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ABSTRACT In a cell, it has been estimated that each protein on average interacts with roughly 10 others, resulting in tens of
thousands of proteins known or suspected to have interaction partners; of these, only a tiny fraction have solved protein struc-
tures. To partially address this problem, we have developed M-TASSER, a hierarchical method to predict protein quaternary
structure from sequence that involves template identification by multimeric threading, followed by multimer model assembly and
refinement. The final models are selected by structure clustering. M-TASSER has been tested on a benchmark set comprising
241 dimers having templateswithweak sequence similarity and 246withoutmultimeric templates in the dimer library. Of the total of
207 targets predicted to interact as dimers, 165 (80%) were correctly assigned as interacting with a true positive rate of 68% and
a false positive rate of 17%. The initial best template structures have an average root mean-square deviation to native of 5.3, 6.7,
and 7.4 Å for the monomer, interface, and dimer structures. The final model shows on average a root mean-square deviation
improvement of 1.3, 1.3, and 1.5 Å over the initial template structure for the monomer, interface, and dimer structures, with
refinement evident for 87%of the cases. Thus, we have developed a promising approach to predict full-length quaternary structure
for proteins that have weak sequence similarity to proteins of solved quaternary structure.

INTRODUCTION

In a given proteome, it has been estimated that each protein

interacts with ;10 other proteins (1,2). Thus, in eukaryotes,

tens of thousands of proteins are known or suspected to

interact on the basis of yeast two-hybrid analysis, mass

spectrometry or bioinformatics studies (3–6). Knowledge of

the structure of these complexes is essential for understand-

ing how the various proteins perform their function (7–9).

However, experimental techniques for solving protein struc-

tures, x-ray crystallography and NMR spectroscopy, are costly

and time-consuming. The development of suitable three-

dimensional modeling tools to predict the quaternary struc-

ture of protein-protein complexes would be of significant

utility (9,10). However, at present, reliable predictions are

limited to pairs of proteins that are highly homologous to

proteins with solved quaternary structures (11,12). Unfortu-

nately, the number of such proteins is rather limited. To extend

the methodology, it is important to be able to recognize com-

plexes of proteins that are structurally similar but evolution-

arily remotely related to proteins whose structures are already

solved.Motivated by this goal, we have developedM-TASSER,

a hierarchical approach to predict protein quaternary struc-

ture that includes template identification by multimeric thread-

ing, followed by multimer model assembly and refinement.

The structures of protein complexes deposited in the Pro-

tein Data Bank (PDB) (13) contain important information for

predicting new complexes. As suggested in recent studies,

close homologs with sequence identity above 30% tend to

interact in a similar way (9,11,12,14). Thus, new protein-

protein interactions can be predicted by aligning the pair of

target sequences to an evolutionarily related complex struc-

ture (15–17). The quality of predicted models is dictated by

the sequence identity between target and template proteins.

At the high end of sequence identity (.60%), modeling of

interactions can be expected to give quite accurate atomic

details of the interface. In the medium sequence identity

range (30–60%), the overall structural similarity will be

conserved, although the molecular details of the interaction

(e.g., interacting residue pairs) are often different. When the

sequence identity drops below 30%, this is a twilight zone

where interactions may or may not be similar; even if they

are, the quality of the resulting model is likely to be low, e.g.,

many structural elements will be distorted or missing and

only the rough relative orientation of the two proteins will be

predicted (12).

A necessary precondition for the ultimate success of

template identification is the completeness of the library of

known protein-protein interactions in PDB. Recent studies

suggest that the total number of unique interaction types in

nature is limited to ;6000–10,000, of which we currently

know ;2,000, with this number growing at the rate of 300–

400 per year (18). With advances in experimental methods

for solving protein structures and proposed protein complex

structural genomics initiatives (19,20), a complete structural

repertoire of interaction types could be realized in the

relatively near future. Therefore, the structure prediction

problem for protein-protein interactions could eventually be

solved by using template-based methodologies. However, an

effective algorithm is needed that can deal with proteins in

the twilight zone of sequence identity so that related tem-

plates can be recognized and models constructed that are

closer to their native structure than the starting template

alignment.
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The recently introduced multimeric threading method,

MULTIPROSPECTOR (21–25), goes beyond homologymode-

ling approaches by its ability to infer interactions in complex

structures with weak sequence similarity. The method ex-

tends single-chain threading (24) to multiple chains and uses

statistical interfacial pair potentials (22) to score how well

interfaces interact to decide whether or not a protein-protein

interaction is present. The approach is computationally inex-

pensive and has been applied in proteome-scale studies (23).

The next logical continuation of this idea is to generate full-

length models whose root mean-square-deviation (RMSD)

from the corresponding native structures is better than that of

the input template structures. Usually, a complex structure is

predicted by first modeling the separate components and then

structurally aligning the component models to the selected

interaction template (12). The drawback of this approach is

that: 1), it cannot handle significant conformational changes

or large loop rearrangements upon binding, thus resulting in

steric clashes in the interface region; and 2), it cannot adjust

the relative orientation of the proteins to more accurately

predict the structure of the interface.

