall Houk, Peter Bentler, and Frederick Eiserling for

their encouragement.
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