Here, we describe a procedure that addresses these defi-

ciencies by extending the single protein structure prediction

and refinement procedure, TASSER (26–29), tomultiple chains.

TASSER constructs a full-length model by rearranging con-

tinuous template fragments as well as modeling the unaligned

regions. TASSER employs an optimized Ca and side-chain

center of mass (SG)-based potential driven by predicted

tertiary restraints. To examine the feasibility of extending

TASSER to dimer model refinement, previously we did a

preliminary test by introducing a 30-residue flexible Gly

linker between two chains because TASSERcould at that time

only handle single-chain proteins (25). In all three test cases,

the final models showed clear improvement over the best

templates, although the linker distorted the interface in one case.

This preliminary result encouraged us to develop a more so-

phisticated method, M-TASSER, which generalizes TASSER

to handlemultichain proteins explicitly, thus removing the need

for a linker. In addition, global moves of the individual chains,

i.e., translation and rotation, are added into the Monte Carlo

move sets. The relative orientation of the two proteins is ad-

justed by an interaction force field driven by interfacial contact

restraints derived from the templates.

For the past 30 years (30), protein-protein docking methods

have been developed that build a model of the complex struc-

ture from the known component structures. These docking

procedures usually follow the same approach: one protein is

fixed in space and the second is rotated and translated around

the fixed one. For each new configuration, a score is calcu-

lated with the goal that the native complex will be the highest

ranked (31). However, as shown in recent blind tests in the

Critical Assessment of Predicted Interactions (CAPRI), cur-

rent methods are still not reliable enough for routine use.

There are two major challenges hampering progress: 1), the

inability to describe the conformational changes that usually

accompany complex formation and 2), an effective scoring

function that identifies the correct solution from many false

positives (32–34). Most docking approaches treat the com-

ponent structures as rigid bodies. Thus, targets with backbone

RMSD changes that are even as small as 2 Å upon binding

can be extremely challenging (35). The most successful pro-

cedures use biochemical/biophysical information about the

interface regions and predicted interaction sites to guide the

docking process (36,37). Although progress in the treatment

of flexibility in docking has occurred, this still remains a

difficult problem. In addition, inclusion of flexibility can com-

plicate the identification of the correct structures, thereby

necessitating the development of better scoring functions

(35). Unlike these docking approaches, M-TASSER treats

backbone flexibility explicitly and selects the final model by

structure clustering, thus circumventing the difficulties of the

conformation change and scoring. With the aid of interface

identification and prediction, M-TASSER may be applied to

predict quaternary structures when there is no complex tem-

plate available. Nevertheless, M-TASSER suffers from the

disadvantage that an example of a structurally related com-

plex must have already been solved, and if so, then it must be

selected.

METHODS

M-TASSER extends single-chain TASSER (threading/assembly/refinement)

(26) to multiple chains. An overview of the M-TASSER methodology is

illustrated in Fig. 1. Each query sequence first undergoes single-chain

threading using the latest version of PROSPECTOR_3(24) as in TASSER to

identify the monomer templates and to provide tertiary contact restraints.

Those templates belonging to the same dimer are then identified and their

interfaces are examined to assign dimer templates on the basis of an inter-

facial energy. When a dimer assignment is made, interfacial contact re-

straints for the pair of query sequences are extracted. The gapped threading

model is submitted to the dimer model assembly and refinement procedure,

which is driven by the tertiary and interfacial contact restraints. The final

models are selected by structure clustering using the SPICKER algorithm

(29). In the following sections, we describe each step in detail.

Single-chain threading

Each query sequence is individually threaded against a nonhomologous

monomer template library (sequence identity ,35% between any two

members) using the previously described threading algorithm PROSPEC-

TOR_3 (24). The purpose of threading is to identify appropriate local

fragments for structural reassembly and to derive tertiary contact restraints to

guide the model refinement process. To generate the monomer template

library, all PDB protein sequences sharing .35% sequence identity are

clustered together and one representative sequence is selected from each

cluster (24). The monomer templates are single chains from monomeric and

multimeric proteins. Templates sharing sequence identities above 30% to the

query sequence are excluded. For each query-template alignment, a Z-score

is calculated as:

Zk ¼ Ek � ÆEæ
s

; (1)

where Ek is the energy of the query sequence in the kth template, ÆEæ is the
average energy of all templates, and s is the standard deviation of the
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energies. The Z-score gives the number of standard deviations between the

template and the average random energy. Templates with Z-score$9 have a

good chance of being correct (24). The query sequence is then threaded

against all the monomers in the dimer template library (described below)

with the Z-score calculated using the values of ÆEæ and s derived from the

monomer template library. The monomer template library can be found at

http://cssb.biology.gatech.edu/skolnick/files/M-TASSER/MonomerLibrary.

Dimer template assignment

To differentiate those threading templates that are part of a complex from

those that are not, a dimer template library is generated (described below).

Dimer templates with both chains sharing sequence identities below 30% to

the target are examined. All pairwise target-template alignment combina-

tions with both single-chain templates originating from the same dimer are

identified and then the interfacial energy is calculated (described below). A

pair of targets is assumed to interact if their interfacial energy is below �12.

The energy threshold was determined by the minimum score that separates

the true dimers from those identified on the basis of crystallization artifacts

(22). All predicted dimeric templates are ranked by the sum of single-chain

Z-scores of both chains and the interfacial energy. The top 10 templates are

used to derive the consensus interfacial contacts and also serve as starting

structures in the dimer model refinement procedure.

Dimer model assembly and refinement

The single-chain model assembly and refinement approach in TASSER (26–

29) was generalized and extended to multichain proteins. We first briefly

describe the TASSER refinement procedure. Each residue in a protein is

described by its Ca atom and side-chain center of mass (SG). Based on the

threading alignment, the chain is divided into continuous aligned regions

(more than five residues) that are off-lattice and gapped unaligned regions

that are confined to a lattice. An initial full-length model is built by con-

necting the continuous aligned regions by a random walk of Ca-Ca bond

vectors of variable lengths between 3.26 and 4.35 Å. Only geometric virtual

Ca-Ca bond angle constraints (65�–165�) and excluded volume are con-

sidered during this initial model building procedure. Initial models are

submitted to parallel hyperbolic Monte Carlo sampling for assembly and

refinement (38). The off-lattice Cas of the aligned residues excised from the

threading template are subject to rigid fragment translations and rotations.

The lattice confined Cas of the unaligned residues are subject to two to six

bond movements and multibond sequence shifts. All SGs are determined

by a two-rotamer approximation (39) based on the Ca geometry. All

movements are guided by the same force field.

TASSER was initially developed to predict protein tertiary structure;

thus, it could only handle single-chain proteins. M-TASSER is a generalized

version that can handle as many chains as needed by using a common

parameter—the number of chains (Nch). All chains are treated separately

without the need for a linker. Two global move types, rigid-body translation

and rotation, are added to the Monte Carlo move set to adjust the relative

orientation of each protein chain. The amplitude of the global moves has

been optimized on a set of 16 nonhomologous training dimers different from

the benchmark set used here (the training dimer set can be found at http://

cssb.biology.gatech.edu/skolnick/files/M-TASSER/DimerTrain).

In the dimer model refinement procedure, the single-chain threading

templates of both chains are first structurally aligned to a dimer template to

create starting conformations with the two chains in contact. Each chain then

undergoes tertiary structure refinement as in TASSER as well as position

perturbations by random global translations and rotations. To avoid the

chains moving away from each other, the global movement steps are kept

small (mean 0.2 Å translation along all three axes and 6� rotation around the
axis of the protein center). All movements are guided by the same force field,

which is a combination of the TASSER force field that describes the

intrachain interactions and a force field describing interchain interactions

(described below). The interchain interactions consist of protein specific

interfacial contact restraints derived from the dimer templates as well as

statistical pairwise SG-SG, Ca-Ca, SG-Ca interactions and hydrogen

bonding. The interfacial contact restraints allow the chains to adjust the

interface around the initial template, as well as prevent them from moving

too far away from each other. For statistical potentials, we use the same

terms as in the TASSER monomer force field. That is, we assume that these

interactions in the protein-protein interface are the same as in the protein

interior (detailed below).

Model selection

Each Monte Carlo simulation employs 40 replicas at different temperatures.

The multimer structures in the 16 lowest temperature replicas are submitted

to the structural clustering program, SPICKER (29). Clustering is based on

the global RMSD for all decoy pairs. A combined model is generated for

each cluster and is ranked by cluster density. We use the best combined

model of the top five clusters in this study.

The dimer template library and the benchmark set

We compiled a library of pairwise interacting proteins from multichain

crystal structure entries in the PDB (13) using the following criteria:

1. Protein chains with ,40 residues, protein-protein complexes with ,30

interfacial contacts, or an interfacial energy above �12, as well as

DNA/RNA constructs, are excluded. Interfacial contact residues are

defined as a pair of residues from different chains that have at least one

pair of heavy atoms within 4.5 Å of each other. A pair of protein chains

sharing an interface is called a dimer throughout this article.

2. Dimers in the library should not have .35% sequence identity with

each other (i.e., at most one chain in a dimer can have .35% sequence

identity to any of the chains in another dimer). To generate the

FIGURE 1 Overview of the M-TASSER methodology.
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nonhomologous dimer library, we mapped all the dimers to the clusters

of monomer templates (each member of the monomer template library

has its own cluster that consists of PDB sequences sharing .35%

identity). Of all dimers with one chain mapped to cluster i and the other

chain mapped to cluster j, one representative dimer was chosen.

3. The dimers should be verified to have a true protein-protein interaction

instead of being assigned just on the basis of crystal packing. Here, we

define a pair of chains as having a functional protein-protein interaction

if they share an interface in a functional biological multimer (dimer or

higher order oligomer). Strictly speaking, functional biological mole-

cules can only be confirmed by direct experimental studies in solution.

However, such experimental data are rather limited (21,40).

To assess the reliability of template-based modeling of protein-protein

interactions, the false positive rate of proteins that are assigned as putative

multimers must be estimated. Currently, there are two main sources of hy-

pothetical biological units, the PDB and the Protein Quaternary Structure file

server (PQS) (41). Crystal structures deposited in the PDB usually contain one

asymmetric unit that does not necessarily represent the biologically functional

molecule. The description of the biological unit and instructions for generating

the biological unit from the asymmetric unit by symmetry operations are

provided in REMARK 300 and 350 of the PDB files. For entries deposited

before 1999, these data are either provided by the depositors or obtained from

Swiss-Prot (42) or PQS. Since 1999, they are solely based on the details

provided by the depositors (http://www.rcsb.org/). The PDB has provided

separate coordinate files for the biological units. PQS generates the biological

units for the PDB entries by recursively adding monomeric chains based on the

number of interchain contacts, and then, it differentiates between a specific and

nonspecific (crystal packing) interaction by using the difference in surface area

upon binding and other parameters (41). The biological units of both the PDB

and the PQS are often hypothetical, and it has been shown that they disagree

for 18% of the entries (43).

To assess the performance of both classifications, a nonredundant set of 55

monomers and 88 dimers (21,40), for which the biological multimeric state is

confirmed by experimental data in literature, are used to query the PDB and

the PQS (http://pqs.ebi.ac.uk/). This list may be found at http://cssb.biology.

gatech.edu/skolnick/files/M-TASSER/true_multimers. The PDB classifies 97

as dimers, among which 83 (86%) are correct; this covers 94% of the true

dimers in the set. The PQS classifies 93 as dimers, among which 76 (82%) are

correct; this covers 86% of true dimers. Taking the common predictions of

both the PDB and the PQS, 83 are classified as dimers, among which 75

(90%) are correct, with a coverage of 85% of true dimers. The PDB surpasses

the PQS in terms of both accuracy and coverage. The consensus classification

by both predicts fewer dimers but with higher confidence. It is desirable to

have a more certain interaction template library even though some true

templates are missing. Thus, we only keep those dimers whose biological

units are in both the PDB and the PQS and are in the same multimeric state.

The resulting template library consists of 1838 dimers, among which 1220 are

putative biological dimers, including 970 homodimers and 250 heterodimers.

We use the same definition of homodimers and heterodimers as in the PQS.

At this stage, we want to use biological dimers with both chains ,200

residues in length (that are likely to adopt a single domain tertiary structures)

to benchmark our methodology. There are 487 such dimers in the library,

including 400 homodimers and 87 heterodimers. The list of dimer templates

(DimerLibrary) and the benchmark set (DimerBench) can be found at

http://cssb.biology.gatech.edu/skolnick/files/M-TASSER/.

Interfacial energy for dimer template assignment

To evaluate the strength of interfacial interactions to assign a protein pair as

belonging to a dimer, we calculate the interfacial energy using the following

formula:

E ¼ +
20

i¼1

+
20

j¼1

nijeij; (2)

where eði; jÞ (i¼ 1,. . .20; j¼ 1,. . .,20) is the statistical interfacial pair potential

between residues of type i and j (22) (which may be found at http://

cssb.biology.gatech.edu/skolnick/files/potentials/) and nij is the number of

interacting interfacial residue pairs of type i and j. Here, we have extended the
interfacial energybyusingmultiple sequence (ms) information. Specifically, for

each interfacial residue, a sequence-profile vector with components represent-

ing the occurrence probabilities for the 20 types of amino acids is used instead.

The sequence profiles were extracted from the position-specific scoring

matricesproduced by three-iterationPSI-BLAST (44) using an e-value cutoff of

0.001. It has been shown that using PSI-BLAST profiles significantly improves

the accuracy of secondary structure (45) and solvent accessibility predictions

(46). We previously applied both single-sequence interfacial energy (Ess) and

multiple-sequence interfacial energy (Ems) to predict dimeric templates by

multimeric threading on a test set of 300 dimers (results not shown). Each

dimeric target-template pair was given a two-state prediction (one-correct

template, zero-incorrect template). The Ems achieved the best Matthew’s

correlation coefficient (MCC) between observed and predicted states of 0.63,

whereas the best MCC of Ess is 0.57. Thus, Ems is used in this study.

Force field for dimer model refinement

The force field employed in the M-TASSER refinement procedure is a com-

bination of the original TASSER force field describing the single molecular

free energy and an intermolecular potential.

E ¼ E TASSER 1E intf : (3)

The TASSER force field has been described previously in detail (39).

Here we give a brief summary. There are 26 energy terms. These can be

divided into three classes: 1), statistical potentials derived from the PDB,

including long-range SG-SG, Ca-Ca, SG-Ca interactions, local Ca cor-

relations, and hydrogen bonding; 2), propensities for predicted secondary

structures from PSIPRED (45) and hydrophobic burial interactions from a

solvent accessibility prediction (46); and 3), protein-specific SG-pair poten-

tials, tertiary contact restraints, and distance restraints extracted from the

threading templates provided by PROSPECTOR_3 (24).

The interfacial force field consists of pairwise SG-SG, Ca-Ca, SG-Ca

interactions, hydrogen-bonding, and interfacial contact restraints.

Pairwise interactions

The pairwise interactions between Ca-Ca and SG-Ca used here are the

same as in the TASSER force field as applied to monomers. They essentially

involve excluded volume interactions, which are represented by a hard-

sphere potential plus a 1/r type of soft-core potential with a slightly larger

range. The SG-SG interaction is written as

ESG-SG ¼ w1Ems 1w2Edfire scm; (4)

where Ems is the multiple-sequence interfacial energy calculated from the

statistical interfacial pair potential (22) (Eq. 2); Edfire_scm is calculated from the

DFIRE-SCM potential based on the distance-scaled, finite ideal-gas reference

state (47,48). The DFIRE-SCM potential is a simplified residue-level DFIRE

potential based on the side-chain center of mass that can be directly applied to

the M-TASSER reduced model (48). We optimized the relative weights to

minimize the average dimer RMSD of the best models on a 16-dimer training

set (the training set can be found at http://cssb.biology.gatech.edu/skolnick/

files/M-TASSER/DimerTrain). The optimization is done iteratively by fixing

one value and changing the other in the range of 0–5 for w1 and 0–10 for w2.

The values w1 ¼ 1.8, w2 ¼ 5.0 are found to be optimal.

Hydrogen bonds

The hydrogen bond (H-bond) interaction involves interactions between

b-predicted residues.
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Interfacial contact restraints

The function describing interfacial contact restraints is essentially the same

as that describing the tertiary contact restraints used in TASSER. Consensus

interfacial Ca-Ca and SG-SG contact predictions are collected from dimer

templates. Residue pair (i, j) is predicted to be in contact if their contact

probability in the set of dimeric templates is higher than 30%. The contact

potential is calculated as

Econt ¼ wr3 +
i;j

Q5ðrSGij � dSG

cutoffÞ1wr4Q6ð+
i;j

Q6ðrSGij � dSG

cutoffÞ

� NcpÞ � wr5 +
i;j

Q5ðdCa

cutoff � r
Ca

ij Þ

Q5ðxÞ ¼
1; x $ 0

0; x, 0
;Q6ðxÞ ¼

x; x $ 0

0; x, 0
:

��

(5)

For each predicted Ca-Ca or SG-SG contact residue pair (i, j), the

distance rij is calculated and compared to the distance cutoff dcutoff. The first

term invokes a penalty when the predicted SG-SG contact pairs are farther

apart than the distance cutoff. The second term applies an additional penalty

when the total distance deviation of all predicted SG-SG contact pairs is

larger than a threshold value Ncp. The third term favors predicted Ca-Ca

contact pairs that are within the distance cutoff. We use the same weights as

in the TASSER force field.

RESULTS

Template identification by multimeric threading

We are interested in the success rate of template identifica-

tion by multimeric threading. First, we need to estimate the

maximum number of targets that can find a template with

weak sequence similarity in the dimer library. Structural

alignment using native structures gives the optimal super-

position between the target and the template. Thus, structural

alignment defines which target proteins can be aligned in a

template library and allows the assessment of the quality

of any threading method. We use the structural alignment

method, TM-align (49), to perform library search for each

target dimer. Because TM-align is designed for single-chain

proteins, it does not distinguish between different protein

chains. Direct structural alignment of the dimers may result

in one chain from the target structure aligned to both chains

of the template. Thus, we use a two-step process similar to

the multimeric threading procedure to create the structural

alignment models for dimers. Each monomer is first indi-

vidually aligned to the dimer template library, and then the

two monomer alignment models belonging to the same dimer

are then concatenated to form a dimer model. The dimer

model is structurally compared to the native structure as an

entity using the TM-score (50). The residue numbers of two

chains in both native and model structures are reordered

sequentially so that the comparison is based on the residue

equivalency of the dimer. The difference between TM-align

and the TM-score programs is that the TM-score is designed

to compare two models of the same protein based on their

residue equivalency, whereas TM-align is a structural align-

ment program that will first find the best equivalent residues

of two proteins based on the structural similarity. The TM-

score values in both programs have the same definition. We

define a dimeric target-template pair to be correct if each

monomer in the dimer as well as the dimer model have TM-

scores$0.4 (a statistically significant threshold for structural

similarity) and a fraction of native contacts (fnat) $10% (a

threshold that separates an acceptable interaction prediction

from an incorrect prediction (34)).

Table 1 shows the results for template identification byTM-

align with a minimum TM-score 0.4. If we do an all-against-

all comparison of the 487 dimers in our dimer library, and

exclude templates sharing.30% sequence identity, only 241

(49%) dimers can find a correct template in the dimer library.

This gives the total number of 241 positive targets and 246

negative targets in the benchmark set of 487 total dimers.

We then repeat the process but employ template identifi-

cation by threading instead of structural alignments. The

results are shown in Table 1 where a minimum single-chain

Z-score of 9 is required. A total of 207 targets can find a dimer

template with an interfacial energy below �12; these are

predicted to interact as dimers. Among these predicted dimers,

165 (80%) have a correct template identified. The result shows

a 68% true positive rate (fraction of true positive prediction

over all (241) positive targets) and a 17% false positive rate

(fraction of false positive prediction over all (246) negative

targets) for the template identification by threading.

TABLE 1 Template identification by threading in comparison to structural alignment results

TMalign (TM-score $ 0.4) Prospector (Z-score $ 9.0)

All Heterodimer All Heterodimer

N_monomer 573 (100%)* 174 (100%) 380 (66%) 117 (67%)

N_dimer (Ncta . 0) 467 (96%) 74 (85%) 253 (52%) 30 (34%)

N_dimer (Eintf , �12) 407 (84%) 45 (52%) 207 (43%) 15 (17%)

N_dimer (DTM . 0.4) 343 (70%) 37 (43%) 185 (38%) 14 (16%)

N_dimer (DTM . 0.4 and Fnat . 0) 310 (64%) 31 (36%) 181 (37%) 13 (15%)

N_dimer (DTM . 0.4 and Fnat $ 10%) 241 (49%) 21 (24%) 165 (36%) 12 (14%)

*The values shown are the number (fraction) of targets that can find a template in the dimer library. The total targets consist of 487 dimers including 87

heterodimers, belonging to 574 unique monomers. Ncta is the number of interfacial contacts; DTM is the dimer TM-score; and Fnat is the fraction of native

interfacial contacts.
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We are particularly interested in the percentage of het-

erodimers that can identify a dimer template. There are 87

heterodimers in the benchmark set. As shown in Table 1,

although all the monomers can identify a correct fold with

TM-score $0.4 in the dimer library, only 21(24%) of the

heterodimers can find a correct dimer template by TM-align.

The reason for the relatively low percentage of predictable

heterodimers is probably because the number of heterodimers

in the dimer template library is still limited. Threading pre-

dicts 15 heterodimers as interacting, of which 12 (80%) have

a correct dimer template.

M-TASSER model refinement

All the 207 targets predicted as interacting are used to

benchmark the dimer model refinement algorithm. Of these,

192 are homodimers and 15 are heterodimers, with a total

of 222 unique chains. Because a dimer model is determined

not only by the monomer structure but also by its quaternary

structure, we will compare the refinement results on mono-

mer, interface, and overall dimer structures, respectively,

over the best initial templates. The best template is defined as

the template with the highest dimer TM-score to native. The

refinement results are summarized in Table 2.

Dimer structures

Fig. 2 A shows the RMSD to native of the best dimer model

in the top five clusters versus that of the best initial template

on the same aligned regions. About 87% of the models are

closer to native than the best template as evidenced by their

lower RMSD value. The average RMSD to native for the

models and the templates are 5.9 and 7.4 Å, respectively.

The improvement of the M-TASSER model over the best

template is also shown in Fig. 2 B, where the TM-score to

native of the model is plotted against that of the template.

Most of the models have higher TM-score to native than the

best templates. The average TM-score for the models and the

templates are 0.73 and 0.66, respectively. Fig. 2 C shows

the fraction of models (templates) below the given RMSD-

to-native thresholds; 71% of the templates have a RMSD to

native below 6.5 Å (a threshold for a foldable structure

(51)). An additional 5% of the targets become foldable after

M-TASSER refinement. If we define a medium resolution

model as that with RMSD to native ,4 Å, and a high reso-

lution model as that with RMSD to native,2 Å, M-TASSER

predicts 57% medium resolution models, among which 6%

are high resolution models. The corresponding percentages

for the best templates are 39% and 1%, respectively. Fig. 2 D
shows the fraction of targets having a dimer RMSD im-

provement above the given threshold value, d, plotted as a

function of the dimer RMSD of the initial template. For

initial template structures with a 5–6 Å RMSD, 41% of

targets improve the RMSD by at least 2 Å; 48% of targets

with an initial RMSD of 4–5 Å improve the RMSD by at

least 1 Å. For very good initial templates, 26% with an initial

RMSD of 3–4 Å improve the RMSD by at least 1 Å and 24%

with initial RMSD of 2–3 Å improve the RMSD by at least

0.5 Å.

Native interface region

Even if the monomer models are perfect, the RMSD in the

interface may be bad if the monomers have incorrect in-

teractions. Moreover, the effect of the RMSD change on

interface refinement will be more significant when calculated

on only interface residues than on the whole chain. Thus,

here, we restrict the RMSD calculation to native interface

residues only, and we use native interface residues for direct

comparison of different models. Native interface residues are

defined as the residues with at least one heavy atom within

4.5 Å of any heavy atom on the other chain in the native

complex structure. In our data set, 26% of residues are in the

interface region by this definition. Models with an interface

RMSD .4 Å most likely have incorrect interaction (34).

Fig. 3 A shows the interface RMSD to native of the best

dimer models versus that of the best initial template on the

same aligned regions. Most of the models have interfaces

closer to native than the best templates by showing a lower

interface RMSD value. The average interface RMSD to native

for the models and the templates are 5.4 and 6.7 Å, respec-

tively. The improvement of the interface as assessed by the

TM-score in M-TASSER model over the best template is

also shown in Fig. 3 B. Again, most of the interfaces in the

model have a higher TM-score to native than that in the best

template. The average interface TM-score for the models and

TABLE 2 Summary of comparison of M-TASSER models with the best initial templates

All (N ¼ 207) Heterodimer (N ¼ 15)

Tali (Å) Mali (Å) Ment (Å) Ttm Mtm Tali (Å) Mali (Å) Ment (Å) Ttm Mtm

Coverage/sequence identity %* 91/20 91/20

Monomer 5.3 4.0 4.6 0.67 0.76 3.8 3.2 4.0 0.71 0.79

Interface 6.7 5.4 5.9 0.52 0.58 6.5 5.2 6.0 0.59 0.62

Dimer 7.4 5.9 6.5 0.66 0.73 6.7 5.7 6.7 0.69 0.75

*Alignment coverage/sequence identity for the best template that has the highest dimer TM-score to native. Tali, RMSD to native for the best initial templates

over aligned residues.Mali, RMSD to native for the best of top five models on the same aligned region as the best template.Ment, RMSD to native for the best

of top five models over the entire chain. Ttm, TM-score for the best initial templates. Mtm, TM-score for the best of top five models.
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the templates are 0.58 and 0.52, respectively; 49% of the best

templates have correct interactions in that their interfacial

RMSD to native is below 4.0 Å (see Fig. 3 C). After

M-TASSER refinement, 64% models have a correct inter-

face; 15% of the best templates have an interface RMSD,2

Å. M-TASSER refines an additional 7% of models to have

an interface RMSD below 2 Å. Fig. 3D shows the fraction of

targets with an interface RMSD improvement above the

given threshold value, d, plotted as a function of the interface
RMSD of the initial template. For initial templates with a

5- to 6-Å interface RMSD, 57% of targets improve the

quality of the interface by at least 2 Å; 50% of targets with a

4- to 5-Å initial interface RMSD improve the RMSD of the

interface by at least 1 Å. For initial templates with a good

interface, 53% with a 3- to 4-Å interface RMSD improve the

RMSD by at least 1 Å; 52% with a 2- to 3-Å interface RMSD

improve the RMSD by at least 0.5 Å.

Monomer structures

As shown in Table 2, the monomer structures of the initial

templates have an average RMSD to native of 5.3 Å with

an average coverage of 91%, and their average TM-score is

0.67. The sequence identity ranges from 6% to 30% with an

average of 20%; 80% of the monomer structures are foldable

(RMSD,,6.5 Å), 53% have medium resolution (,4 Å), and

4% have high resolution (,2 Å) (Fig. 4 C). The monomer

structures of the M-TASSERmodels have an average RMSD

to native of 4.0 Å on the same aligned regions and an average

TM-score of 0.76. As shown in Fig. 4, A and B, the im-

provement is evident for most cases The percentages of

foldable, medium, and high resolution models increases to

88%, 76%, and 20% from 80%, 53%, and 4% of the template

structures, respectively. Fig. 4D shows the fraction of targets

with a monomer RMSD improvement above the given

threshold value plotted as a function of the monomer RMSD

of the initial template. For initial template structures with a

5- to 6-Å RMSD, 43% of targets improve the RMSD by at

least 2 Å; 51% of targets with a 4- to 5-Å initial RMSD

improve by at least 1 Å. For very good initial templates, 37%

with a 3- to 4-Å initial RMSD improve the RMSD by at least

1 Å and 46% with a 2- to 3-Å initial RMSD improve the

RMSD by at least 0.5 Å.

Representative examples

In Fig. 5, we show three representative examples showing

the improvement of M-TASSER models over their best

template. Target 2fur (homodimer, 188 residues each chain)

has four templates. The best template (PDB code, 2arz)

shares 10% sequence identity on 87% aligned residues. The

fraction of native contacts is 20% and the dimer TM-score is

0.55. The template has a correctly aligned interface in its

N-terminal domain, but the C-terminal domain, mainly com-

posed of a large extended loop, is away from the interface.

The other templates share consensus regions only in the

N-terminal domain of the best template. This C-terminal

loop region contributes significantly to the RMSD to native

and gives values of 12.0, 19.2, and 13.8 Å for the monomer,

interface, and dimer structures, respectively. After M-TASSER

FIGURE 2 M-TASSER refinement of dimer

structure compared to the best initial template.

(A) RMSD to native. (B) TM-score to native. (C)
Histogram of fraction of models at different RMSD

to native thresholds. (D) Fraction of targets with an

RMSD improvement by M-TASSER greater than

the threshold value d. Here, d ¼ ‘‘RMSD of

template’’ � ‘‘RMSD of model’’. Each point is

calculated with a bin width of 1 Å; however,

the last point includes all templates with an RMSD

.6 Å.
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assembly and refinement, the extended loop is correctly re-

arranged to the interface. The final model has a RMSD to

native of 4.7 (4.8) Å, 5.7 (5.8) Å, and 5.0 (5.0) Å on the same

aligned residues (entire chain) for the monomer, interface,

and dimer structures. The dimer TM-score is 0.79.

Target 1tlg (homodimer, 123 residues each chain) has two

templates without a consensus interface. The best template,

1rdi, shares 21% sequence identity on 90% aligned residues.

The template has very good monomer structures whose

RMSD to native is 2.3 Å, but the dimer has an incorrect

FIGURE 4 M-TASSER refinement on monomer

structure compared to the best initial template. (A)

RMSD to native. (B) TM-score to native. (C)

Histogram of fraction of models at different RMSD

to native thresholds. (D) Fraction of targets with a

RMSD improvement by M-TASSER greater than

the threshold value, d. Here, d ¼ ‘‘RMSD of

template’’ � ‘‘RMSD of model’’. Each point is

calculated with a bin width of 1 Å; however, the

last point includes all templates with an RMSD

.6 Å.

FIGURE 3 Extent of M-TASSER refinement of

the interface structure compared to the best initial

template. (A) RMSD to native. (B) TM-score to

native. (C) Histogram of fraction of models at

different RMSD to native thresholds. (D) Fraction
of targets with a RMSD improvement by M-TASSER

greater than the threshold value d. Here, d ¼
‘‘RMSD of template’’� ‘‘RMSD of model’’. Each

point is calculated with a bin width of 1 Å;

however, the last point includes all templates with

an RMSD .6 Å.
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relative orientation between the monomers. Superimposing

the template and the native structures onto one monomer

structure shows that the other monomer in template is rotated

;90� relative to the native structure. The fraction of native

contacts is 5%. The RMSD to native for the interface and

dimer structures are 10.0 and 10.5 Å, respectively. The dimer

TM-score is 0.46. M-TASSER refinement correctly adjusts

the orientation of the monomers although a little bit of the

quality of the monomer structures is sacrificed. The final

model has a RMSD to native of 2.8 (3.0) Å, 3.4 (3.5) Å, and

3.4 (3.6) Å on the same aligned residues (entire chain) for the

monomer, interface, and dimer structures. The dimer TM-

score is 0.78.

Target 1iq6 (homodimer, 133 residues each chain) has 10

templates with a good consensus interface. The best tem-

plate, 1q4t, shares 17% sequence identity with 78% aligned

residues. The fraction of native contacts is 28%. The tem-

plate has a RMSD to native of 4.8, 4.1, and 5.1 Å for the

monomer, interface, and dimer structures. The dimer TM-

score is 0.65. M-TASSER refines the template structures to

high resolution models. The final model has a RMSD to

native of 1.7 (1.8) Å, 1.5 (1.6) Å, and 1.8 (1.9) Å on the same

aligned residues (entire chain) for the monomer, interface,

and dimer structures. The dimer TM-score is 0.93.

DISCUSSION

We have developed a hierarchical approach to predict full-

length protein quaternary structure from amino acid se-

quence that includes template identification by multimeric

threading followed by multimer model assembly and re-

finement; 207 target dimers are predicted as interacting by

multimeric threading, of which 165 (80%) have a correct

dimer template with weak sequence similarity identified. The

true positive and false positive rates of template identifica-

tion are 68% and 17%, respectively. The best threading

templates have an average RMSD to native of 5.3, 6.7, and

7.4 Å for the monomer, interface, and dimer structures. The

final models have an average RMSD to native of 4.0, 5.4,

and 5.9 Å on the same aligned region for the monomer, in-

terface, and dimer structures. The refinement is systematic

with 87% of dimer models being closer to native than the

best template structures.

The quality of the initial dimer templates is important for

dictating the quality of the final model because: 1), the in-

terfacial contact restraints used to guide the model refine-

ment procedure are derived from the templates; 2), the dimer

template provides the starting orientation of the individual

chains; 3), our interfacial energy function is still far from

perfect. Nevertheless, M-TASSER shows some ability to

refine the interface and dimer structures when the best

threading template has an interface RMSD .6.5 Å. Refine-

ment is more significant for medium and high resolution

models whose dimer templates are more likely to have an

approximately correct interface. The M-TASSER monomer

models are very similar to the TASSER single-chain models

as shown by their monomer TM-score (Fig. 6). This is

because we use the same tertiary contact and distance re-

straints in both simulations.

FIGURE 5 Representative examples ofM-TASSER

models compared to the best initial template. The

left-hand column is the best template superimposed

onto the native structure whereas the right-hand

column shows the final model superimposed onto

the native structure. The thin lines are native

structures with monomer chain A colored in red

and chain B colored in green. The thick lines are

initial templates or final models with residues

within 5 Å from native colored in red (chain A) or

green (chain B). Residues that lie beyond this

distance are in magenta (chain A) or cyan (chain B).
For models, the numbers on the left are the RMSD

to native over the same aligned residues as the best

template; the numbers on the right are the RMSD to

native of the entire chain.
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As noted in 1, the success of M-TASSER is partly dictated

by the number of reasonably accurate tertiary and interfacial

contact restraints. Since the tertiary restraints are predicted

from monomer templates library by single-chain threading

and because the monomer template library is much more

complete than the dimer template library, the tertiary contact

predictions are more reliable than the interfacial contact pre-

dictions. A better method for interfacial contact prediction

will likely improve the results.

Since M-TASSER is fully automated, in the very near

future, it will be applied to predict protein quaternary

structure on a proteomic scale. Furthermore, a web-server

version with shorter simulation times will also be developed

for public use. In addition to predicting quaternary structure

directly from sequences, M-TASSER may also be useful in

the refinement of docked protein structures. We will explore

this issue in the near future.
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